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Cooperative coevolution employs evolutionary algorithms to solve a high-dimensional search problem

by decomposing it into low-dimensional subcomponents. Efficient problem decomposition methods or

encoding schemes group interacting variables into separate subcomponents in order to solve them

separately where possible. It is important to find out which encoding schemes efficiently group

separability. This paper introduces a novel encoding scheme in cooperative coevolution for training

recurrent neural networks. The method is tested on grammatical inference problems. The results show

that the proposed encoding scheme achieves better performance when compared to a previous

encoding scheme.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The ability of recurrent neural networks (RNNs) to model any
open dynamical system has been praised [1–4]. They are difficult
to train using gradient descent based methods which are unable to
guarantee an acceptable solution in difficult problems and those
involving long-term dependencies [5,6]. Neuro-evolution has been
used for training neural networks as it does not rely on gradient
information and can be easily deployed in any neural network
optimization problem without being constrained to a particular
architecture [7].

Cooperative coevolution (CC) is a biologically inspired evolu-
tionary computation framework which divides a large problem into
smaller subcomponents and solves them [8]. The subcomponents
are represented using subpopulations that evolve independently. In
the field of genetics, a genotype is an organisms heritable informa-
tion and a phenotype is its observed behavior. In neuro-evolution,
the genotype–phenotype mapping or encoding scheme is the way
the genes are mapped into the neural network, which accepts the
network’s behavior [7]. Cooperative coevolution has been effective
for training recurrent neural networks using different encoding
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schemes, including enforced subpopulations [9,10] and coopera-
tively co-evolved synapses [11]. Cooperative coevolution has also
shown promising performance in training feedforward networks
[8,12–14].

In the original cooperative co-evolutionary framework, the
problem is decomposed by having a separate subcomponent for
each variable [8]. It was later found that the strategy was only
effective for problems which are separable [15], in the sense that
there is no interdependency between the decision variables.
Cooperative coevolution is a natural algorithm to use for separ-
able problems as there is no interaction among the subcompo-
nents during evolution [16]. The type of problem decomposition
influences the performance of cooperative coevolution. A higher
degree of non-separability indicates that more interacting variables
exist than the problem with lower degree of non-separability.

The CC framework has been used effectively in training recurrent
neural networks in order to preserve information associated with
the recurrent or state neurons. In standard neuro-evolution, there is
a tendency to lose internal state information as the crossover
operator makes changes to weights of the entire network.

Pioneering work was done in the deployment CC as enforced

subpopulations (ESP) for training recurrent neural networks in
solving the double pole balancing problem [9,10]. A sophisticated
version of ESP known as Evolino has been used to evolve the LSTM
network. It was shown that the framework outperformed gradi-
ent based LSTM and learned tasks that were unlearn-able by Echo
ents in cooperative co-evolutionary recurrent neural networks,
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State Networks [17]. Recently, the same framework with a
different encoding scheme has been used for training RNNs for
the double pole balancing problem without velocity information.
The approach was called cooperatively co-evolved synapse neuro-
evolution (CoSyNE) and has shown better performance than ESP
and other neuro-evolution methods [11].

This work introduces an encoding scheme which is motivated
from the architectural properties of a neuron and is specifically
designed for training recurrent neural networks. The encoding
scheme is called neuron-based subpopulation (NSP). The perfor-
mance of NSP is compared with CoSyNE for grammatical infer-
ence problems. We investigate on the optimal depth of search
required for the subcomponents in the respective encoding
schemes. The depth of search also helps determine the degree
of non-separability exhibited by the different encoding schemes.
Note that the goal is to group interacting variables (weights) into
separate subcomponents so that there is less interaction among
subcomponents. In this way, the problem is most efficiently
decomposed in order to take full advantage of cooperative
coevolution which naturally appeals to separable problems.

We also observe the behavior of the respective methods for
different numbers of hidden neurons which reflects on scalability.
Our goal is to achieve faster convergence and better success rates
when compared to CoSyNE. In our previous work, NSP has been
implemented for feedforward neural networks [14]. The results
show that NSP outperformed CoSyNE for pattern recognition
problems. We also discuss the performance of NSP for recurrent
neural networks in comparison to feedforward networks in
pattern recognition problems and comment on the degree of
non-separability and its relationship to the encoding scheme.

In order to demonstrate the effectiveness of NSP, specific
grammatical inference problems are taken from [18] and the
Tomita grammar [19,20]. The Elman style first-order recurrent
neural network [21,22] is the designated network architecture in
all experiments.

