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A key issue in using connectionist methods is the
choice of which network architecture to use. There
are a number of ways this choice can be made
automatically, driven by the problem at hand.

INTRODUCTION

If one takes a training set in the form of input-
output pairs and trains a large connectionist net-
work on it, the result is generally ‘overfitting’.
There are many functions which exactly fit the
existing data and the act of learning arrives at just
one of them, somewhat arbitrarily. The problem is
compounded where the data is noisy, in which case
the network uses its extra degrees of freedom to fit
the noise rather than the underlying function gen-
erating the data. Conversely, if the network is too
small it ‘underfits’, which is equally unsatisfactory.
The real aim is usually not to get the training set
correct, but to generalize successfully to new data.
The model selection problem is to arrive at the
network that gives the best possible predictions
on new inputs, using only the available training
data and prior knowledge about the task. (See
Machine Learning)

There are several ways of controlling the com-
plexity of mappings learned by neural networks.
These include varying the number of weights or
hidden units by building up or paring down an
existing network, and direct penalties (otherwise
known as regularization) on model complexity,
such as weight decay. Other ideas include parti-
tioning the input space into regions which are lo-
cally linear as in ‘mixtures of experts’, or using
genetic algorithms to choose between different
architectures.

CRITERIA FOR NETWORK OPTIMALITY

The optimality or otherwise of a network is, in
many cases, determined by its ability to generalize.
Almost by definition this ability is not directly ob-
servable, so in practice we have to make an edu-
cated guess at it and use that to choose between
networks.

The simplest method takes part of the available
data and sets it aside. Once the network has been
trained on the remaining data it can be ‘validated”
by seeing how well it performs on the withheld
data, thus giving an estimate of how well it will
generalize. This estimate won’t be very good unless
the hold-out set is large, which wastes a lot of the
data that could otherwise be used for training. To
minimize this effect, ‘cross-validation” applies the
same idea repeatedly with different subsets of the
data, retraining the network each time. In k-fold
cross-validation, for example, the data is divided
into k subsets. One at a time, these serve as hold-out
sets, and the validation performance is then aver-
aged across them to give an estimate of how well
the network generalizes. ‘Leave-one-out’ cross-
validation uses k = N, the number of samples, but
k =10 is typically used.

Another general approach, from conventional
statistics, is to attempt to quantify the generaliza-
tion performance of trained networks without a
validation set at all. One prefers networks with a
low ‘prediction error’

C= Cdatu + Cnet (1)

Here Cg,y, is the usual training error, such as the
sum of squared errors, and C,. is taken to be
a measure of the complexity of the network,
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proportional to the effective number of free param-
eters it has. Assuming a nonlinear network is lo-
cally linear in the region of the minimum, an
approximation to C,,; can be calculated (Moody,
1992; Murata et al., 1994) given the Hessian matrix
of second derivatives Hjj = 0*Cyato/Ow;iOw;, which
can be found using a number of methods (Buntine
and Weigend, 1994). For large training sets, leave-
one-out cross-validation and the above are essen-
tially equivalent, with the latter giving the same
effect for much less computational effort. These
approaches assume a single minimum however,
so the estimate can be strongly affected by local
minima. On the other hand, leave-one-out cross-
validation also gets trapped in local minima, in
which case 10-fold cross-validation is preferable.

A third approach is to use Bayesian model com-
parison to choose between networks, as well as to
set other parameters such as the amount of weight
decay. Bayesians represent uncertainty of any kind
by an initial or ‘prior” probability distribution, and
use the laws of probability to update this to a “pos-
terior’ distribution in the light of the training set. In
this view we should choose between models based
on their posterior probabilities given the available
data — again this does not require that any data be
set aside for validation (MacKay, 1995). In the fully
Bayesian approach, ideally we should use not one
set of weights and one structure but many sets and
many architectures, weighting the prediction of
each by their posterior probability. To the extent
this averaging can be done, deciding on an ‘opti-
mal’ model (and indeed all learning as it is usually
thought of) becomes unnecessary. (See Reasoning
under Uncertainty; Pattern Recognition, Statis-
tical)

