evolutionary dynamics on networks:

selection versus drift

Marcus Frean

Victoria University of Wellington

New Zealand

(presently on sabbatical at the Cavendish Lab, U. Cambridge)

evolution

Two "forces" underlying evolutionary change:

- selection survival of the fittest and all that,
- drift or "neutral evolution" traits tend to saturate in populations, even *without* selection.

What follows is a simple model aimed at exploring the interplay between these.

Evolutionary dynamics on graphs *Nature,* Vol. 433, No. 7023. (2005), pp. 312-316. Lieberman, Hauert and Nowak

the Moran process

choose a bean

choose another bean

the first over-writes the second

& back in the bag

eventually all the beans will be the same colour

the moran process with fitnesses

- beans may have different "fitnesses"
- we choose the first bean with probability proportional to its fitness
- the second bean is just random

fitter beans *tend* to end up occupying the bag

- suppose almost all beans have fitness = 1
- a single bean has fitness r > 1
- only two absorbing states: mutant dies out, or mutant saturates
- saturation probability:

$$\rho^* = \frac{1 - 1/r}{1 - 1/r^n}$$

Moran process on a network

- 1^{st} site chosen \propto fitness
- 2nd site is a neighbour

 on a fully connected graph the saturation probability is still

$$\rho^* = \frac{1 - 1/r}{1 - 1/r^n}$$

what about on a lattice?

 saturation probability is the *same* as for the fullyconnected network:

$$ho =
ho^*$$

what about this then?

 $\rho = \frac{1}{n} < \rho^*$

a "suppressor" of fitness: it counts for nothing

and this?

and this?

$$\rho = \frac{1 - 1/r^2}{1 - 1/r^{2n}} > \rho^*$$

an "amplifier" of fitness:

a fitness of r does as well as a r^2 would in the fully connected case

another view of the star network

an arbitrary amplifier of fitness...

With enough fan-in, and lots of layers,

 $\rho \rightarrow 1$

 \mathcal{V} does as well as ∞

Q1: what's going on?

- the hub is "hot": spokes are "cold"
- the relevant measure is the chance a single spoke gets copied *to another spoke*
- to do this it needs to be
 - chosen to replicate (into hub)
 - immediately chosen again (as hub)
 - a mutant gets a "boost" of r in both of these steps, hence r^2

Q1: what's going on?

- the biggest layer is "cold"
- the relevant measure is the number of cold nodes
- a mutant gets a "boost" of *r* for each layer it has to get through
- L boosts in a row leads to r^L

Q2: does this generalise?

Moran process:

• **fitness** enters via the birth site

deaths are

- contingent on the birth site
- <u>neutral</u>

"FB→ND"

a very similar process...

consider re-ordering things slightly:

- first choose a death site, neutrally
- then choose a birth site from among its neighbours, based on fitness

"ND-FB"

4 processes in the family

- $FB \rightarrow ND$ (Moran)
- ND→FB
- NB→FD
 i.e. *un* fitness determines
 FD→NB
 the death site

Which do you think is more "realistic"?

what happens (exact calculation)

suppressors

The star network is an amplifier *only* under the Moran process

Under the other alternatives it is a suppressor!

111 nodes:		$\frac{2}{\sqrt{2}}$	
FB→ND	.50	.74	.70
NB→FD	.50	.48	.72
FD→NB	.50	.02	.05
ND→FB	.50	.02	.04

time to fixation

why such suppression by death-first?

birth-first: hub gets over-written

death-first: hub over-writes

conclusions

I've looked at several evolutionary dynamics that allow both selection and random drift to play a role

None of them is "right", but I suspect they all happen...

Whether births are contingent on deaths, or *vice versa*, is much more important than which of these is tied to "fitness"

only amplifies amplifies under under birth-first Moran dynamics

strong suppressors under death-first dynamics