
Communicated by David Willshaw

The Upstart Algorithm: A Method for Constructing
and Training Feedforward Neural Networks

Marcus Frean
Department of Physics and Centre for Cognitive Science, Edinburgh University,
The Kings Buildings, Mayfield Road, Edinburgh, Scotland

A general method for building and training multilayer perceptrons
composed of linear threshold units is proposed. A simple recursive
rule is used to build the structure of the network by adding units as
they are needed, while a modified perceptron algorithm is used to learn
the connection strengths. Convergence to zero errors is guaranteed for
any boolean classification on patterns of binary variables. Simulations
suggest that this method is efficient in terms of the numbers of units
constructed, and the networks it builds can generalize over patterns
not in the training set.

1 Introduction

The perceptron learning algorithm (Rosenblatt 1962) offers a powerful
but restricted method for learning binary classifications. All classifica-
tions that can in theory be learned by the perceptron architecture will be
learned; however, the number of classifications it can learn is only a tiny
subset (linearly separable patterns) of those that are possible (Minsky and
Papert 1969). To perform any arbitrary classification successfully, "hid-
den" units and/or feedback between units are required. The problem
is to train such networks, and recently quite powerful methods have
become available, most notably "backpropagation" in its various forms
(e.g., Rumelhart, et al. 1986). However, because many of these methods
are based on hill climbing, which has the perennial problem of becoming
stuck in local optima, they cannot guarantee that the classification will
be learned. Another problem is that a priori no realistic estimate can be
made of the number of hidden units that are required. Recently, methods
such as the tiling algorithm (Mezard and Nadal1989) and others (Gallant
1986a; Nadal1989) have been proposed that get around both these prob-
lems. In these, the hidden units are constructed in layers one by one as
they are needed. By showing that at least one unit in each layer makes
fewer errors than a corresponding unit in the previous layer, eventual
convergence to zero errors is guaranteed.

Neural Computation 2,198-209 (1990) @ 1990 Massachusetts Institute of Technology

The Upstart Algorithm 199

The method described here also constructs units as it goes, but in a
simple and quite different way. Instead of building layers from the input
outward until convergence, new units are interpolated between the input
layer and the output. The role of these units is to correct mistakes made
by the output unit.

2 Basics

Suppose we are given a binary classification to be learned. Each in-
put pattern of N binary values has an associated target output that the
network must learn to produce. The units are all linear threshold units
connected by variable weights to the inputs, with output o given by

1 i f 4 2 0
o = { 0 otherwise

where

N

The W s are the weights, and is the value of the ith input in the given
pattern. The necessary threshold or ’%bias’’ is included by having an
extra input that is set to 1 for all the input patterns. On presentation of
pattern p, perceptron learning (Rosenblatt 1962) alters the weights if the
target t p differs from the output:

(2.1)

Using this method any linearly separable class will be learned, but when
the patterns are not linearly separable the values of the weights never
stabilize. However, a simple extension called the pocket algorithm (Gal-
lant 1986b) suffices to make the system well behaved. This consists of
running a perceptron exactly as above with a random presentation of
patterns, but also keeping a copy of the set of weights that has lasted
longest without being changed. This set of weights will give the mini-
mum possible number of errors with a probability approaching unity as
the training time increases. That is, if a solution giving say p or fewer
errors exists then the pocket algorithm can be used to find it (although
unfortunately there is no bound known for the training time actually re-
quired). I make use of this algorithm to demonstrate convergence to zero
errors.

200 Marcus Frean

3 Rationale

The basic idea is that a unit builds other units to correct its mistakes.
Any unit (say 2) can make two kinds of mistake:

“wrongly ON ” (4 = 1, but t; = 0)

“wrongly OFF” (0; = 0, but tg = 1)

Consider patterns for which 2 is wrongly ON: 2 could be corrected by a
large negative weight from a new unit (say X) , which is active only for
those patterns. Likewise when 2 is wrongly OFF it could be corrected
by a large positive weight from another unit (say Y) , which is active
at the right time. Hence X and Y (also connected to the input layer
by variable weights) can be trained with targets which depend on z’s
response. These new units might be called “daughters” since they are
generated’ by the established ”parent” unit, Z.