This paper applies the existing encoding schemes from litera-
ture, in particular, CoSyNE for training recurrent neural networks
on grammatical inference problems. The main contribution of this
paper is that it proposes a new encoding scheme for training
recurrent neural networks and examines the degree of non-
separability exhibited by the given encoding schemes.

The rest of the paper is organized as follows. Background on
recurrent neural networks, grammatical inference and coopera-
tive coevolution framework is presented in Section 2. Section 3
presents the encoding scheme in the proposed neuron-based
subpopulation for training recurrent neural networks. Section 4
presents the results and discussion, and Section 5 concludes the
paper with a discussion on future work.
Fig. 1. Deterministic Finite-State Automata from the Tomita grammar: Double

circles in the figure show accepting states while rejecting states are shown by

single circles. State 1 is the automata’s start state.
2. Background

2.1. Recurrent neural networks

Recurrent neural networks are dynamical systems whose next
state and output depend on the present network state and input;
the networks are composed of an input layer, a context layer which
provides state information, a hidden layer and an output layer.
Each layer contains one or more neurons which propagate
information from one layer to the another by computing a non-
linear function of their weighted sum of inputs.

First-order recurrent neural networks employ context units to
store the output of the state neurons from computation of
previous time steps. The Elman architecture [21] employs the
context layer which makes a copy of the hidden layer outputs in
the previous time steps. The equation of the dynamics of the
Please cite this article as: R. Chandra, et al., Encoding subcompon
Neurocomputing (2011), doi:10.1016/j.neucom.2011.05.003
change of hidden state neuron activations in the context layer is
given in as follows:

SiðtÞ ¼ g
XK

k ¼ 1

VikSkðt�1Þþ
XJ

j ¼ 1

WijIjðt�1Þ

0
@

1
A ð1Þ

where Sk (t) and Ij(t) represent the output of the context state and
input neurons, respectively, and Vik and Wij represent their
corresponding weights. g(.) is a sigmoid squashing function.

2.2. Grammatical inference

Grammatical inference problems have been used to study
training algorithms for knowledge representation in recurrent
neural networks. It has been demonstrated through knowledge
extraction that RNNs can represent finite-state automata [23–26].
There is no feature extraction necessary in order for recurrent
neural networks to learn these languages. Thus, grammatical
inference is used as an appropriate test bed for the investigation
of the performance and other issues of learning algorithms for
recurrent neural networks. A formal definition on deterministic
finite-state automata (DFA) and fuzzy finite-state automata (FFA) is
given as follows.

Definition 1. A deterministic finite-state automata (DFA) is
defined as a 5-tuple M¼ ðQ ,S,d,q1,FÞ, where Q is a finite number
of states, S is the input alphabet, d is the next state function d :
Q � S-Q which defines which state q0 ¼ dðq,sÞ is reached by an
automaton after reading symbol s when in state q, q1AQ is the
initial state of the automaton (before reading any string) and
FDQ is the set of accepting states of the automaton [27].

The language L(M) accepted by the automaton contains all the
strings that bring the automaton to an accepting state. The
languages accepted by DFAs are called regular languages. Fig. 1
shows the DFAs selected from the Tomita grammar which will be
used for training the recurrent network in this study.

Definition 2. A fuzzy finite-state automaton M is a six-tuple,
M¼ ðS,Q ,R,Z,d,oÞ, where S and Q are the input alphabet and the
set of finite states, respectively, RAQ is the automaton’s fuzzy
start state, Z is a finite output alphabet, d : S� Q � ½0,1�-Q is the
fuzzy transition map, and o : Q-Z is the output map [27].

A restricted type of fuzzy automata is considered whose initial
state is not fuzzy, and in which o is a function from F to Z, where
F is a non-fuzzy set of states, called finite states. Any fuzzy
automaton as described in Definition 1 is equivalent to a
restricted fuzzy automaton. The transformation of a fuzzy
ents in cooperative co-evolutionary recurrent neural networks,
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automaton to its corresponding deterministic acceptor is dis-
cussed in [1]. Fig. 2 shows an example of a FFA with its
corresponding deterministic acceptor which is used for training
recurrent neural networks. This FFA has been used in [18] to show
that RNNs can be trained by evolutionary algorithms.

The Tomita grammars [19] have been used as a benchmark
problem in order to evaluate RNN training algorithms and
architectures [20]. The Tomita grammars consists of seven regular
languages. An illustration of two selected grammars is shown in
Fig. 1.