Generalization performance is not the only meas-
ure of usefulness of a given network architecture.
Other potentially important measures are its fault
tolerance, training time on the problem at hand,
robustness to ‘catastrophic forgetting’, ease of sil-
icon implementation, speed of processing once
trained, and the extent to which hidden representa-
tions can be interpreted. (See Catastrophic Forget-
ting in Connectionist Networks)

PRUNING OF UNIMPORTANT
CONNECTIONS OR UNITS

Pruning algorithms start by training an overly com-
plex network before trimming it back to size. In
other words, we knowingly overfit the data and
then reduce the number of free parameters, at-
tempting to stop at just the right point. Clearly the
general model selection schemes described above

(cross-validation, estimated prediction error, and
Bayesian model comparison) can be applied to
prune overly large networks; however a number
of ideas have been formulated that are specific to
pruning. Pruning algorithms can remove weights
or whole units, and one can think of the choice of
which element to remove as being driven by a
measure of ‘saliency’ for that element. Each algo-
rithm uses a different form for this saliency.

A simple measure of saliency to use for weights
is their absolute value. However, while it may be
true that removing the smallest weight affects the
network the least, it doesn’t follow that this is the
best weight to remove to improve generalization.
Indeed this seems completely opposite to weight
decay (see below), which in effect ‘removes’ large
weights by decaying them the most, and it per-
forms poorly in practice.

A more principled idea, known as ‘optimal brain
damage’ (Le Cun ef al.,, 1990), approximates the
change to the error function that would be caused
by removal of a given connection or unit, and uses
this measure to decide which to remove. To make
this approximation, one trains the network until it
is at a minimum of the usual error function, and
then calculates the Hessian H. Ignoring the off-
diagonal elements of this matrix, the saliency of
the weight is given by H;w?.

This idea has been further developed in ‘optimal
brain surgeon’ (Hassibi and Stork, 1993), which
avoids the assumption that the Hessian is diagonal.
Interestingly this gives a rule for changing all the
weights, with the constraint that one of these in-
volves the setting of a weight to zero. One must first
calculate the full inverse Hessian matrix however,
which can make the algorithm slow and memory
intensive for large problems.

Statistical tests can also be applied to detect non-
contributing units that could be made redundant.
For example if two units are in the same layer and
are perfectly correlated (or anti-correlated) in their
activity, we know the network can perform the
same mapping with one of them removed. A par-
ticularly simple case is when a unit has the same
output all the time, making it functionally no dif-
ferent from the bias unit.

WEIGHT DECAY

In networks whose output varies smoothly with
their input, small weights give rise to outputs
which change slowly with the input to the net,
while large weights can give rise to more abrupt
changes of the kind seen in overfitting. For this
reason one response to overfitting is to penalize
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the network for having large weights. The most
obvious way to do this is by adding a new term

cmtgzi:w,? 0<p<1 (2)

to the objective function being minimized during
learning. The total cost C = Cgyty + Cyer can then be
minimized by gradient descent. For a particular
weight we have

aC Cata

Awx —— =

Jw ow f 3)

The first term leads to a learning rule such as back
propagation (depending on the form of C4,,), while
the second removes a fixed proportion of the
weight’s current value. Hence each weight has a
tendency to decay toward zero during training,
unless pulled away from zero by the training data.
The ‘decay rate’ f determines how strong this ten-
dency is. Clearly a major question is how to set f3,
for which the general methods described earlier are
applicable. (See Backpropagation)

Weight decay helps learning in other ways as
well as its effect on generalization — it reduces the
number of local minima, and makes the objective
function more nearly quadratic so quasi-Newton
and conjugate gradient methods work better.

From a Bayesian perspective, weight decay
amounts to finding a maximum a posteriori (MAP)
estimate given a Gaussian prior over the weights,
reflecting our belief that the weights should not be
too large. Weight decay is not usually applied to
bias weights, reflecting the intuition that we have
no a priori reason to suppose the bias offset should
be small. Depending on the nature of the problem,
this may not be a particularly sensible prior — for
instance we may actually believe that most weights
should be zero but that some should be substan-
tially nonzero. One expression of this to use a dif-
ferent weight cost such as

w?
Cnet = ﬁ Z c2 + wz (4)
1 1

This has been called weight elimination, because it
is more likely to drive weights towards zero than
simple weight decay. Very small weights can then
be eliminated. c is a second parameter which
needs to be set by hand. An interesting alternative
is ‘soft weight sharing’ (Nowlan and Hinton, 1992)
which implements MAP with a prior that is a mix-
ture of Gaussians. The means (which need not
be zero) and variances of these Gaussians can
be adapted by the learning algorithm as training
proceeds.

