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A general method for building and training multilayer perceptrons 
composed of linear threshold units is proposed. A simple recursive 
rule is used to build the structure of the network by adding units as 
they are needed, while a modified perceptron algorithm is used to learn 
the connection strengths. Convergence to zero errors is guaranteed for 
any boolean classification on patterns of binary variables. Simulations 
suggest that this method is efficient in terms of the numbers of units 
constructed, and the networks it builds can generalize over patterns 
not in the training set. 

1 Introduction 

The perceptron learning algorithm (Rosenblatt 1962) offers a powerful 
but restricted method for learning binary classifications. All classifica- 
tions that can in theory be learned by the perceptron architecture will be 
learned; however, the number of classifications it can learn is only a tiny 
subset (linearly separable patterns) of those that are possible (Minsky and 
Papert 1969). To perform any arbitrary classification successfully, "hid- 
den" units and/or feedback between units are required. The problem 
is to train such networks, and recently quite powerful methods have 
become available, most notably "backpropagation" in its various forms 
(e.g., Rumelhart, et al. 1986). However, because many of these methods 
are based on hill climbing, which has the perennial problem of becoming 
stuck in local optima, they cannot guarantee that the classification will 
be learned. Another problem is that a priori no realistic estimate can be 
made of the number of hidden units that are required. Recently, methods 
such as the tiling algorithm (Mezard and Nadal1989) and others (Gallant 
1986a; Nadal1989) have been proposed that get around both these prob- 
lems. In these, the hidden units are constructed in layers one by one as 
they are needed. By showing that at least one unit in each layer makes 
fewer errors than a corresponding unit in the previous layer, eventual 
convergence to zero errors is guaranteed. 
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The method described here also constructs units as it goes, but in a 
simple and quite different way. Instead of building layers from the input 
outward until convergence, new units are interpolated between the input 
layer and the output. The role of these units is to correct mistakes made 
by the output unit. 

2 Basics 

Suppose we are given a binary classification to be learned. Each in- 
put pattern of N binary values has an associated target output that the 
network must learn to produce. The units are all linear threshold units 
connected by variable weights to the inputs, with output o given by 

1 i f 4 2 0  
o = {  0 otherwise 

where 

N 

The W s  are the weights, and is the value of the ith input in the given 
pattern. The necessary threshold or ’%bias’’ is included by having an 
extra input that is set to 1 for all the input patterns. On presentation of 
pattern p, perceptron learning (Rosenblatt 1962) alters the weights if the 
target t p  differs from the output: 

(2.1) 

Using this method any linearly separable class will be learned, but when 
the patterns are not linearly separable the values of the weights never 
stabilize. However, a simple extension called the pocket algorithm (Gal- 
lant 1986b) suffices to make the system well behaved. This consists of 
running a perceptron exactly as above with a random presentation of 
patterns, but also keeping a copy of the set of weights that has lasted 
longest without being changed. This set of weights will give the mini- 
mum possible number of errors with a probability approaching unity as 
the training time increases. That is, if a solution giving say p or fewer 
errors exists then the pocket algorithm can be used to find it (although 
unfortunately there is no bound known for the training time actually re- 
quired). I make use of this algorithm to demonstrate convergence to zero 
errors. 
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3 Rationale 

The basic idea is that a unit builds other units to correct its mistakes. 
Any unit (say 2) can make two kinds of mistake: 

“wrongly ON ” (4 = 1, but t; = 0) 

“wrongly OFF” (0; = 0, but tg = 1) 

Consider patterns for which 2 is wrongly ON: 2 could be corrected by a 
large negative weight from a new unit (say X ) ,  which is active only for 
those patterns. Likewise when 2 is wrongly OFF it could be corrected 
by a large positive weight from another unit (say Y) ,  which is active 
at the right time. Hence X and Y (also connected to the input layer 
by variable weights) can be trained with targets which depend on z’s 
response. These new units might be called “daughters” since they are 
generated’ by the established ”parent” unit, Z. 

