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Abstract- We present a PHD filtering approach to estimate the state of an unknown number of persons
in a video sequence. Persons are represented by moving blobs, which are tracked across different
frames using a first-order moment approximation to the posterior density. The PHD filter is a good

alternative to standard multi-target tracking algorithms, since overrides making explicit associations



between measurements and persons locations. The recursive method has linear complexity in the
number of targets, so it also has the potential benefit of scaling well with a large number of persons
being tracked. The PHD filter achieves interesting results for the multiple persons tracking problem,
albeit discarding useful information from higher order interactions. Nevertheless, a backward state-
space representation using PHD smoothing can be used to refine the filtered estimates. In this paper,
we present two smoothing strategies for improving PHD filter estimates in multiple persons tracking.
Results from using PHD smoothing techniques in a video sequence shows a dight gain in the
cardinality estimates (meaning the number of persons in a particular video frame), but good

performancein theindividual location estimates.

Index terms. Power system, fault current, current limiter, permanent magnet, saturable core, magnetic

current limiter, high temperature superconducting fault current limiter.

.  INTRODUCTION

A Bayesian method for the unknown number of targetis unknown association hypotheses has
been formulated using point processes and randate 8ets theories, under the name of the
Probability Hypothesis Density (PHD) filter [1]. Theethod solves the troublesome multi—-target
estimation problem by approximating the completstg@aor distribution of the filtering density
by the first-order moment of a Poisson process.eAlie Kalman filter recursion, the PHD filter
approach uses all observations from the past ierda produce instantaneous estimates of the
number of targets and their locations. MoredtierPHD recursion can béfieiently computed in
closed form using a Gaussian mixture representatidsy means of stochastic integration using

sequential Monte Carlo methods, so it is suitabtesisual tracking applications [2].

Pedestrian counting and tracking is a challengiagputer vision task, with applications in
surveillance and video monitoring. Analyzing theesof a crowd along with the dynamics of the
group and its members has the potential benefitafiging real-time detection of anomalies or
events of particular interest. However, becausehef complexity of extracting meaningful
information from single or multiple cameras, thepse and availability of multiple target tracking
techniques for crowd analysis has been restriadedonstrained environments and calibration

conditions [3].



Traditional target tracking algorithms for pedesirtracking relies on intra-frame and inter-
frame association hypotheses, which relates imaggsarements to predicted person locations
[4]. In order to compute association hypothesesla®eto make assumptions which are usually
hard to satisfy in real environments, and specidifficult in crowded scenarios. Furthermore,
occlusion reasoning and persons merging and spglittnto groups, leaves a full posterior

distribution on the number of persons and the aagon hypotheses being intractable [5].

Although the filtering approach provides a fairlcai@ate way to calculate an instant estimate of
the state of a dynamic system, we might expect mpravement if we incorporate more
information in the production of the estimate. Ratthan considering only the past and current
observations, the accuracy of the filtered estincate be improved by also taking into account
future observations [6]. This procedure is widehown as smoothing, and recent research has

been undertaken on producing smoothed estimatesegd?HD filter [7, 8].

In this paper, we consider unsupervised top-dowyeBian detection and tracking of multiple
persons in crowded environments using the PHD fipgroach. Even though the method is well
suited for tracking a large number of persons okegkrin clutter which might come from
illumination changes, the PHD approximation onljdsdor tracking scenarios where the signal—
to—noise ratio is dticiently high that a target can be well represemigdhe observed features
[9]. Unfortunately, most of the state the art imggecessing techniques for person detection
would require supervised learning techniques tihatr@t well suited for real time applications

[10], relies on multiple cameras [11] or computadlly expensive appearance models [12].