Consider, for example, the targets we should assign to X , the unit
whose role is to inhibit 2. We would like X to be active if 2 was wrongly
ON, and silent if 2 was correctly ON. Similarly X should be silent if 2 was
wrongly OFF (to avoid further inhibition of 2). Finally, X could be silent
if Z was correctly OFF, although if X is active in this case, the effect is
merely to reinforce 2’s response when it was already correct. This does not
itself cause an error, so in practice we can eliminate these patterns from
X’s training set. This elimination makes the problem easier and faster
to solve, but is not essential for the error-correcting property described
below. Targets for Y are similarly derived. These target assignments are
summarized in Figure 1.

An important point is that the “raw” output of unit 2 is used to set
the daughter’s targets, rather than the value of 2 after the daughters
have exerted any effect, since this would introduce feedback.

Two useful results follow immediately from this training method, be-
cause it essentially gives daughters (X or Y) an easier problem to solve
than their parent (2). First, daughters can always make fewer errors
than their parent, and second, connecting daughter to parent with the
appropriate weight will always reduce the errors made by the parent.
Proof. 2’s errors are

where e(Z)oN is the number of patterns for which Z is wrongly ON.

‘Note, however, that the activity proceeds from daughter to parent.

The Upstart Algorithm 201

0

1

Input

0 1

0 O*

0

1

O* 0

1 0

t X t Y

Figure 1: Correcting a parent unit: the left-hand table gives the targets, t x , for
the daughter unit X for each combination of (o z , t z) . For example, the lower
left-hand entry assigns tx to be 1 when 02 = 1 and t z = 0: the "wrongly ON"

case. Similarly the right-hand table gives the values of t y for the daughter unit
Y . The dotted line represents the flow of this target information. The "starred"
entries correspond to cases where the pattern could be eliminated from the
daughter's training set.

If X responded OFF to every pattern, it would make as many errors
as there were patterns of target tx = 1. However, X can always d o better
than this. In particular, it can always be ON for at least one input pattern

202 Marcus Frean

whose target is 1 and OFF for all other patterns. For example if the input
weights are

wi = 2,$ - 1

with a bias weight

only the pth pattern turns the unit ON. Given that the pocket algorithm
can find the optimal weights visited by a perceptron with any given
probability, at worst X could find the above weights. Therefore

e(X) < e(Z)oN 5 e(Z) (3.1)

A similar argument applies to Y. It also follows that Z’s errors are
reduced by X , since

e(Z with x) = e(X)oN f e(X)OFF f
= e(X) -I- e(Z)OFF
< e(Z) (3.2)

and similarly for Y on its own. When the joint action of X and Y is
considered, the same result holds, that is, e(Z with X,Y) < e(Z) - 1.
In the next section an algorithm that uses the first of these results is
described. Other possibilities are discussed in Section 6.

4 The Upstart Algorithm

Assume we already have a unit Z that sees input patterns 6;: i = 1, .., N
and has associated targets t$. The weights from the input layer to Z
are trained to minimize the discrepancies between 2’s output and target
and, once trained, these weights remain frozen. This “first” unit is actu-
ally the eventual output unit, and its targets are the classification to be
learned. The following two steps are then applied recursively, generating
a binary branching tree of units. Thus daughter units behave just as 2
did, constructing daughter units themselves if they are required.

Step 1. If 2 makes any “wrongly ON” mistakes, it builds a new unit X,
using the targets given in Figure 1. Similarly if Z is ever ”wrongly
OFF” it builds a unit Y. Apart from the different targets, these units
are trained and then frozen just as Z was.

Step 2. The outputs of X and Y are connected as inputs to 2. The weight
from X is large and negative while that from Y is large and positive.
The size of the weight from X[Y] needs to exceed the sum of 2’s
positive [negative] input weights, which could be done explicitly
or by perceptron learning.

The Upstart Algorithm 203

New units are only generated if the parent makes errors, and the
number of errors decreases at every branching. It follows that eventually
none of the terminal daughters makes any mistakes, so neither do their
parents, and neither do their parents, and so on. Therefore every unit in
the whole tree produces its target output, including 2, the output unit.
Hence the classification is learned.

5 Simulations

In all the simulations shown here the ”starred entries in Figure 1 were
not included in a daughter’s training set? To decrease training times, a
fast and well behaved version of perceptron learning (Frean 1990) was
used to train the weights, in preference to the pocket algorithm. While
this method is not guaranteed to find the optimal weights, in practice
it produces substantially fewer errors in a given time than the pocket
algorithm. The weight changes given by the usual perceptron learning
rule (equation 2.1) were simply multiplied by

This factor decreases with 141, which measures how ”serious” the error
is. The rationale behind this approach is that an error where 141 is large
is difficult to correct without causing other errors and should therefore
be weighted as less significant than those where 141 is small. The ”tem-
perature” T controls how strongly this weighting is biased to small 141. T
was reduced linearly from To to zero over the entire training period. At
high T the perceptron rule is recovered, but as T decreases the weights
are “frozen.” Unless otherwise stated, TO was set to 1, and 1000 passes
were made through the training set.

