
Particle filter parallelisation using random network
based resampling

Praveen B. Choppala, Paul D. Teal, Marcus R. Frean
School of Engineering and Computer Science

Victoria University of Wellington
New Zealand

Email: {praveen, pault, marcus}@ecs.vuw.ac.nz

Abstract—The particle filter approximation to the posterior
density converges to the true posterior as the number of particles
used increases. The greater the number of particles, the higher the
computational load, which can be implemented by operating the
particle filter in parallel architectures. However, the resampling
stage in the particle filter requires synchronisation, extensive
interchange and routing of particle information, and thus impedes
the use of parallel hardware systems. This paper presents a
novel resampling technique using a fixed random network. This
idea relaxes the synchronisation constraints and minimises the
particle interaction to a significant level. Using simulations we
demonstrate the validity of our technique to track targets in
linear and non-linear sensing scenarios.

I. INTRODUCTION

The particle filter (PF) [1] is a Bayesian inference algorithm
that provides a framework for target state estimation in non-
linear and non-Gaussian scenarios. The main principle of the
PF is to recursively generate a set of weighted particles which
approximate the posterior pdf of the target state [2, 3]. The
PF can be considered as a technique that uses two approaches
in succession. The first, sequential importance sampling (SIS)
specifies the process of predicting new particles at each time
sample and updating their weights. SIS by itself, results in
degeneracy — a problem in which ultimately only one particle
has significant weight. This problem is overcome using a
second stage, resampling [4, 5], that resamples and replaces
the particles based on their weights so that the PF represents
the posterior more accurately [6].

A key feature of the PF is that the weighted particle
approximation will approach the true posterior if a large num-
ber of particles are used. However the use of more particles
for an accurate result is constrained by high computational
complexity [7]. This complexity can be conveniently over-
come by the use of graphics processing units (GPUs), field
programmable gate arrays (FPGAs) and application specific
integrated circuits (ASICs) that aid in massive data parallelism.
While the SIS stage of the PF can be readily parallelised
because the prediction and update steps do not require particle
concurrency, the major impediment to the parallelisation of the
PF is the resampling step. Resampling imposes the following
constraints: a) synchronisation among all the particles leading
to particle inter-dependence; b) extensive data exchange (inter-
particle interchange) between the particles; c) the inter-particle
interchange changes in a volatile way at each time step which
prohibits the use of parallel hardware systems for the PF. The
problem of adapting the resampling to parallel architectures

is drawing increased attention recently from the research
community.

Over the years, many processor architecture models have
been proposed to adapt PFs to parallel systems. The idea is
to either globally [8] or locally [9, 10] resample the particles
that are distributed within a few processing elements (PEs).
Methods that accelerate the PF operation within the PEs by
exploiting some inherent GPU specific features have also been
proposed, for example, see [11]. The performance of these
techniques is highly dependent on the number of particles
assigned to a PE. Moreover, the routing between the PEs is
still volatile for all these architectures because the particles to
be shared among the PEs are unknown.

At the algorithmic level, most of the research has related to
deterministic resamplers [8]. The partial deterministic scheme
[7, 9] resamples the particles when the weights are larger
or smaller than suitably chosen thresholds. The performance
of this system is sensitive to the values of these thresholds.
Moreover, the procedure causes unnecessary loss of informa-
tion contained in the small weights. This loss is reduced by
soft resampling [12] that redistributes the discarded weight
amongst the lower weight particles. However, these schemes
still suffer from particle synchronisation problems during the
normalisation and sorting processes. The stochastic resamplers
operate by first normalising the weights, evaluating the cu-
mulative sum of these weights and then finding a value of
the sum greater than a random sample drawn from U(0, 1].
The existing stochastic resamplers, namely the multinomial
[13], the stratified [14], the residual [15], the systematic [2,
16] and the residual systematic [7], demand extensive and ever-
changing inter-particle interaction and hence are unsuitable for
parallel systems. In contrast, the Metropolis resampler [17]
proposes that each particle requires the ratio of its weight
and the weight of B : B � I other particles to conduct
resampling. Although this reduces particle synchronisation, the
particle interchange is still volatile because there is no prior
knowledge of the B particles with which each particle must
be compared.