2.3. Cooperative coevolution

In the evolutionary process of nature, different species com-
pete in order to survive with given resources. The individuals of a
particular group of species mate among themselves. However,
mating between different species does not give rise to viable
offspring. The cooperative coevolution framework is nature
inspired where species are represented as subcomponents, imple-
mented as subpopulations.

The subpopulations in the cooperative coevolution framework
are evolved in isolation and the cooperation only takes place for
fitness evaluation for the respective individuals in each subpopu-
lation. The subpopulations are evolved in a round-robin fashion
for a given number of generations known as the depth of search.
The depth of search has to be predetermined according to the
nature of the problem. The depth of search can reflect whether
the encoding schemes have been able to group the interacting
variables into separate subcomponents. If the interacting vari-
ables have been grouped efficiently, then a deep greedy search for
the subpopulation is possible, implying that the problem has been
efficiently broken down into subcomponents which have fewer
interactions among themselves.

2.4. The issue of separability in cooperative coevolution

Much work has been done in the use of cooperative coevolu-
tion in large-scale function optimization, and the concentration
has been on non-separable problems. A function of n variables is
separable if it can be written as a sum of n functions with just one
variable [28]. Non-separable problems have interdependencies
between decision variables as opposed to separable ones. Several
methods have been proposed which group interacting and non-
interacting variables for global optimization problems. In order to
solve large-scale optimization problems which fall between total
separable and fully non-separable, it is important to efficiently
decompose the high-dimensional problem into several low-
dimensional subcomponents where the subcomponents have
least interaction among themselves.
Fig. 2. The fuzzy finite-state automata (a) and its equivalent deterministic acceptor (

automata’s start state; accepting states are drawn with double circles [18].

Please cite this article as: R. Chandra, et al., Encoding subcompon
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It has been outlined that in real-world application problems,
most problems fall between total separable and fully non-separ-
able. Cooperative coevolution has been effective for separable
problems [8] as it has the property to decompose the problem
into sub-problems and solve them in isolation. Conversely,
evolutionary algorithms without any decomposition strategy
appeal to fully non-separable problems. Note that the goal is to
solve non-separable problems without any prior knowledge about
the interacting variables in the problem. Therefore, the evolu-
tionary algorithm has to identify the interdependencies itself.

Fast evolutionary programming in the cooperative co-evolu-
tionary framework (FEPCC) has been the first attempt to tackle
large-scale function optimization of up to 1000 dimensions [15].
FEPCC used the original CCEA framework by Potter and Jong [8].
The major drawback of CCEA is that it does not have the
mechanism to provide interaction between subcomponents
which is needed for non-separable problems. Due to this, FEPCC
performed poorly on non-separable problems.

Yang et al. [29] have presented a cooperative coevolution
algorithm that employs a random grouping and adaptive weighting

strategy with differential evolution (DECC-G) for its subcompo-
nents. The method groups interacting and non-interacting vari-
ables into separate subcomponents heuristically. Yang et al. also
presented a multi-level cooperative coevolution framework
(MLCC) [30] which adapts the size of the subcomponents in
DECC-G in order to group interacting and non-interacting vari-
ables. The framework begins with small sized subcomponents
and adapts to bigger subcomponents from a predefined set. MLCC
showed better performance than DECC-G for non-separable
problems up to 1000 dimensions. Omidvar et al. [31] made
amendments to the random grouping approach. They presented
a more frequent random grouping approach which outperformed
its counterpart in several non-separable problems up to 1000
dimensions.

2.5. Network encoding schemes for cooperative coevolution

An important feature of cooperative coevolution for neuro-
evolution is that it allows the neural network to be decomposed,
enabling the subcomponents to be isolated. Problem decomposi-
tion determines the size of a subcomponent and the way it is
encoded. In the case of neural networks, we refer to problem
decomposition as an encoding scheme.

There have been two major encoding schemes based on the CC
framework for training recurrent neural networks. The first
scheme proposes a neuron level encoding where each neuron in
the hidden layer is used as a major reference point for each
subpopulation in the CC framework. Therefore, the number
of hidden neurons is equal to the number of subpopulations.
b). The accepting states are labeled with a degree of membership. State 1 is the

ents in cooperative co-evolutionary recurrent neural networks,
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This encoding has been used in enforced subpopulation (ESP) [9,10]
where a particular neuron hi in the hidden layer encodes the
following weight links in its subpopulation:
1.
P
N

The weight links connecting from the input layer to hi;

2.
 The weight links connecting from hi to each context neurons;

3.
 The weight links connected from hi to each output layer; and

4.
 The bias associated with hi.

In this encoding scheme, the sizes of all the subpopulations are
the same for the entire framework. This encoding is shown in
Fig. 3. Note that it is difficult to use this encoding scheme when
more than one hidden layer is present.