More specifically, we propose a PHD smoothing apgrdar the problem of person tracking in

crowded environments. Firstly, background segmemtas used to a generate foreground mask.
Secondly, a simple 2D segmentation technique ugiognd plane information is used to perform
person detection. Thirdly, the PHD filter is used¢oursively estimate the number of persons
and their locations. Fourthly, PHD smoothing isduse refine the instantaneous estimates. A

schematic diagram of the procedure for performieigcdion and tracking is shown in Figure 1.
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Figure 1. Schematic diagram of the tracking proced

The contributions of this paper can be briefly sumzea as:

1. A method to perform person tracking in crowded smwinents using a single static
camera is proposed. Each person is assumed to imib@endently of each other, but
no restrictions are made about its trajectory agldoity.

2. The PHD filter is described and the applicatiorp&mple tracking is also outlined. The
method can deal with clutter originated from errofshe person detection technique
and illumination changes.

3. We propose to use smoothing as a method to oversome drawbacks of the PHD filter
approach. Two different smoothing algorithms arespnted and then tested using

ground truth information. For that purpose, a $i@gerformance metric for multi—
target tracking error estimation is also proposed.

Section Il presents a summary of the applicationthe PHD filter to visual tracking. An

introduction to the PHD filter is given in Sectiol and the sequential Monte Carlo
implementation is also presented.

.  RELATED WORK
Detection and tracking of a moving person in a @idan be achieved by means of comparing the

difference between the current frames from a referiemage. This technique is widely known as



background subtraction, where the reference franusually termed the ‘background model’

[13]. The background model is a representatiomefscene without moving parts, and the
complexity of level of the model depends on thec8mescenario. A basic background

subtraction technique can use a unique image dsattiground model, however this technique
easily fail when having small changes of luminaocen the geometry settings. The output of the
background subtraction step is a set of conneetgidms of pixels belonging to the foreground,
and is widely known as ‘blobs’. Each region hasjsxhat form an ellipse or a bounding box

that can be tracked from frame to frame. Featuféseoconnected regions are detections that can

then be taken as noisy observations for a trackystem [14].

Tracking multiple humans is a challenging applmatbecause of thefiiculty of generating a
similarity function for a person using pixel infoation. Quantifying the information of a group
of pixels using a person detection system can bengally intractable, if we consider all possible
orientations and occlusions. Early works for perdetection considered vertical histograms
where the head of the people can be distinguidh#dhis method is not robust in case of
occlusion. More recent works have considered pedstection using supervised learning by

means of cascades of descriptors [15], requirimgfabtraining and testing.

The application of the PHD filter to tracking mul&grajectories from features points in
sequences of optical images was described in Méie recently, the sequential Monte Carlo
(SMC) implementation of the PHD filter was appliedhe problem of tracking multiple groups
of persons in video [17]. Observations were takemfthe moments of the blobs, and
morphological operators were used to reduce the [Eclutter in the system. The method was
then compared with a Gaussian mixture implemematibich explicitly accounts for birth, death
and survival of targets [18]. The authors also mtest a data—driven method for initializing the

spatial density of birth and death in a scene.

The PHD filter was also used for tracking faces ppeand vehicles using color based change
detection in [19]. Since the PHD filter approachids@omputing associations between targets
and estimated tracks, graph matching was propasadast-processing step for handling the

data association problem. The authors reportedawsat accuracy of the algorithm in cluttered



images. An extension to tracking 3D objects logatixom multiple cameras have been proposed
in [20]. The method is able to handle occlusionadp@resent at a single camera, by fusing
information from multiple cameras using the PHDefiltFurther developments in the application
of the PHD filter in visual tracking has been dogebnsidering more data—driven approaches

for designing birth and death proposals using sa#oemation in [21] and [22].