One other technique proposed to accelerate PF operation
is the independent Metropolis Hastings (IMH) algorithm [18]
which acts as a hybrid between PF resampling and the Markov
Chain Monte Carlo (MCMC) sampling schemes. In this tech-
nique, to obtain the particle set corresponding to the current
time index, we draw I + Ib particles (where I is the total
number of particles) at random with replacement from the
particle set corresponding to the previous time step, pass them

through the proposal function to obtain the predicted states,
and each particle is retained or replaced by its predecessor
based on the acceptance ratio of their weights. The main
advantage here is that the expensive resampling procedure
is avoided. However, in practice, the filter requires a long
burn-in time Ib for high accuracy; this in turn increases the
computational cost linearly. Although the amount of particle
interaction required now is only pairwise, the particles need
to be synchronised during the prediction step and the entire
replacement step. This leads to high computational delay. The
technique has also been implemented using FPGAs [19].

Our main contribution in this paper is the proposal to use a
random network [20] as a fixed resampling unit in the PF. This
network, when employed in a PF, assists in effective communi-
cation between the particles with minimal data exchange. The
main idea here is that we use a random network to provide each
weighted particle with a fixed set of other particles with which
to interact. Resampling is then performed locally amongst the
weights of these particles to draw a single particle. The merit
of this idea is that the resampling is performed among the
particles that are minimally connected using a fixed topology.
This will accelerate the PF operation and hence facilitates the
use of a large number of particles which can then represent
the posterior more accurately.

The rest of the paper is organised as follows. In section II,
we set the notation and give a brief overview of the PF. In
section III, we introduce random networks and describe how
we propose to use the network as a resampling unit in the PF.
We then give the evaluation results in section V and conclude
in section VI.

II. PARTICLE FILTERING

In this section, we fix the notation and present the mathe-
matical formalism of the PF. The state of a target xk at time
k may be characterised by the parameters that define it, for
example, its position, velocity, acceleration, etc. The target
maneuvers under a Markovian motion model and the aim is
to recursively obtain a best estimate of xk using the noisy
observations z1:k received from the sensors until the kth time
step. Bayesian filtering [2] aids in this estimation by using the
previous posterior p(xk−1|z1:k−1) at time k−1 to evaluate the
posterior p(xk|z1:k) at time k. It is then easy to capture the
information contained in xk using p(xk|z1:k). The Bayesian
recursion is a two step procedure described by

• Prediction:

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

(1)

• Update:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(2)

However, the integrals required to obtain (1) cannot usually be
performed analytically and hence make the filtering process
intractable.

The PF alleviates this problem by representing
p(xk−1|z1:k−1) by a set of weighted particles
{xik−1, wi

k−1}Ii=1, where i is the particle index and I is

the total number of particles. To obtain the representation
of p(xk|z1:k), the PF also operates in the two stages; a)
prediction, and b) update. In the prediction stage, a new set
of particles are sampled from an importance distribution as

xik ∼ q(xik|xik−1, z1:k) (3)

and their weights are updated using

wi
k = wi

k−1
p(zk|xik) p(xik|xik−1)
q(xik|xik−1, z1:k)

(4)

The posterior can be approximated using the normalised
weights as

p(xk|z1:k) ≈
I∑

i=1

wi
kδ(xk − xik) (5)

After a few iterations, the discrepancy between the weights
increases, causing degeneracy problems. One measure of ef-
ficiency in this context is the effective sample size, defined
as

Ieff =
1∑I

i=1(w
i
k)

2
(6)

and low Ieff exhibits high degeneracy. The solution to degen-
eracy is to resample the particles with replacement whenever
Ieff falls below a certain threshold. The goal is to eliminate
particles that have negligible weights and replace them by
copies of other particles that have larger weights, i.e., for
i = 1, ..., I , we sample an index j(i) distributed according
to the probability Pr{j(i) = m} = {wm

k }Im=1 and replace
xik = x

j(i)
k and set wi

k = 1/I .