The second encoding scheme has been presented in the
cooperatively co-evolved synapse neuro-evolution (CoSyNE) algo-
rithm. This encoding scheme decomposes the network into its
lowest level, where each weight link (synapse) in the network is
part of a single subpopulation. Therefore, the number of sub-
populations depends on the number of weights and biases. Note
that the CoSyNE demonstrated better performance than ESP on
the double pole balancing problem [11].
3. Neuron-based subpopulation (NSP) for recurrent neural
networks

The neuron-based subpopulation (NSP) is motivated by the
architectural properties of a single neuron which computes the
weighted sum of incoming weight links associated with it. Unlike
ESP, NSP does not include the outgoing weight links in this
computation. Each neuron in the hidden and output layer is a
reference point for a subpopulation. Each hidden neuron also acts
as a reference point for the recurrent (state or context) weight
links connected to it. Therefore, each subpopulation for a RNN
with a single hidden layer is composed of the following:
1.
 Hidden layer subpopulations: weight links from each neuron
in the hidden(t) layer connected to all input(t) neurons and the
bias of hidden(t), where t is time.
Fig. 4. The NSP encoding scheme. Each neuron in the hidden and output layer acts

as a reference point to its subcomponents given as subpopulations. The sub-

2.
population for the context weights is also shown. The same encoding scheme is

used in the rest of the neurons in the hidden and output layer.
State (recurrent) neuron subpopulations: weight links from
each neuron in the hidden(t) layer connected to all hidden
neurons in previous time step hiddenðt�1Þ.
lease cite this article as: R. Chandra, et al., Encoding subcompon
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3.
 Output layer subpopulations: weight links from each neuron
in the output(t) layer connected to all hidden(t) neurons and
the bias of output(t).

The general NSP CC framework for training RNN is given in
Algorithm 1. Fig. 4 shows a detailed diagram of the NSP encoding
scheme. Note that unlike ESP, NSP can be easily extended to a
neural network with more than a single hidden layer.

Algorithm 1. The NSP CC framework for training RNN

Step 1: Decompose the problem into k subcomponents
according to the number of Hidden, State, and Output neurons
Step 2: Encode each subcomponent in a subpopulation in the
following order:
i) Hidden layer subpopulations
ii) State (recurrent) neuron subpopulations
iii) Output layer subpopulations
Step 3: Initialize and cooperatively evaluate each
subpopulation
for each cycle until termination do

for each Subpopulation do
for n Generations do

(i) Select and create new offspring
(ii) Cooperatively evaluate the new offspring
(iii) Add the new offspring to the subpopulation

end for
end for

end for

In Algorithm 1, the recurrent neural network is decomposed in k

subcomponents, where k is equal to the number of hidden neurons,
plus the number of context neurons, plus the number of output
neurons. Each subpopulation contains all the weight links from the
previous layer connecting to a particular neuron. A cycle is com-
pleted when all the subpopulations are evolved for a fixed number
of generations. The algorithm halts if the termination condition is
satisfied. The termination criteria can be a specified neural network
error, classification performance on the training or validation data
or when the maximum number of function evaluations has been
reached.

A major concern in the NSP framework is the cooperative
evaluation of each individual in every subpopulation. There are
ents in cooperative co-evolutionary recurrent neural networks,
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two main phases of evolution in the cooperative coevolution
framework. The first is the initialization phase and second is the
evolution phase.

Cooperative evaluation in the initialization phase is given in
Step 3. In order to evaluate the ith individual of the kth
subcomponent (chosen individual), arbitrary individuals from
the rest of the subpopulations is selected and combined with
the chosen individual and cooperatively evaluated. Arbitrary
individuals are selected as in the initialization stage, the indivi-
duals from the rest of the subpopulations do not have a fitness.
Once the fitness has been assigned to all the individuals of a
particular subpopulation, then the best individual can be chosen.
A similar approach is shown in [32]. In the evolution phase,
cooperative evaluation shown in Step 3(ii) is done by combining
or concatenating the chosen individual from a subpopulation k

with the best individuals from the rest of the subpopulations.
After the initialization phase, the best individuals from the rest of
subpopulations can easily be found through ranking according to
fitness. The concatenated individual is encoded into the recurrent
neural network and the fitness is calculated. The fitness function
is the sum-squared-error of the network. The fitness evaluation of
individuals in each subpopulation is further shown in Fig. 5. The
goal of the evolutionary process is to increase the fitness which
tends to decrease the network error. In this way, the fitness of
each subcomponent in the network is evaluated until the cycle is
completed.