. PHD FILTER
The problem of performing joint detection and tiagkof multiple objects has a natural
interpretation under the theory of Poisson pointpsses [23]. In this case, a model-based
approach for detection and tracking of multiplesaltg can be achieved by using the expectation
of a random counting measure. Since a Poisson pmogss is invariant under transformations,
such as thinning, superposition and random transktthe posterior distribution can be also
approximated by a Poisson point process [24]. ploperty becomes extremely useful in visual
tracking, where targets may randomly appear ompgisar, leaving the number of targets to be

modeled as a non-stationary discrete random variabl

A model for tracking multiple objects can perforittefing on a set-valued sta)t@rl(, given the
history of set-valued observatiozi.k. The approach is powerful enough for allowingnaeti

varying number of objects to appear and disap@e® because no particular order is required on
the estimation procedure, the model avoids expl&ia association. Furthermore, when using a
Poisson spatial model of the new born targets aritec, it is also possible to determine the

expected number targets using the intensity meaduhe resulting Poisson process [26,27].

The instances of the two Rl§§(:{x1,x2,...,xn} and Zk:{ 21,22,...,zm} represents a set of

targets and observations respectively. Bayesitarifilg equations are constructed in a similar
fashion as their single target filtering countetpaln this case the RFS filtering and update

equations can be written as follows:

POYIZ1 4= S PXIX )P 123X (D)



D(Zk|xk) p(xklzlik— 1)
PXY2110= ™z iz, )

(2)

The probability hypothesis density (PHDY)) is defined as the first-order moment or intensity
function of a point process with densﬁ@[xl,...,xn}|Zl.k)=jn(x1,...,xn) . The PHD

repackages the family of Janossy densities intoglesfunction that specifies the probability of

having a target x in a neighborhood o;i,{...,xn} , such that the joint density can be written as:

DKX) =3 n—l, S I xxg, X ) g, aX (3)
n=0

A recursive formula for the filtering densitiesgisren by:
Dyjp—alzy) =

I [Ffu{iffk—l}If{iﬂﬂiﬂk—l} + ’Fa-|a-—1{ilfh-|:ffﬁ-—1}:| Da-—1|¢-—1{:lfa-—1 Jel—1 hm-_l{:ﬂk} (4)
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Where:
] . 5 Tq(%) P(Zxy)
= + - -
A= [ 114 ZEkacck(z)+Dk(z)
D\ (2= [ mq(x) p(Zxy) D k=100 dxi¢
And:

bklk_l(x): Spontaneous birth density
7k|k— 1(x|x'): Probability of targets spawning

p(x|x): Single target Markov transition density

p(z|x): Single target likelihood function



ns(x): Probability of target survival
nd(x): Probability of target detection

7‘0 . Average number of Poisson false alarms

c(2): Spatial distribution of false alarms

The number of targets is calculated as the integjrile PHDD(:) or intensity function of the

dynamic point process:
Ni= J Dy

Algorithm 1 describes the Sequential Monte CarlC3 approximation to the PHD recursion as

given in [28].

In the SMC implementation of the PHD filter, Montar® samples are used to represent the
intensity function, so a larger number of particdes used in areas where targets are more likely
to exist. Assuming that we have sample from thegums PHD distribution, clustering methods
can be used for estimating the targets states. &mand the Expectation-Maximization (EM)
algorithms are the main approaches for state estimsor the PHD filter [29]. The total number
of targets corresponds to the total particle messarget states are computed by clustering
particles and using the centroids of each cluStetthermore, the authors in [29] also
incorporated track continuity in the particle PHefi by using validation techniques in the state
estimation.

Since the PHD filter assumes low observation ngpiagmetric estimation using EM can be
difficult. All data points would potentially be tighttyustered around their centers, introducing
numerical instability in the calculation of the \arces [31]. Furthermore, having only access to a
re-sampled particle approximation could also predacnismatch between model complexity and
the amount of available data. Maximum likelihoogha@aches for parametric estimatiorffets

from local minima and over-fitting, as well depencienn the starting point. Bayesian



approaches such as the Gibbs sampler can be wteddrnin order to overcome the problems of

deterministic estimation using limited data [32,33]

Algorithm 1 Particle PHD filter
Require: k= 1 {wp_, o), }f:]_'
: Step 1: Prediction step