III. RANDOM NETWORK BASED RESAMPLING

We now describe the process of generating random net-
works and then present our proposed resampling methodology
using these random graphs.

A. Random networks

A graph is a representation of a set of objects among which
a few (or all) are connected. These objects can be abstracted as
nodes and their connections as edges. Mathematically, a graph
is an ordered pair G = (V, E) where V is the set of nodes and
E is the set of edges. If there is a connection between two
nodes, we term the nodes neighbors. Let us consider a network
having I nodes. We assume every node is connected to itself.
The goal then is to form a network in which every node has
J − 1 neighbors such that the information on any node can
be easily transmitted across all the nodes in minimum time.
Random networks [20] are one of the networks that suit the
above requirement. The main advantage of these graphs is that
they can be constructed very simply. Let us denote the ith
node as Vi and let → symbolise a directed edge between two
nodes. Since we assume that every node is connected to itself,
its probability function can be specified as

Pr{Vi → Vi} = 1 (7)

The remaining J − 1 neighbors can be chosen with uniform
distribution

Pr{Vi → {Vj}j∼U [1,I],j 6=i} =
1

I − 1
(8)

The maximum connectivity that the network offers with only
a few neighbors is the property that defines the sparsity of the
graph, i.e., most of the entries of its adjacency matrix G would
be zero when G is defined by

Gi,j =

{
1 if Vi → Vj
0 otherwise

(9)

The parameter that regulates the sparsity of the structure is
J . The larger the value of J , the faster the transmission of
information among nodes. Small values of J (usually at J ≤ 2)
could result in islands of nodes such that the information
contained in a node cannot reach every node although the
probability of an island is very low, even with small J [21,
22].

B. Resampling using a random network

In this paper, we propose to treat a node as a particle
and an edge between two nodes implies that electronic wiring
connects the two particles. For I particles, we can form a
random network such that Vi → Vj ⇒ xik → xjk and then
construct the adjacency matrix G for the entire particle set.
G which lists the set of neighbors (or connections) for each
particle is computed only once. During the SIS stage, the
particles can stay totally independent because the prediction
and the weight update actions do not require any particle
concurrency. After the SIS, the particles are routed according
to the topology described in G, i.e., if the particle xik has
the set of J − 1 particles {xjk}

J−1
j=1,j 6=i as its neighbors,

then an electronic connection is made between xik and its
J − 1 neighbors. These connections are fixed during the PF
operation. We can then resample the particles in one of the
two following procedures:

Deterministic resampling: A particle xik and its J − 1
neighbors are deterministically resampled by choosing the
particle with the maximum weight and setting its weight to
1/I . The key advantages of this scheme are that the data
dependency constraints are extensively relaxed and the inter-
particle interchange is limited to J particles instead of I .
This accelerates the PF substantially. The only instance where
synchronisation is required is when comparing the J particles
to find the maximum weight. Moreover, the weights need not
be normalised. However, since the technique is greedy and
resamples only the best particles, the lower weight particles
are mostly ignored and this could prove detrimental in high
noise scenarios. This problem is overcome using stochastic
resampling.

Stochastic resampling: A particle xik and its J − 1 neighbors
can be resampled randomly in accordance to their weights to
draw one particle in a non-greedy fashion by comparison of
the cumulative weight sum with a single draw from U(0, 1].
The output weights can then be reset to 1/I . This procedure
will ensure that small weights are not neglected all the time
but at the expense of extra interaction between the particles
during normalisation. The inter-particle routing, however, is
now limited to only J particles that are still connected based
on a fixed topology. This will in turn minimise the particle
interchange and accelerate the PF operation.