3.1. Performance evaluation

The neural network optimization time in terms of number of
function evaluations and the success rate are considered to be the
main performance measures for the method presented in this
study. The success rate determines how well the particular
algorithm can guarantee a solution within a specified time.
A run is considered successful if a desired solution is found before
the maximum time is reached. The desired solution for neural
network training is specified by a predefined minimum network
error or minimum classification performance depending on the
type of the problem.
Fig. 5. The current individual whose fitness has to be evaluated is concatenated

with arbitrary individuals from the rest of the subpopulations in the initialization

phase. In the evolution phase, the best individuals from the rest of the subpopula-

tions are chosen. The current individual is then concatenated with the chosen

individuals. The fitness is then evaluated and assigned to the current individual.

Please cite this article as: R. Chandra, et al., Encoding subcompon
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4. Experimentation, results and analysis

This section presents an experimental study of NSP for training
recurrent neural networks and compares it with CoSyNE. CoSyNE
has shown better performance than ESP, therefore, we use it for
comparison with NSP. In order to show a favorable comparison
with NSP, CoSyNE will use the same method for subpopulation
initialization and cooperative evaluation. The Elman recurrent
network [21] with one hidden layer is used in all experiments.

The G3-PCX evolutionary algorithm [33] is employed in the
respective CC frameworks with 100 individuals in all subpopula-
tions. The G3-PCX algorithm employs the mating pool size of two
offspring and two parents with the generation gap model for
selection for NSP and CoSyNE. This set-up has been used in [33]
for optimization problems and in [14] for training cooperative co-
evolutionary feedforward neural networks. The subpopulations
are seeded with random real numbers in the range of [�5, 5] in
all the experiments.

Grammatical inference is used as a means to study the perfor-
mance of the proposed NSP framework in recurrent neural net-
works. The FFA shown in Fig. 2(b) is used. The training dataset is
generated by presenting strings of increasing lengths of 1–7 to the
FFA and the corresponding output for each sample is noted. Note
that for every string length, all the possible bits are generated. The
training set consists of 255 samples. Similarly, the testing dataset
with string lengths of 8–14 using the same FFA is generated. The
recurrent network topology for the FFA is as follows: (1) one neuron
in the input layer, (2) two output neurons in the output layer
representing the four fuzzy output states of the FFA.

Similarly, we generated the training and testing dataset form
the Tomita language shown in Fig. 1. We used Tomita 1 to Tomita 4
(T1, T2, T3 and T4) for comparison [19,20]. In this case, the training
and testing data is generated by presenting random strings of
length 15–25 for each Tomita language. The training and testing
dataset contains 250 (125 positive and 125 negative) string
samples. Note that the string lengths considered here (15–25)
cannot be trained using the classical backpropagation-through-
time algorithm as outlined in [34].

In all problems, the RNN is trained until the mean-squared-
error (MSE) reaches below 0.0005. The training is terminated if
the number of function evaluation exceeds the maximum. The
maximum number of function evaluations for T1 and T2 is 5000.
T3, T4 and FFA problem use a maximum of 10 000 function
evaluations. These values were chosen in trial experiments.

We report the optimization time of the respective algorithms in
terms of the number of function evaluations. The success rate is also
used as a measure. The goal of each algorithm is to get convergence
in the least optimization time with a high success rate.

4.1. Depth of search for NSP in recurrent networks

In the NSP framework for recurrent networks shown in
Algorithm 1, each subpopulation is evolved for a fixed number
of generations in a round-robin fashion. The study begins by
determining the optimal number of generations needed for the
subpopulation which is considered as the depth of search. Note
that all subpopulations are meant to evolve for the same number
of n generations which must be fixed beforehand.

The FFA used in this experiment has seven states and in order
to make the problem more difficult, only four neurons in the
hidden layer of the RNN are used to represent seven states. In the
T1 and T2 problem, two neurons in the hidden layer are used.
In the T3 and T4 problem, three neurons in the hidden layer are used.