5.1 Parity. In this problem the output should be ON if the number
of active inputs is odd, and OFF if it is even. Parity is often cited as
a difficult problem for neural networks to learn, being a predicate of
order N (Minsky and Papert 1969); that is, at least one hidden unit must
sample all of the N inputs. It is also of interest because there is a known
solution consisting of a single layer of N hidden units projecting to an
output unit. It is easy to see how the upstart algorithm tackles parity (see
Fig. 2). Essentially the same structure as that shown for N = 3 would
arise for any N , although for large problems the optimal weights become
much harder to find. I have tried parity for up to N = 10, and in all cases
N units are constructed, including the output unit. In all cases except

21f the whole training set is used in every case, the number of units produced is
relatively unaffected for the problems investigated here, but the training time (a combi-
nation of the time per epoch and number of epochs required to generate a comparable
network) is approximately doubled for the problems discussed.

204 Marcus Frean

On (odd)

Figure 2: Solution for 3-bit parity. The output unit 2 on its own can clearly
make a minimum of two mistakes, when the plane defined by its weights cuts
the cube as shown. X corrects the wrongly ON pattern by responding to it
alone, and similarly Y corrects the wrongly OFF pattern.

N = 10, 1000 passes were sufficient to generate the minimal tree. For
10-bit parity, the figure was 10,000.

5.2 Random Mappings. In this problem the binary classification is
defined by assigning each of the 2N patterns its target 0 or 1 with 50%
probability. Again this is a difficult problem, due to the absence of cor-
relations and structure in the input for the network to exploit. The net-
works obtained for N up to 10 are summarized in Figure 3, with com-
parisons to the tiling algorithm.

5.3 Generalization. Neural networks are often ascribed the property
of generalization: the ability to perform well on all patterns taken from

The Upstart Algorithm 205

250

200

150

100

50

0

Tiling

0 Upstart

5 6 7 8 9

N

10

Figure 3: Number of units built vs. the number of patterns (Z N) for the random
mapping problem. The slope of the upstart line is approximately 1/9. Each
point is an average of 25 runs, each on a different training set.

206 Marcus Frean

a given distribution after having seen only a subset of them. Several
workers (Denker et al. 1987; Mezard and Nadal 1989) have looked at
generalization using the "2-or-more clumps" predicate. The problem is
this: given an input pattern, respond ON if the number of clumps is 2 or
greater and OFF otherwise, where a "clump" is a group of adjacent3 1's
bounded on either side by 0's. As with parity, there is a solution con-
sisting of a single hidden layer of N units that would solve the problem
exactly. Following Mezard and Nadal, the patterns were generated by a
Monte Carlo method (Binder 1979) such that the mean number of clumps
is 1.5. I used N = 25 input units, with a training set of up to 600 patterns.
The set used to test the resulting net's ability to generalize was a further
600 patterns. The results, with comparisons to the tiling algorithm, are
summarized in Figure 4.

6 Discussion

The architecture generated by this procedure is unconventional in that it
has a hierarchical tree structure. However, in the case where we choose
not to eliminate any training patterns there is an equivalent structure with
the same units arranged as a single hidden layer. Consider two daughters
(say X , Y) and their parent (2). With primes denoting "corrected" values,
the corrected value 0; is always equal to oz - 0; + 0;. This formulation is
possible because the combinations that would disobey this never occur.
For example, Y would never be correctly ON if 2 was ON. Since this
is true of every unit in the tree, the final output is simply a sum of the
"raw" responses. For example,

output = 0; = O A - 05 + OC + ' ' * - OX + OY + 02

Imagine the tree units disconnected from one another and placed in a sin-
gle layer. A new output unit connected to this "hidden" layer can easily
calculate the appropriate sum by, for example, having weights of +I from
each unit that adds to the sum and -1 from each unit that subtracts, with
a bias of zero. In effect we can convert a binary tree into a single hidden
layer architecture that implements the same mapping, at the expense of
adding one unit and being unable to exploit pattern elimination. The al-
gorithm for constructing a single hidden layer architecture is as follows:
construct units as before, omitting step 2 (where they are connected into
a feedforward tree). Then connect all the units so constructed to a new
output unit. The weights can be learned by perceptron learning, or can
be inferred from the tree structure: there is a sign reversal for every "X"
daughter.