IV. A COMPARATIVE DISCUSSION ON THE PROPOSAL

Here, we discuss the merits of the proposed random
network based resampling over state-of-the-art resamplers in
terms of particle interaction, volatility and synchronisation.
This analysis is illustrated by constructing a matrix that
provides a visualisation of the interactive relation between
particles during the resampling step. For easy inspection of
the matrix as an image, the number of particles is chosen to
be I = 256. The black portion of the figures represent zeros
and the white portion represent ones.

The inter-particle interaction for the proposed resampler
can be described using the adjacency matrix G formed using
(9). G for a random network with the number of interactions
(or degree of connectivity) J = 5 is shown in Fig. 1. The ones
along the diagonal indicate that every particle uses its own
weight information to resample from its neighbors. Therefore,
every particle needs to interact with only 4 other particles every
time sample. This resampling structure is computed only once
and remains fixed (non-volatile) throughout the PF procedure.
Moreover, our technique does not require normalisation, and
hence does not require synchronisation of all particles. We
therefore claim our proposition is highly suitable for imple-
mentation in parallel hardware architectures.

Fig. 1: The G matrix for random network based resampling.
G is fixed for the entire PF operation. The number of particles
I = 256. The number of interactions J = 5.

To discuss the conventional resampling schemes, we use
Fig. 2, Fig. 3 and Fig. 4 that illustrate inter-particle interactive
relation such that every particle along the vertical axis (256
particles totally) interacts with those particles along the hori-
zontal axis whose index value is a one, i.e, the white portion.

The interactive relation for the Metropolis resampler [17]
at a single time sample is shown in Fig. 2. Here we use
B = logI = 8. Since every particle interacts with only
8 other particles, the data exchange is minimal. Moreover,
the technique does not require normalisation. However, the
resampling structure changes every time sample. Consequently,
the wiring between the particles is volatile and this causes

substantial delay in processing the incoming sensor data. The
evaluation of the MCMC acceptance ratio BI times at each
time step will induce additional computational delay. In light of
these limitations, it is difficult to imagine an efficient hardware
implementation for the Metropolis resampler.

Fig. 2: The particle interactive relation in the Metropolis
resampler at a single time sample. The number of particles
I = 256. The number of interactions for each particle
B = logI .

The interactive relation for the multinomial resampler [13]
and the systematic resampler [2, 16] at one time sample is
shown in Fig. 3 and Fig. 4 respectively. The multinomial
resampler [13] searches along the cumulative of the normalised
weights from the starting value. As a result, the interaction is
expensive (depicted by the white portion).

Fig. 3: The particle interactive relation in the multinomial
resampler at a single time sample. The number of particles
I = 256.

The systematic resampler [2] (and the stratified resampler
[14]), in contrast, searches along the cumulative sum after
pre-partitioning the space (0, 1] into I linearly increasing
disjoint sets. As a result, the data exchange between the
particles is drastically reduced. However, both the systematic
and the multinomial resampling techniques are volatile and
hence the resampling structure will have to change every time
sample. Besides, the techniques require normalisation and
calculation of the weight cumulative sum.

Fig. 4: The particle interactive relation in the systematic
resampler at a single time sample. The number of particles
I = 256.

The deterministic resamplers: the soft [12] and partial
deterministic [7] resamplers, are comprised of operations
like sorting and finding the maximum/minimum weights,
etc., which require each particle to interact with all the other
particles. Therefore, if one were to construct the inter-particle
inter-dependency matrix for a deterministic resampler, it
would contain all ones. Consequently, all the particles need
to be synchronised. Moreover, these resamplers require the
weights to be normalised.

A summary of the analysis and our claims is presented below.

Interaction Volatility Normalisation Sorting

Multinomial High Yes Yes No
Systematic Low Yes Yes No
Soft High Yes Yes Yes
Metropolis Low Yes No No
Proposed LOW NO NO NO

V. EVALUATION

In this section, we first analyse the performance of both
the variants of the proposed technique for a linear Gaussian
model (for which the optimal posterior is known) in terms of
their ability to accurately represent the posterior and to track
with sufficient accuracy. We also show the performance of
the proposed method at different levels of connectivity J . We

then examine the efficiency of the technique to track extended
targets in the presence of false alarms and missed detections.
Finally, the potential of the technique to accurately track targets
in a non-linear sensing scenario is presented.