Consider, for example, the targets we should assign to X ,  the unit 
whose role is to inhibit 2. We would like X to be active if 2 was wrongly 
ON, and silent if 2 was correctly ON. Similarly X should be silent if 2 was 
wrongly OFF (to avoid further inhibition of 2). Finally, X could be silent 
if Z was correctly OFF, although if X is active in this case, the effect is 
merely to reinforce 2’s  response when it was already correct. This does not 
itself cause an error, so in practice we can eliminate these patterns from 
X’s training set. This elimination makes the problem easier and faster 
to solve, but is not essential for the error-correcting property described 
below. Targets for Y are similarly derived. These target assignments are 
summarized in Figure 1. 

An important point is that the “raw” output of unit 2 is used to set 
the daughter’s targets, rather than the value of 2 after the daughters 
have exerted any effect, since this would introduce feedback. 

Two useful results follow immediately from this training method, be- 
cause it essentially gives daughters (X or Y )  an easier problem to solve 
than their parent (2). First, daughters can always make fewer errors 
than their parent, and second, connecting daughter to parent with the 
appropriate weight will always reduce the errors made by the parent. 
Proof. 2’s errors are 

where e(Z)oN is the number of patterns for which Z is wrongly ON. 

‘Note, however, that the activity proceeds from daughter to parent. 
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Figure 1: Correcting a parent unit: the left-hand table gives the targets, t x ,  for 
the daughter unit X for each combination of ( o z ,  t z ) .  For example, the lower 
left-hand entry assigns tx to be 1 when 02 = 1 and t z  = 0: the "wrongly ON" 

case. Similarly the right-hand table gives the values of t y  for the daughter unit 
Y .  The dotted line represents the flow of this target information. The "starred" 
entries correspond to cases where the pattern could be eliminated from the 
daughter's training set. 

If X responded OFF to every pattern, it would make as many errors 
as there were patterns of target tx  = 1. However, X can always d o  better 
than this. In particular, it can always be ON for at least one input pattern 
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whose target is 1 and OFF for all other patterns. For example if the input 
weights are 

wi = 2,$ - 1 

with a bias weight 

only the pth pattern turns the unit ON. Given that the pocket algorithm 
can find the optimal weights visited by a perceptron with any given 
probability, at worst X could find the above weights. Therefore 

e(X) < e(Z)oN 5 e(Z) (3.1) 

A similar argument applies to Y. It also follows that Z’s errors are 
reduced by X ,  since 

e(Z with x) = e(X)oN f e(X)OFF f 
= e(X) -I- e(Z)OFF 
< e(Z) (3.2) 

and similarly for Y on its own. When the joint action of X and Y is 
considered, the same result holds, that is, e(Z with X,Y) < e(Z) - 1. 
In the next section an algorithm that uses the first of these results is 
described. Other possibilities are discussed in Section 6. 

4 The Upstart Algorithm 

Assume we already have a unit Z that sees input patterns 6;: i = 1, .., N 
and has associated targets t$. The weights from the input layer to Z 
are trained to minimize the discrepancies between 2’s output and target 
and, once trained, these weights remain frozen. This “first” unit is actu- 
ally the eventual output unit, and its targets are the classification to be 
learned. The following two steps are then applied recursively, generating 
a binary branching tree of units. Thus daughter units behave just as 2 
did, constructing daughter units themselves if they are required. 

Step 1. If 2 makes any “wrongly ON” mistakes, it builds a new unit X, 
using the targets given in Figure 1. Similarly if Z is ever ”wrongly 
OFF” it builds a unit Y. Apart from the different targets, these units 
are trained and then frozen just as Z was. 

Step 2. The outputs of X and Y are connected as inputs to 2. The weight 
from X is large and negative while that from Y is large and positive. 
The size of the weight from X[Y] needs to exceed the sum of 2’s 
positive [negative] input weights, which could be done explicitly 
or by perceptron learning. 
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New units are only generated if the parent makes errors, and the 
number of errors decreases at every branching. It follows that eventually 
none of the terminal daughters makes any mistakes, so neither do their 
parents, and neither do their parents, and so on. Therefore every unit in 
the whole tree produces its target output, including 2, the output unit. 
Hence the classification is learned. 