2 fori=1,... L., do

3 Sample T} ~ qel-|zL_,. Zi)

[

i 1 a1t e 1] Tt - 'J"l.iJ-zF] 2
1:  Compute predicted weights Wiy *:'_i—i-[fi ez Wk

5 end for

i fori= L+ 1.....J; do

7. Sample T, ~ p(-|Zg)

& Compute predicted weights for the new born particles

@ = L1l
..kllll._.l. |j|l_ FJ‘.I:’J’LIEJ..:]

9. end for

10: Step 20 Update step

11: for all =z € 2 do

122 Compute C(z) = Ej‘;;' +i ¥, k(27 }1::;"_”‘__1
14 end for

14: for i = 1,.., L1 + Ji, update weights do

=4t = ) = _aalER) | s
15: a0} vlr)+3 cz m[:!l+f-‘?u’:}j| Wy
16: end for
17: Step 3: Resampling step
. - Lo r4du -
18 Compute the total mass Nyjp_y = EJ;1] Yy
o % —i yLw—1+Ji
19: Resample {@) /Ny 212

L

1i=1

200 return {w). x|




IV. PHD SMOOTHING
The PHD filter algorithm provides an approximatiorthe expectation or first-order moment of
the intensity measure of a Poisson point procdss.niethod has the property of being able to
explicitly model the birth and deaths of targetsywell as clutter and miss-detections, which can
also be subject to spawning or merging. This mbasked approach can be appealing in multiple

tracking systems where the data association stepnidrivial or cannot be optimally solved.

An alternative solution for improving the PHD filtsstantaneous estimates is to perform
smoothing or retrodiction. Filtered estimates @& thdividual target states and the posterior
cardinality distribution can be considerably impedwby considering a higher data frame than the
history of observations. More specifically, PHOdting can be extended to smoothing and is
expected to correct the abrupt changes on the &stihmumber of targets and their states that

originate from errors propagated by the filterestrabbutions.

Let Xk={x1,...,xnk} be a set target states in aZf.Ta collection of set-valued measurements

collected up to timd@>k. The smoothed PHD can be written as follows:
Dyr09= S PG UXIZy 3% (6)
Accordingly, the smoothed number of targets can tieewritten as:
Ny S Dy r{)dx (7)

As with the standard linear and non-linear smoajlgiquations, the PHD smoothing problem
might be approached by means of fixed-interval gfnag, fixed-lag smoothing or fixed-point
smoothing. The algorithms presented here are rperdkent on the data interval size, so they can
be implemented under each one of these schemaseNuw4t, since the PHD is only available for
non-ordered sets, the full PHD smoothing distrittnmb(xl:k|zl:.|.) is not available, so only the

marginal PHD smoothin@kl.l.(x) in Equation 6 can be approximated. Sections V-4 BB

describe two possible approximations.



a. FORWARD-BACKWARD PHD SMOOTHER
Nandakumaraset.al. developed a Forward-Backward PHD (FB-PHD) smadfigbased on a
physical-space approach [34].

P2 ) =S P X g2y DX ®)
= J Py 1129 PG4 120D X1 ©)
P21 S P42 )Py KIPK 412 08X 4 (10)

A particle approximation to the smoothing multiger density can be written as:

f Dk+1|.|.(x)dx E[ ¥ 1509 (11)
X,4+1€B
L
= 21 (Xk+1)Wk+1|T 12
i=1

Algorithm 2 describes a sequential Monte Carlo apipnation to the FB-PHD smoother.

Algorithm 2 Forward-Backward PHD smoother

1: Forward pass.

2 for k=107 do

i Perform SMC to get particles and weights {z},w} }1<i<cp,.
1: end for

50 Choose u*.'”j.. = .

ii: Backward pass

fork=T-1...0do

g forallie {1,..., Ly} do

o; ;t-:___H e = bepp(r, ) EJ | rtJ_ [ [|k];J( A+J|! O+ e k[.l'i__'_l ri':l

Ly 1 «'.I'.: .r.:lr_. .'\..- Il.ll;.lj._. 1 .r,_l
. T I E :
10} (1] j-” “"”‘ _|'=J Illj:._l"._

11:  end for .
12:  Compute smoothed estimated number of targets Ny =30 Wy p

ATy o
;L' h<izr, .