GENERATIVE ARCHITECTURES

Generative architectures, also called constructive
algorithms, build networks from scratch to suit
the problem at hand. Once each unit is trained, its
weights are ‘frozen’ before building the next unit.
An important advantage of this is that only single
layers of weights are being trained at any one time.
Accordingly the learning rules involved need only
be local to the unit in question (unlike back propa-
gation), which tends to make learning particularly
fast and straightforward.

For simplicity each algorithm is described here as
it applies to a single output unit — multiple outputs
are trivial extensions to this, as described in the
cited papers.

Upstarts

The upstart algorithm (Frean, 1990) is a method for
constructing a network of threshold units. Imagine
a single linear threshold unit (perceptron) that is
trained to minimize the number of errors it makes
on the training set, and then frozen. This unit,
which we will call 1, makes two kinds of error: it
is either wrongly on, or wrongly off. In the upstart
algorithm these errors are dealt with separately by
recruiting two new units, which we could call u_
and u_, one for each type of error. These new units
receive the same inputs, but their outputs go dir-
ectly to u (see Figure 1(a)). The role of u_ is to
correct the “‘wrongly on’ errors by the parent unit
u so it has a large negative output weight, while the
output weight of u, is large and positive since its
function is to correct the wrongly off errors. (See
Perceptron)

It is easy to derive appropriate targets for u_,
given the original targets and u’s responses: u_ is
to be given the target 1 whenever u is wrongly on,
while in all other cases its target should be 0. Simi-
larly the target for u, is 1 whenever u is wrongly
off, and 0 otherwise. Notice that the output of u_
(1) does not matter if u was already correctly off
(on), so these can be omitted from the child node’s
training set. Should the child units be free of errors
on their respective training sets, u will itself be
error-free. If, however, either u_ or u_ still make
mistakes of their own, these errors are likewise of
two types and we can apply the same idea, recur-
sively. The result is a binary tree of units, grown
‘backwards’ from the original output unit. Child
nodes spend their time loudly correcting their
parent’s mistakes, hence the algorithm’s name.

Suppose u_ has the output 1 for just one of the
wrongly on patterns of u, and is zero in all other
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Figure 1. (a) A binary tree constructed by the upstart algorithm. All units have direct inputs, omitted here for clarity.
The ‘leaves’ of the tree make no errors, so neither does the root node. (b) The same network being rearranged into a

single hidden layer.

cases. For convex training sets (e.g. binary patterns)
it is always possible to ‘slice off’ one pattern from
the others with a hyperplane, so in this case it is
easy for u_ to improve u by at least one pattern. Of
course we hope that u_ and u, will confer much
more advantage than this in the course of training.
In practice a quick check is made that the number
of errors by u_ is in fact lower than the number of
wrongly on errors by u, to ensure convergence to
Zero errors.

Networks constructed using this method can be
reorganized into a single hidden layer, if desired.
That is, a new output unit can get zero errors by
being connected to this layer with weights which
are easily found, as shown in Figure 1(b).

For noise-free data this procedure usually pro-
duces networks that are close to the smallest that
can fit the data, with attendant gains in generaliza-
tion ability compared to larger networks. Notice
however that the training set is learned without
errors, so this is just as prone as any other algo-
rithm to overfitting of noisy data (the idea has not
been generalized to handle such noise, although
there seems no reason why this couldn’t be done).
One can also use the same procedure to add hidden
units to a binary attractor (Hopfield) network,
thereby increasing its memory capacity from ~N
to 2V patterns.

The Pyramid Algorithm

Another algorithm for binary outputs is the pyra-
mid algorithm (Gallant, 1993). One begins as before
with a single binary unit, connected to the inputs
and trained to minimize the number of errors. This
unit is then ‘frozen’ and (assuming errors are still
being made) a new unit is designated the output:
this new unit sees both the regular inputs and any
(frozen) predecessors as its input, as shown in
Figure 2. (See Perceptron)
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Figure 2. The architecture constructed by the pyramid
algorithm. Vertical lines represent multiple connections
(shown as squares) to the unit above. Each new unit
assumes the role of output.