5 Simulations 

In all the simulations shown here the ”starred entries in Figure 1 were 
not included in a daughter’s training set? To decrease training times, a 
fast and well behaved version of perceptron learning (Frean 1990) was 
used to train the weights, in preference to the pocket algorithm. While 
this method is not guaranteed to find the optimal weights, in practice 
it produces substantially fewer errors in a given time than the pocket 
algorithm. The weight changes given by the usual perceptron learning 
rule (equation 2.1) were simply multiplied by 

This factor decreases with 141, which measures how ”serious” the error 
is. The rationale behind this approach is that an error where 141 is large 
is difficult to correct without causing other errors and should therefore 
be weighted as less significant than those where 141 is small. The ”tem- 
perature” T controls how strongly this weighting is biased to small 141. T 
was reduced linearly from To to zero over the entire training period. At 
high T the perceptron rule is recovered, but as T decreases the weights 
are “frozen.” Unless otherwise stated, TO was set to 1, and 1000 passes 
were made through the training set. 

5.1 Parity. In this problem the output should be ON if the number 
of active inputs is odd, and OFF if it is even. Parity is often cited as 
a difficult problem for neural networks to learn, being a predicate of 
order N (Minsky and Papert 1969); that is, at least one hidden unit must 
sample all of the N inputs. It is also of interest because there is a known 
solution consisting of a single layer of N hidden units projecting to an 
output unit. It is easy to see how the upstart algorithm tackles parity (see 
Fig. 2). Essentially the same structure as that shown for N = 3 would 
arise for any N ,  although for large problems the optimal weights become 
much harder to find. I have tried parity for up to N = 10, and in all cases 
N units are constructed, including the output unit. In all cases except 

21f the whole training set is used in every case, the number of units produced is 
relatively unaffected for the problems investigated here, but the training time (a combi- 
nation of the time per epoch and number of epochs required to generate a comparable 
network) is approximately doubled for the problems discussed. 
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On (odd) 

Figure 2: Solution for 3-bit parity. The output unit 2 on its own can clearly 
make a minimum of two mistakes, when the plane defined by its weights cuts 
the cube as shown. X corrects the wrongly ON pattern by responding to it 
alone, and similarly Y corrects the wrongly OFF pattern. 

N = 10, 1000 passes were sufficient to generate the minimal tree. For 
10-bit parity, the figure was 10,000. 

5.2 Random Mappings. In this problem the binary classification is 
defined by assigning each of the 2N patterns its target 0 or 1 with 50% 
probability. Again this is a difficult problem, due to the absence of cor- 
relations and structure in the input for the network to exploit. The net- 
works obtained for N up to 10 are summarized in Figure 3, with com- 
parisons to the tiling algorithm. 

5.3 Generalization. Neural networks are often ascribed the property 
of generalization: the ability to perform well on all patterns taken from 
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Figure 3: Number of units built vs. the number of patterns ( Z N )  for the random 
mapping problem. The slope of the upstart line is approximately 1/9. Each 
point is an average of 25 runs, each on a different training set. 
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a given distribution after having seen only a subset of them. Several 
workers (Denker et al. 1987; Mezard and Nadal 1989) have looked at 
generalization using the "2-or-more clumps" predicate. The problem is 
this: given an input pattern, respond ON if the number of clumps is 2 or 
greater and OFF otherwise, where a "clump" is a group of adjacent3 1's 
bounded on either side by 0's. As with parity, there is a solution con- 
sisting of a single hidden layer of N units that would solve the problem 
exactly. Following Mezard and Nadal, the patterns were generated by a 
Monte Carlo method (Binder 1979) such that the mean number of clumps 
is 1.5. I used N = 25 input units, with a training set of up to 600 patterns. 
The set used to test the resulting net's ability to generalize was a further 
600 patterns. The results, with comparisons to the tiling algorithm, are 
summarized in Figure 4. 