The results given in Figs. 6–10 report the optimization time
with respect to the depth of search needed in the respective
cooperative co-evolutionary framework (NSP and CoSyNE). These
ents in cooperative co-evolutionary recurrent neural networks,
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is shown in (b). A total of 100 independent experimental runs have been done.
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results are for the evolution phase only. The error bars in the
histograms of the respective figures show the confidence interval.
The results do not include the time taken for the initialization
phase as the goal is to observe the convergence of the respective
methods during evolution.

In the T1 problem shown in Fig. 6, the depth of 1–5 genera-
tions in NSP gives similar performance, while in CoSyNE, the
depth of 1 generation only gives the best result. The performance
of CoSyNE significantly deteriorates with depth larger than 1 gen-
eration. Similar trend is given in the T2 problem shown in Fig. 7,
the depth of 1–7 generations in NSP gives similar performance,
while in CoSyNE, the depth of 1 generation gives the best result.

In the T3 problem shown in Fig. 8, the depth of 1–5 genera-
tions in NSP achieves similar performance, while in CoSyNE, the
depth of 1 generation only gives the best result. In the T4 problem
shown in Fig. 9, the depth of 1–5 generations in NSP achieves
similar performance considering the optimization time and the
success rates. In CoSyNE, the depth of 1 generation only gives the
best result. In the FFA problem shown in Fig. 10, the depth of
1 generation in NSP and CoSyNE gives the best results. The
performance of CoSyNE significantly deteriorates with depth
larger than 1 generation for T3, T4 and the FFA problem. Note
that the least optimization time and high success rate determine
the performance evaluation. In all the problems, both methods
Please cite this article as: R. Chandra, et al., Encoding subcompon
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report that the performance deteriorates at some stage as the
depth increases.

In general, with NSP, the depth of 1 generation gives the best
performance. The depth from 1 to 5 generations give similar or
acceptance performance. The performance deteriorates with a larger
depth. In CoSyNE, the depth of 1 generation gives the best
performance and the performance deteriorates otherwise. The
comparison of the best results from NSP and CoSyNE show that
NSP has been able to solve the problems in less optimization time
with higher success rates when compared to CoSyNE. This is due to
the difference in the problem decomposition methods. In NSP, the
interacting variables have been grouped efficiently into separate
subcomponents. In CoSyNE, there is no grouping of interacting
variables at the size of each subcomponent is restricted to 1,
therefore, only a shallow depth of search has been able to yield
acceptable performance. In NSP, the interacting variables have been
grouped according to the way they interact with the respective
neurons. Therefore, a deeper depth of search in the subcomponents
has been possible (1–5 generations) in most of the problems.

The generalization performance is given in Table 1 show that in
all the problems, both methods have been able to achieve 100%
generalization performance on unseen data. The results for the
depth of 1 generation is shown only as both methods have been able
to achieve the best performance for this value, i.e. a shallow depth.
ents in cooperative co-evolutionary recurrent neural networks,

dx.doi.org/10.1016/j.neucom.2011.05.003


 0

 2000

 4000

 6000

 8000

 10000

 12000

1 3 5 7 9 11 13 15

M
ea

n 
Fu

nc
tio

n 
E

va
lu

at
io

ns

Depth of Search (Generations)

T3 Optimization Time
NSP

CoSyNE

 0

 10

 20

 30

 40

 50

 60

1 3 5 7 9 11 13 15

S
uc

ce
ss

 R
at

e

Depth of Search (Generations)

T3 Success Rate
NSP

CoSyNE

Fig. 8. The performance of NSP and CoSyNE on different depths of search in terms

of the number of generations for the T3 problem. The optimization time in terms

of the average number of function evaluations is shown in (a) and the success rate
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4.2. The scalability of NSP for recurrent networks

In this section, the performance of NSP is compared with
CoSyNE. Note that the original CoSyNE employed a different
genetic algorithm in their subpopulation. The G3-PCX is used in
both encoding schemes. The depth of 1 generation is used in NSP
and CoSyNE.

The goal of this experiment is to observe the performance of
the respective methods with a fixed recurrent network topology.
Note that the number of hidden neurons directly influences the
difficulty of the learning problem. It is more difficult to learn the
problem if fewer neurons are present in the hidden layer.