It is not hard to show that this new unit can
achieve fewer errors than its predecessor, provided
the input patterns are convex. If it sets its weights
from the network inputs to zero and has a positive
weight from the previous frozen unit, these two
obviously make the same number of errors. As
with upstarts, given convex inputs it could then
easily reset its input weights so that this behavior
was altered for just one input pattern where it was
previously in error. This is the ‘worst case’” behav-
ior, and appropriate weights can easily be prede-
fined, to be improved by training (any method for
arriving at good weights for a single unit is applic-
able). Despite its apparently ‘greedy’ approach
to optimization and its extreme simplicity, the
method can build concise networks. For example,
given the N-bit parity problem (where the task is to
output the parity of a binary input) the upstart
algorithm generates a network with N hidden
units, while the pyramid algorithm builds the ap-
parently minimal network having only (N +1)/2
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hidden units. Like the upstart algorithm, the
method as it stands is prone to overfitting noisy
data.

Cascade Correlation

Cascade correlation (Fahlman and Lebiere, 1990)
can be applied to networks with real-valued out-
puts, and uses sigmoidal hidden units. We begin
with a network having only direct connections be-
tween inputs and outputs, with no hidden units.
These weights are trained using gradient ascent
(the delta rule), or whatever learning procedure
you like. We then introduce a hidden unit, with
connections to the input layer. This unit sends its
output via new weighted connections to the ori-
ginal output layer. In upstarts, the hidden unit is
binary and is preassigned one of two roles, which
determines how it is trained and the sign of its
output weight — this is because being binary it can
only correct errors of one type by the output unit,
given its output weight. In this case, however, the
hidden unit is real-valued and this means it can
play a role in correcting errors of either sign by
the output unit. Fahlman and Lebiere’s idea is to
train the hidden unit to maximize the covariance
between its output and the existing errors by the
output units. We can then use this gradient to learn
input weights for the hidden unit in the usual way.
When this phase of learning is deemed to have
finished, all the output unit’s connections are re-
trained, including the new ones. The process can
now be repeated with a new hidden unit, with each
such unit receiving inputs from the original inputs
as well as all previous hidden units. Figure 3 shows
the resulting cascade architecture.

A potential problem is that the output can make a
lot of errors yet, after averaging, the correlation

inputs
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Figure 3. The architecture constructed by cascade
correlation.

with a hidden unit can be very small. Despite this
the method seems to work well in practice, and can
be extended to recurrent networks.

ADAPTIVE MIXTURES OF EXPERTS

In conventional back propagation networks, each
sigmoid unit potentially plays a part in the net-
work’s output over its entire range of inputs. One
way of restricting the power of the network is to
partition the input space into distinct regions, and
restrict the influence of a given unit to a particular
region. Ideally we would like to learn this partition
rather than assume it from the beginning.

A particularly appealing way to do this is known
as the ‘mixture of experts” architecture (Jacobs et al.,
1991). Each ‘expert’ consists of a standard feedfor-
ward neural network. A separate ‘gating” network,
with as many outputs as there are experts, is used
to choose between them. The output of this net-
work is chosen stochastically using the softmax
activation function at its output layer,

B e%i
= Zj &

where ¢; is the weighted sum into the ith output
unit. This reflects the fact that only one of the out-
puts is active at any given time. All of the nets
(including the switch) are connected to the same
inputs as shown in Figure 4, but only the expert
that happens to be chosen by the switch is allowed
to produce the output. A learning procedure can be
found by maximizing the log likelihood of the net-
work generating the training outputs given the
inputs, in the same way as the cost function for
back propagation is derived. Indeed the learning
rule for the ‘experts’ turns out to be simply a
weighted version of back propagation. During
learning each expert network gets better at gener-
ating correct outputs for the input patterns that are

Prii=1) (5)
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Figure 4. The mixtures of experts architecture. Each
expert consists of a separate network, and may have
multiple outputs. A separate gating network acts as a
switch, allowing just one of the experts to generate the
output. All of the experts, together with the gating net-
work, have access to the input pattern.
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assigned to it by the switch. At the same time, the
switch itself learns to apportion inputs to the best
experts. One can think of the switch as performing
a ‘soft’ partition of the input space into sections
which are learnable by individual experts. (See
Backpropagation)

A further possibility is to treat each expert as a
mixture of experts system itself (Jordan and Jacobs,
1994). A form of hierarchical decomposition of
the task can thus be repeated for as many levels
as desired. If simple linear units are used for
the leaf nodes of the resulting tree-structured
network, training can be achieved using a version
of the expectation-maximization (EM) algorithm
rather than gradient descent.