For ease of visualisation, we do not show all the possible
existing resamplers. We found that the performance of the
stratified, the residual and the residual systematic resamplers
was almost identical to that of the systematic resampler and
hence we only show the results for the latter. Moreover, the
partial deterministic and the soft resamplers exhibit similar
performance and hence we show only the last of these. This
applies to all the figures presented in this paper.

For testing under linear Gaussian scenarios, we use a 1D
model in which the state xk is characterised by the target
position. The process and observation models are

xk = Fxk−1 + qk−1 (10)

zk = Hxk + rk (11)

where F = 1, and the uncertainty in the state evolution is
qk−1 ∼ N (0, 5), H = 1, and the sensor noise is rk ∼
N (0, σ2) where σ2 = 0.5. We assume a clean environment
where an observation is available at every second, the obser-
vation is synchronised with time k and no clutter is observed.
The results for this model are averaged over 20 experiments,
each comprising 50 time steps1.

Firstly, we test the faithfulness of our proposed tech-
niques in representing the posterior in accordance to their
Kolomogorov-Smirnov (KS) statistic [23] disagreement with
the optimal Kalman filter [24]. KS testing has been used
previously for other PF problems [25], and provides a reliable
measure of the accuracy of the estimate of the posterior.
KS testing for multi-dimensional Gaussian models can be
conducted using the method in [26, 27]. In this paper, we use a
different approach. After the resampling step, we de-mean and
de-correlate the particles according to the theoretically optimal
Kalman distribution and then take the maximum KS deviation.

Fig. 5 shows the KS statistic of the PFs operating on
various resamplers for varying numbers of particles. It can
be observed that while the resource-hungry and parallel-
unfriendly systematic resampler exhibits the best performance,
our parallel-friendly and minimally interacting random net-
work based resampler can achieve the same performance
by using extra particles. Although the use of more particles
increases the computational load, this computation may be
more achievable in the proposed device since parallelisation is
now possible. For example, the performance obtained by the
systematic resampler at 32 and 64 particles can be achieved
by using our proposed resampler at 64 and 256 particles
respectively in the stochastic (non-greedy) variant, and 128
and 1024 particles respectively in the deterministic (greedy)
variant. However, the performance of the deterministic variant
becomes asymptotic for increasing J . The stochastic variant
is more effective than that of the deterministic counterpart
by virtue of leveraging the lower weight particles in the
resampling process.

1A simulation video for this model is available at
http://ecs.victoria.ac.nz/Groups/CSP/PublicationExtras

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

Number of particles (I)

K
S

 s
ta

ti
s
ti
c

Multinomial

Systematic

Metropolis: B=log(I)

Soft

Determ. random n/w: J=log(I)

Stoch. random n/w: J=log(I)

Determ. random n/w: J=5

Stoch. random n/w: J=5

Fig. 5: KS statistic versus the number of particles. For the
proposed resamplers, we use J = log(I) and 5. For the
Metropolis resampler [17], we use B = log(I).

Fig. 6 shows the KS statistic of the deterministic and
stochastic versions for varying degrees of connectivity J in the
random network. The performance of the stochastic variant im-
proves with increasing J . The performance of the deterministic
variant improves with decreasing J and low values of J aid
in better PF acceleration and easier parallelisation. At J ≤ 5,
the deterministic variant selects the maximum weight among
fewer particles leading to sustainability of moderate weights
while the stochastic variant selects randomly among fewer
particles resulting in high probability of losing large weights.
At J > 5, the deterministic variant selects the maximum weight
among many particles leading to loss of moderate weights, i.e.,
the network is too strongly connected to be able to sustain
more information, while the stochastic variant selects randomly
among many particles thus leading to survival of moderate
weights.

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of interactions (J)

K
S

 s
ta

ti
s
ti
c

Determ. random n/w

Stoch. random n/w

Systematic

Fig. 6: KS statistic versus the number of interactions J . The
number of particles I = 1024. J does not apply to the
systematic resampler.