Table 2 shows the relationship between the number of func-
tion evaluations and the number of hidden neurons used in the
initialization phase of NSP and CoSyNE. The RNN topology has one
input neuron and two output neurons. The results show that the
number of function evaluations given in terms of the population
size P increases as the size of the networks increases in terms of
‘‘Hidden’’ neurons. This directly relates to the number of sub-
components represented by the subpopulations. Note that NSP
uses fewer number of function evaluations shown in Table 2 as it
requires a smaller number of subcomponents when compared to
CoSyNE. Therefore, the initialization phase of evaluating different
subcomponent encoding schemes for the cooperative coevolution
framework is an important measure.
Please cite this article as: R. Chandra, et al., Encoding subcompon
Neurocomputing (2011), doi:10.1016/j.neucom.2011.05.003
In all problems, the RNN is trained until the mean-squared-
error (MSE) is below 0.0005, or the number of function evaluation
exceeds the maximum. The maximum number of function eva-
luations for T1 and T2 is 5000. T3, T4 and FFA problem use a
maximum of 10 000 function evaluations.

The comparative results during evolution are given in Figs. 11–15.
The respective figures first show the results for the evolution phase
only and then for the total optimization time with the respective
success rates. The two methods are evaluated using different num-
bers of hidden neurons. A total of 100 experiments are performed for
each case and the mean function evaluation is given for each
problem. The total optimization time includes the initialization phase
and the evolution phase. The results include the 95% confidence
interval given as error bars in the histograms which evaluate the
optimization time.

Note that the T1 and T2 are easier problems than the rest of the
problems so they can be learned in a relatively shorter time. In the
results for the T1 problem shown in Fig. 11, NSP shows better
performance than CoSyNE in (a) the evolution phase and (b) the
initialization plus the evolution phase with higher success rate shown
in (c). The results are similar in the case of the T2 problem shown in
Fig. 12, except that for four hidden neurons, the performance of NSP
and CoSyNE is similar in the evolution phase (a). However, NSP shows
better performance when the initialization phase is added to the
evolution phase (total time) for four hidden neurons in (b).
ents in cooperative co-evolutionary recurrent neural networks,
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success rate is shown in (b). A total of 100 independent experimental runs have

been done.

Table 1
The generalization performance in percentage is given by NSP and CoSyNE for the

depth of search of 1 generation. Note that the generalization performance does not

include the performance of the unsuccessful runs in the mean. The success rate

from 100 experiments is also given.

Problem NSP (%) Success rate CoSyNE (%) Success rate

T1 100 100 100 95

T2 100 83 100 67

T3 100 45 100 37

T4 100 100 100 77

FFA 100 29 100 10

Table 2
A comparison of NSP and CoSyNE based on the number of function evaluation

required during initialization. This is for a RNN with one input neuron and two

output neurons which is used in all our experiments. The comparison is done in

terms of P which is the size of the population.

No. of hidden neurons NSP CoSyNE

3 8 23

4 10 34

5 12 47

6 14 62

7 16 79
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Fig. 11. The performance of NSP and CoSyNE on different numbers of hidden

neurons for the T1 problem. The optimization time in terms of the average

number of function evaluations (evolution phase) is shown in (a), the total
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in (b) and the success rate is shown in (c).
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In the T3 problem shown in Fig. 13, the evolution phase in
(a) shows that the performance of NSP is similar to CoSyNE for
four and seven hidden neurons. In (b), NSP gives better perfor-
mance for the total time. In the T4 problem shown in Fig. 14, NSP
gives better performance than CoSyNE in general.

In the FFA problem shown in Fig. 15, the performance of NSP is
weaker than CoSyNE for six hidden neurons and similar for seven
and eight hidden neurons as shown in (a). NSP outperforms
CoSyNE in all the cases for the total time in (b).
ents in cooperative co-evolutionary recurrent neural networks,
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4.3. Discussion

Cooperative coevolution naturally performs better in separable
problems, however, for non-separable problems, heuristic meth-
ods have been used to group interacting variables in separate
subcomponents for large-scale function optimization [35,36,29].
In the case of neuro-evolution, the architectural properties of the
neural network have been used to group the subcomponents. In
Please cite this article as: R. Chandra, et al., Encoding subcompon
Neurocomputing (2011), doi:10.1016/j.neucom.2011.05.003
this paper, NSP encoding scheme has been introduced which
groups subcomponents according to the synapse-links that are
connected to a neuron.