6 Discussion 

The architecture generated by this procedure is unconventional in that it 
has a hierarchical tree structure. However, in the case where we choose 
not to eliminate any training patterns there is an equivalent structure with 
the same units arranged as a single hidden layer. Consider two daughters 
(say X , Y )  and their parent (2). With primes denoting "corrected" values, 
the corrected value 0; is always equal to oz - 0; + 0;. This formulation is 
possible because the combinations that would disobey this never occur. 
For example, Y would never be correctly ON if 2 was ON. Since this 
is true of every unit in the tree, the final output is simply a sum of the 
"raw" responses. For example, 

output = 0; = O A  - 05 + OC + ' ' * - OX + OY + 02 

Imagine the tree units disconnected from one another and placed in a sin- 
gle layer. A new output unit connected to this "hidden" layer can easily 
calculate the appropriate sum by, for example, having weights of +I from 
each unit that adds to the sum and -1 from each unit that subtracts, with 
a bias of zero. In effect we can convert a binary tree into a single hidden 
layer architecture that implements the same mapping, at the expense of 
adding one unit and being unable to exploit pattern elimination. The al- 
gorithm for constructing a single hidden layer architecture is as follows: 
construct units as before, omitting step 2 (where they are connected into 
a feedforward tree). Then connect all the units so constructed to a new 
output unit. The weights can be learned by perceptron learning, or can 
be inferred from the tree structure: there is a sign reversal for every "X" 
daughter. 

6.1 Extensions. The upstart method can be extended in a number 
of ways. First, we are not restricted to binary branching trees. Having 

3Circular boundary conditions are used input 1 is "adjacent" to input N .  
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Figure 4 Performance of the method on the "2-or-more clumps" problem. The 
lower graph shows the percentage generalization as the size of the training 
set is increased. Plotted above this and with the same abscissa is the size of 
the corresponding network. To = 4.0. There are 25 runs per point, each on a 
different set. Where not shown, error bars are smaller than the points. 
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trained a daughter unit and connected it to the output, a new daughter 
can now be trained using targets derived from the partially corrected out- 
put, instead of the daughter, and so on until no more mistakes are made. 
This would build a single hidden layer. Hybrid methods, building trees 
of variable breadth, will also work. 

Second, these algorithms can be extended to problems involving mul- 
tiple output units. A good method should build considerably fewer units 
than would be obtained by treating each output separately (especially 
if the output targets are correlated); in other words, maximum mutual 
use should be made of hidden units. Consider the following algorithm, 
where steps 1 and 2 are repeated until every output unit makes no mis- 
takes: 
Start. There are no hidden units and no connections, so the output units 

are always OFF. 

Step 1. Choose an output unit (say, the one which makes the most er- 
rors). Build the appropriate hidden unit to correct some of the mis- 
takes being made by this output unit, as described above. Connect 
this new unit to all the output units. 

Step 2. Train the weights from each unit in this enlarged hidden layer to 
each of the output units. Reevaluate the numbers of errors made 
by each output unit. 

Hence a single hidden layer is constructed. 

6.2 Conclusions. The design of general purpose supervised learning 
algorithms for neural networks involves two important considerations: 
the network should succeed in correctly classifying the patterns on which 
it is trained, and nontrivial solutions should involve as few computational 
elements as possible, avoiding redundant computation. The upstart algo- 
rithm can build a network to implement correctly any boolean mapping. 
Because each “daughter” cell makes as few errors as possible, it corrects 
as many “parent” errors as possible, which results in small networks. 
These networks are smaller than those produced by the tiling algorithm. 
In general the minimum number of units required for any given problem 
cannot be calculated. However, for a few special cases such as parity and 
the clumps problem it is known that N or fewer units are needed, and the 
upstart algorithm achieves this. In the potentially worst case where the 
targets are randomly assigned, m patterns can be correctly classified by 
approximately m/9 units. The basic idea can be implemented in different 
architectures and is extendable to the case of multiple outputs. 
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