We now test the accuracy of the proposed technique for
the same model in (10) and (11) by plotting the root mean

square error (rmse) for varying sensor noise variance σ2. This
is shown in Fig. 7. When comparing the proposed variants, the
stochastic variant performs better by virtue of randomly resam-
pling the particles, as opposed to the deterministic variant that
always selects only the particle with the maximum weight. In
terms of comparing the proposed technique with state-of-the-
art resamplers, the stochastic variant matches the performance
of the systematic resampler, while the deterministic variant
tracks accurately at low noise levels.

1 2 3 4 5 6 7 8

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

sensor noise variance σ
2
 [m]

rm
s
e

 [
m

]

Multinomial

Systematic

Metropolis: B=log(I)

Soft

Determ. random n/w: J=log(I)

Stoch. random n/w: J=log(I)

Determ. random n/w: J=5

Stoch. random n/w: J=5

Kalman

Fig. 7: rmse versus sensor noise variance σ2. The number of
particles I = 1024.

Fig. 8 shows the rmse of the proposed techniques for
varying degree of connectivity J in the random network.
At J . 5 and low σ2, the deterministic variant exhibits
better accuracy than that of the stochastic variant because
its particle distribution is much closer to that of the optimal
Kalman distribution as seen in Fig. 6. In high noise scenarios
(large σ2), we observe that the stochastic variant outperforms
the deterministic variant because the latter always eliminates

5 10 15 20
0.6

0.65

0.7

0.75

0.8

Number of interactions (J)

rm
s
e

 [
m

]

Determ. random n/w: σ
2
=0.5m

Stoch. random n/w: σ
2
=0.5m

Systematic

Kalman

Fig. 8: rmse versus the number of interactions J . The number
of particles I = 1024. J does not apply to the systematic
resampler and the Kalman filter.

lower weight particles that may be slowly gaining weight, for
example, when the target is making a sharp maneuver.

From the above analysis, it is observed that the proposed
deterministic variant exhibits high fidelity in posterior rep-
resentation and sufficient accuracy with fewer inter-partice
interactions J and lesser sensor noise variance σ2 respectively.
However, at high J , the process suffers loss of particle diversity
as only the large weight particles are retained. The perfor-
mance of the stochastic resampler improves with increasing J
because more particles are fed to the random resampling unit
which then selects the lower weight particles with non-zero
probability.

Secondly, we test the ability of the various filters to track
an extended target in the presence of false alarms and missed
observations for the same 1D linear Gaussian model. Since
extended targets generate more than one measurement, the
sensor model is now

Zk = {zek}
Ek
e=1 ∪ {y

f
k}

Fk

f=1 (12)

where the observations are normally distributed around the
target center with variance σ2

e = 0.5m. The number of
observations the target can generate is assumed to be discrete
uniformly distributed as Ek ∼ U [1, Emax] and we choose
Emax = 2. Each zk is obtained from (11). We consider that
the false alarms {yfk}

Fk

f=1 at each time sample are uniformly
distributed across the 1D surveillance region as

yfk ∼ U [xmin, xmax] (13)

with xmin = 1m and xmax = 100m. The number of false alarms
Fk is Poisson distributed with mean λ = 5. The observation set
therefore now contains target detections and false alarms. We
assume that the sensor will miss the target observations with
a probability 1 − pD where pD is the detection probability.
For this model, Fig. 9 shows the dependence of the rmse on
1 − pD. The results are averaged over 30 experiments, each
comprising 80 time steps2.

When the target observations are not available for some
duration, the particles usually start to diverge. Once these
observations start arriving and are consistent, the weights
of the particles near the target start to increase. Unlike the
deterministic resamplers, the stochastic resamplers do not have
any memory of the goodness of a particle. Hence, they sense
the change in the particle weights faster than the deterministic
resamplers and thereby converge rapidly towards the true target
location. It can be observed that our proposed resamplers and
the Metropolis resampler aid in better accuracy. A possible
explanation for this observation is that the divergence of the
particles from the true target location (due to the information
loss caused by the false alarms and the missed detections) is
slower than that of the other techniques.