6.1 Extensions. The upstart method can be extended in a number
of ways. First, we are not restricted to binary branching trees. Having

3Circular boundary conditions are used input 1 is "adjacent" to input N .

The Upstart Algorithm 207

Tiling

Q Upstart

0
100

go

80
L

8

2 70

$

0
a
v) a

Y

-
60

50

I

0 100 200 300 400 500 600
Number of training patterns

Figure 4 Performance of the method on the "2-or-more clumps" problem. The
lower graph shows the percentage generalization as the size of the training
set is increased. Plotted above this and with the same abscissa is the size of
the corresponding network. To = 4.0. There are 25 runs per point, each on a
different set. Where not shown, error bars are smaller than the points.

208 Marcus Frean

trained a daughter unit and connected it to the output, a new daughter
can now be trained using targets derived from the partially corrected out-
put, instead of the daughter, and so on until no more mistakes are made.
This would build a single hidden layer. Hybrid methods, building trees
of variable breadth, will also work.

Second, these algorithms can be extended to problems involving mul-
tiple output units. A good method should build considerably fewer units
than would be obtained by treating each output separately (especially
if the output targets are correlated); in other words, maximum mutual
use should be made of hidden units. Consider the following algorithm,
where steps 1 and 2 are repeated until every output unit makes no mis-
takes:
Start. There are no hidden units and no connections, so the output units

are always OFF.

Step 1. Choose an output unit (say, the one which makes the most er-
rors). Build the appropriate hidden unit to correct some of the mis-
takes being made by this output unit, as described above. Connect
this new unit to all the output units.

Step 2. Train the weights from each unit in this enlarged hidden layer to
each of the output units. Reevaluate the numbers of errors made
by each output unit.

Hence a single hidden layer is constructed.

6.2 Conclusions. The design of general purpose supervised learning
algorithms for neural networks involves two important considerations:
the network should succeed in correctly classifying the patterns on which
it is trained, and nontrivial solutions should involve as few computational
elements as possible, avoiding redundant computation. The upstart algo-
rithm can build a network to implement correctly any boolean mapping.
Because each “daughter” cell makes as few errors as possible, it corrects
as many “parent” errors as possible, which results in small networks.
These networks are smaller than those produced by the tiling algorithm.
In general the minimum number of units required for any given problem
cannot be calculated. However, for a few special cases such as parity and
the clumps problem it is known that N or fewer units are needed, and the
upstart algorithm achieves this. In the potentially worst case where the
targets are randomly assigned, m patterns can be correctly classified by
approximately m/9 units. The basic idea can be implemented in different
architectures and is extendable to the case of multiple outputs.

Acknowledgments

I am grateful to David Willshaw who helped greatly with the manuscript,
and also David Wallace for useful comments. I particularly thank Peter

The Upstart Algorithm 209

Dayan for suggesting that the tree could be "squashed" into a single
hidden layer, as well as for helpful discussions.

References

Binder, K. 1979. Monte Carlo methods in statistical physics. Topics Curr. Phys.
7.

Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L., and Hop-
field, J. 1987. Large automatic learning, rule extraction and generalization.
Complex Syst. I, 877-922.

Frean, M. R. 1990. A "Thermal" perceptron for efficient linear discrimination.
Unpublished.

Gallant, S. I. 1986a. Three constructive algorithms for network learning. Proc.
8th Ann. Conf. Cog. Sci. Soc., Amherst, MA, Aug. 15-17, pp. 652-660.

Gallant, S. I. 1986b. Optimal linear discriminants. IEEE Proc. 8th Conf. Puttern
Recognition, Paris, Oct. 28-31, pp. 849-852.

Mezard, M., and Nadal, J. 1989. Learning in feedforward layered networks:
The tiling algorithm. J. Phys. A 22,12,2191-2203.

Minsky, M., and Papert, S. 1969. Perceptrons. MIT Press, Cambridge.
Nadal, J. 1989. Study of a growth algorithm for neural networks. Int. 1. Neurul

Rosenblatt, F. 1962. Principles of Neurodynamics. Spartan Books, New York.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986. Learning internal rep-

resentations by error propagation. In Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition. Volume I Foundations, D. E. Rumel-
hart, J. L. McClelland, and the PDP Research Group, eds. MIT Press, Cam-
bridge.

Sysf. 1, 5559.

Received 12 December 1989; accepted 19 March 1990.