The results reveal that good performance can be achieved when
each subpopulation is evolved for one generation in a round-robin
fashion for the entire cycle of CoSyNE and NSP. In neural networks,
interacting variables exist which lead to a non-separable problem.
The level of non-separability is dependent on the particular neural
ents in cooperative co-evolutionary recurrent neural networks,
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network architecture and application problem. The deep greedy
search for a large number of generations for each subpopulation has
not shown good performance and gives an indication that recurrent
networks on the given grammatical inference problems are par-
tially separable. The deep greedy search in NSP has shown similar
performance for 1–5 generations. The performance deteriorates
with deeper depth of search. This implies that the degree of non-
separability is high in recurrent networks. This is due to the
Please cite this article as: R. Chandra, et al., Encoding subcompon
Neurocomputing (2011), doi:10.1016/j.neucom.2011.05.003
application problem and the network architecture, i.e. in recurrent
networks, feedback connections are present which indicate that
more interacting variables are present. This might be the main
reason that a deeper greedy search for the case of using NSP for
evolving recurrent networks has not been beneficial when com-
pared to NSP in feedforward networks [14].

The comparative performance shows that the proposed NSP
framework shows a better performance than CoSyNE in most
ents in cooperative co-evolutionary recurrent neural networks,
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cases. Note that these results are specific for grammatical inference
problems. NSP has been shown to have the ability to effectively
form the required states in the recurrent network during the
learning process. The major advantage of NSP is that is can
represent the same problem in a smaller number of subcompo-
nents than CoSyNE and at the same time it provides similar
optimization performance. This advantage further enables NSP to
have fewer function evaluations in the initialization phase as
verified by the results in Table 2. The initialization phase has been
one of the reasons for the significant improvement in the total
optimization time of NSP over CoSyNE in most cases. The other
reason is due to the degree of non-separability exhibited by the
two problem decomposition methods. Note that CoSyNE views the
neural network as a fully separable problem as it used a separable
subcomponent for each synapse. Canonical neuro-evolution with a
single population views the network as fully non-separable, while
ESP and NSP view the network as partially separable.

The generalization performance given in Table 1 shows that
the performance of NSP has been similar to CoSyNE. This indicates
that NSP has achieved the same solution quality with a lower
optimization time and a better success rate.

NSP can be used for learning long-term dependency problems.
This is due to the non-gradient requirement of neuro-evolution in
optimizing the weights of the network. The length of the strings or
time lags does not matter to neuro-evolution. This is evident as the
strings of length 15–25 in the Tomita 3 and 4 problems were
successfully trained by NSP, which would have not been possible
with backpropagation-through-time [34].

The performance of CoSyNE is also poor when compared to
NSP for training feedforward neural networks in pattern recogni-
tion problems [14]. However, CoSyNE showed impressive results
for pole balancing problems in [11]. Presumably, this is due to the
nature of the problem.
5. Conclusions and future work

This paper introduced a novel problem decomposition method
(NSP) for the cooperative coevolution of recurrent neural net-
works. The method has been evaluated on grammatical inference
problems for recurrent neural networks.

The investigation began with a study for the cost of evaluation
of each encoding scheme in the initialization phase of the
evolutionary process. The NSP represents the problem with fewer
subcomponents when compared to CoSyNE.

It is important to evaluate the optimal depth of search in the
subcomponents. The results show that the depth of search makes
a higher impact on CoSyNE when compared to NSP. The depth of
search for 1 generation only gives good results in the CoSyNE
algorithm in all the given problems. The NSP encoding has shown
better performance than CoSyNE for grammatical inference pro-
blems in general.

The NSP has shown to efficiently decompose the problem by
grouping interacting variables into the separate subcompo-
nents. This has been verified as the depth of search does not
affect the performance of NSP as in the case of CoSyNE. This
indicates that there are fewer interactions among the subcom-
ponents during evolution in NSP. The synapse level encoding
does not provide any grouping of interacting variables. There-
fore, the depth of a single generation enables CoSyNE to deal
with the higher degree of non-separability. A larger depth of
search in CoSyNE would have given good performance if the
problem was fully separable.

Future work can examine the implementation of the NSP
cooperative coevolution framework for evolving both the weights
and the network topology during training. The paradigm where
Please cite this article as: R. Chandra, et al., Encoding subcompon
Neurocomputing (2011), doi:10.1016/j.neucom.2011.05.003
the different encoding schemes can be combined during training
can also be explored. This would be implemented by adapting the
encoding scheme as the algorithm is progressing toward the final
solution.
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