Finally, we test the accuracy of our techniques for tracking
targets using a non-linear image sensing model. The model
and the specifications used can be found in Ch.11 of [28]. The
results for this model are averaged over 20 experiments, each
comprising 30 time steps. We assume the target is present all
the time2. Fig. 10 shows the track error in the PFs operating
with state-of-the-art and the proposed resamplers for varying

2A simulation video for this model is available at
http://ecs.victoria.ac.nz/Groups/CSP/PublicationExtras

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

probability of missing the target observation (1−p
D

)

rm
s
e

 [
m

]

Multinomial

Systematic

Metropolis: B=log(I)

Soft

Determ. random n/w: J=log(I)

Stoch. random n/w: J=log(I)

Determ. random n/w: J=5

Stoch. random n/w: J=5

Fig. 9: rmse versus the probability that a sensor misses an
observation. The number of particles I = 1024. The particles
are initialised uniformly in the surveillance region, and a burn-
in time of 10 seconds is then applied.

sensor noise levels. Among the conventional resamplers, the
systematic exhibits high accuracy, but is outperformed by the
proposed stochastic variant at high noise levels. A likely expla-
nation for this is that choosing among fewer particles randomly
based on their weights (the stochastic variant operation) makes
the filter less responsive to spurious peaks in the image at high
noise levels, as compared to choosing randomly among all
the particles (the systematic and other resamplers). The track
accuracy of the deterministic variant, although high for fewer
inter-particle interactions J , deteriorates for increasing J and
at high noise conditions. Futhermore, the stochastic variant
exhibits better accuracy than that of the deterministic variant.

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

noise standard deviation σ [m] at each pixel

rm
s
e

 [
m

]

Multinomial

Systematic

Metropolis: B=log(I)

Soft

Determ. random n/w: J=log(I)

Stoch. random n/w: J=log(I)

Determ. random n/w: J=5

Stoch. random n/w: J=5

Fig. 10: rmse versus the noise standard deviation contributed
by the staring camera at each pixel in the image. The number
of particles I = 1024.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the novel idea of using a random
network as a fixed resampling unit for the PF. This network
provides each particle with a fixed set of other particles with
which it will interact and the resampler samples one particle
from the set either deterministically or stochastically. Using
simulations, we examined our methods regarding their ability
to accurately represent the posterior. We then showed that
our techniques can track accurately in linear and non-linear
scenarios as well as cluttered environments. We also discussed
the reduction in inter-particle interaction with the help of
an particle interaction matrix. The key advantages of this
proposal are that the particle dependency and the information
interchange between the particles is significantly reduced. The
principle benefit, however, is the ability to use a fixed topology
that allows fixed electronic routing of the particles. This shows
that the PF can now be accelerated by operating in parallel
systems with more ease, and we can use more particles for a
better posterior representation. In the future, we will aim to
implement our idea in real time FPGA architectures and also
investigate the potential of the techniques to perform under
asynchronous sensor measurements.

REFERENCES

[1] N. Gordon, D. Salmond, and A. Smith, “Novel approach to non-
linear/non-Gaussian Bayesian state estimation,” in Proc. IEE Radar and
Signal Process., vol. 140, no. 2, 1993, pp. 107–113.

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, 2002.

[3] P. Djurić, J. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. M. Bugallo,
and J. Miguez, “Particle filtering,” IEEE Signal Process. Mag., vol. 20,
no. 5, pp. 19–38, 2003.

[4] J. Hol, T. Schön, and F. Gustafsson, “On Resampling Algorithms for
Particle Filters,” in Proc. Nonlinear Stat. Signal Process. Workshop,
2006.

[5] R. Douc and O. Cappé, “Comparison of resampling schemes for particle
filtering,” in Proc. Int. Symp. Image and Signal Process. and Analysis,
2005, pp. 64–69.