USING GENETIC ALGORITHMS TO
EVOLVE CONNECTIONIST
ARCHITECTURES

One criticism of both pruning and constructive
algorithms is that they alter networks in only very
limited ways, and as such they are prone to getting
stuck in local optima in the space of possible archi-
tectures. Genetic algorithms offer a richer variety
of change operators in the form of mutation and
crossover between encodings (called ‘chromo-
somes’) of parent individuals in a population. The
hope is that networks which are more nearly opti-
mal may be found by evolving such a population of
candidate structures, compared to making limited
incremental changes to a single architecture. (See
Evolutionary Algorithms)

In generating new candidate architectures, gen-
etic algorithms choose parents based on their per-
formance (‘fitness’), which may be evaluated using
the techniques described previously for determin-
ing network optimality. The main contribution
of genetic algorithms then is their more general
change operators, principally that of crossover,
which operate on the chromosome rather than the
network directly. Accordingly, the way in which
architectures are mapped to chromosomes and vice
versa is of central importance (Yao, 1999).

One approach is to assume an upper limit N to
the total number of units and consider an N x N
connectivity matrix, whose binary entries specify
the presence or absence of a connection. Any units
without outputs are effectively discarded, as are
those lacking inputs. A population of such matrices
can then be evolved, by training each such network
using a learning algorithm initialized with random
weights. To apply genetic operators, each matrix
is simply converted to a vector by concatenating
its rows. Restriction to feedforward networks is

straightforward: matrix elements on and below
the diagonal are set to zero, and are left out of the
concatenation.

A drawback of this approach (though by no
means unique to it) is that the evaluation of a
given network is very noisy, essentially because
the architecture is not evaluated on its own but in
conjunction with its random initial weights. Aver-
aging over many such initializations is computa-
tionally expensive, and one solution is to evolve
both the connections and their values together. In
this case an individual consists of a fully specified
architecture together with the values of weights.
On the other hand cross-over makes little sense
for combining such specifications (unless the
neural network uses localist units such as radial
basis functions) because it destroys distributed
representations.

Less direct encodings can be used, such as rules
for generating networks, rather than the networks
themselves. Evolutionary algorithms have also
been used to change the transfer functions used
by units (such as choosing between sigmoid and
Gaussian for each unit), and even to adapt the
learning rules used to set the weights.
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Summary

We may incorporate symbolic processing capabil-
ities in connectionist models, including implement-
ing such capabilities in conventional connectionist
models and/or adding additional mechanisms to
connectionist models.

INTRODUCTION

Many cognitive models have incorporated both
symbolic and connectionist processing in one archi-
tecture, apparently going against the conventional
wisdom of seeking uniformity and parsimony of
mechanisms. It has been argued by many that
hybrid connectionist-symbolic systems constitute
a promising approach to developing more robust
and powerful systems for modeling cognitive
processes and for building practical intelligent
systems. Interest in hybrid models has been slowly
but steadily growing. Some important techniques
have been proposed and developed. Several

important events have brought to light ideas,
issues, trends, controversies, and syntheses in this
area. In this article, we will undertake a brief exam-
ination of this area, including rationales for such
models and different ways of constructing them.

MODELING DIFFERENT COGNITIVE
PROCESSES WITH DIFFERENT
FORMALISMS

The basic rationale for research on hybrid systems
can be succinctly summarized as ‘using the right
tool for the right job’. More specifically, we observe
that cognitive processes are not homogeneous:
a wide variety of representations and processes
seem to be employed, playing different roles
and serving different purposes. Some cognitive
processes and representations are best captured
by symbolic models, others by connectionist