[6] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo
methods in practice. Springer New York, 2001, vol. 1.

[7] M. Bolić, P. Djurić, and S. Hong, “Resampling algorithms for parti-
cle filters: A computational complexity perspective,” EURASIP J. of
Applied Signal Process., vol. 2004, pp. 2267–2277, 2004.

[8] O. Brun, V. Teulière, and J. Garcia, “Parallel particle filtering,” Elsevier
J. Parallel and Distributed Computing, vol. 62, no. 7, pp. 1186–1202,
2002.

[9] M. Bolić, P. Djurić, and S. Hong, “Resampling algorithms and archi-
tectures for distributed particle filters,” IEEE Trans. Signal Process.,
vol. 53, no. 7, pp. 2442–2450, 2005.

[10] A. Bashi, V. Jilkov, X. Li, and H. Chen, “Distributed implementations
of particle filters,” in Proc. IEEE Int. Conf. Information Fusion, 2003,
pp. 1164–1171.

[11] G. Hendeby, R. Karlsson, and F. Gustafsson, “Particle filtering: the need
for speed,” EURASIP J. Adv. Signal Proc., vol. 2010, p. 22, 2010.

[12] P. Choppala, P. Teal, and M. Frean, “Soft resampling for improved
information retention in particle filtering,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, vol. 13, 2013, pp. 4036–4040.

[13] B. Efron and R. Tibshirani, “An introduction to the bootstrap,” Chapman
and Hall, 1994.

[14] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models,” J. of Computational and Graphical
Statistics, pp. 1–25, 1996.

[15] J. Liu and R. Chen, “Sequential Monte Carlo Methods for Dynamic
Systems,” J. American Statistical Asso., vol. 93, pp. 1032–1044, 1998.

[16] J. Carpenter, P. Clifford, and P. Fearnhead, “An improved particle filter
for nonlinear problems,” IEE Proc. Radar, Sonar and Navigation, vol.
146, pp. 2–7, 1999.

[17] L. Murray, “GPU Acceleration of the Particle Filter: The Metropolis
resampler,” arXiv preprint arXiv:1202.6163, 2012.

[18] A. Sankaranarayanan, R. Chellappa, and A. Srivastava, “Algorithmic
and Architectural design methodology for particle filters in hardware,”
in IEEE Proc. Int. Conf. Computer Design, 2005, pp. 275–280.

[19] L. Miao, J.J.Zhang, C.Chakrabarti, and A. Papandreou Suppappola, “A
new parallel implementation for particle filters and its application to
adaptive waveform design,” in IEEE Workshop Signal Process. Systems,
2010, pp. 19–24.

[20] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hungar. Acad. Sci., vol. 5, pp. 17–61, 1960.

[21] M. Krivelevich and B. Sudakov, “The phase transition in random graphs:
A simple proof,” J. Random Structures & Algorithms, 2012.

[22] B.Luque and R.V.Solé, “Phase transitions in random networks: simple
analytic determination of critical points,” Physical Review E, vol. 55,
no. 1, pp. 257–260, 1997.

[23] J. A. Peacock, “Two-dimensional goodness-of-fit testing in astronomy,”
Royal Astronomical Society, vol. 202, pp. 615–627, 1983.

[24] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” J. Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[25] P. Djurić and J. Mı́guez, “Assessment of Nonlinear Dynamic Models by
Kolmogorov–Smirnov Statistics,” IEEE Trans. Signal Process., vol. 58,
no. 10, pp. 5069–5079, 2010.

[26] A. Justel, D. Peña, and R. Zamar, “A multivariate Kolmogorov-Smirnov
test of goodness of fit,” Elsevier Statistics & Probability Letters, vol. 35,
no. 3, pp. 251–259, 1997.

[27] G. Fasano and A. Franceschini, “A multidimensional version of the
Kolmogorov-Smirnov test,” Royal Astronomical Society, vol. 225, pp.
155–170, 1987.

[28] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House Publishers,
2004.