13 Normalize {w) <z,
11: end for




b. TWO-FILTER PHD SMOOTHER
Another approach for PHD smoothing can be achiéyegheans of the two-filter formula [35]. In
this case, the PHD filter has to be combined wi¢hdiitput of a backward information filter,

which propagates the posterior distribution ofrda@dom counting measum%lT from Equation 9

to be represented by the following factorization:
POIZ:7) =Py 1% ) (13)

_ PORIZy ) PG %)
p(Zk:lel:k—l)

(14)
OCp(Xk|Zl:k_ 1) p(zk:Tlxk) (15)
Where the backward informaticmzk_T|xk) filter can be written as:

P TP J Py 17X 1K) X1 (16)

=J P4 1X10P(E 4 1 T4 1) 9Kpe1 (17)

The SMC approximation for the backward predictedatiner can then be written as Algorithm 3



Algorithm 3 Two-Filter PHD smoother

10
11:
1
L

14:

1

e

Forward pass,
for & =0,...T do

Perform SMC to get particles and weights {z} , w} h<i=p,.

end for

Choose ““'If‘h" = wh.

: Backward pass

for k=T—-1...,0do

for allis {1...., L} do
) ;
Wl = S malal) plelad)
Leo(ay) =1 —malal) + C.ez,

ki _ 5 A A
O 1)k E.!:J“A-|.L-P':-i'a.+1|-u-:'

malry Iplz]r, |
Mg Dzl

ary o [ by L )

. _ .t Lry1 i
wyp = La(z}) [ 3055 ol + 1 — m(x})
end for
. : : - L
Compute smoothed estimated nun.ﬂ:.:'r of targets Nyr = 3.5 Wi

- . Nyr
Normalize {w}] o hi<i<p, to get { .rfl'l h<icL,.

end for

V. PHD FILTER AND SMOOTHER FOR PERSON TRACKING AND
COUNTING

Instead of using an explicit person detection systge use a PHD filter approach to estimate the

locations of an unknown number of persons. A corstalocity model is used as a generative

model for the movement of a single person. The &mdwmodel calculates the new position of a

person using a velocity vector that remains neashstant in magnitude and direction.

-
X =[x ,x] . . . . ,
kK L'x7y. be the transpose of a 2-dimensional positiongdraon in the image plane and

X = [XX)%/] its velocity.



In a state-space representation the state vectopefson is written as an augmented vector

X\ = [xk;xk] . A linear mappind- is used to model the dynamic behavior of a pevstim

Gaussian noiswk . The position of a single person at the disdiete K can be written as:

xk=F Xk—1+Wk

whereF is a linear transformation matrix in whidhrepresents the sampling time:

10dt0
01 0dt
0010
000

The observation;sk= [yx,yy] only contain information about the position ofexgon, so velocity

has to be estimated from previous measurementsTh@]velocity is related to the object

position as'xk=(xk—xk_1)/dt for each sampling intervdt. However, since the PHD filter does

not perform inter-frame person association, veyositsampled from a zero-mean Gaussian prior

distributiony\/(O,ZX) with diagonal covariance.

The observations are related to the state of apeatate by means of a linear transportation
matrix G plus Gaussian observation nov'/f(e

1000
G= [ 0100}



a. Indoor Tracking With Occlusions

In the first experiment, the indoor tracking vadesequence from the VISOR

datasethttp://imagelab.ing.unimore.it/visgrns used to illustrate the proposed technique for

tracking with occlusions. A temporal Gaussian backgd model using the parameters specified

in Table 1 was used for generating the foregrodadsh

Parameter Value
Frame bifer (frames) 30
Learning rate 0.75

Table 1. Parameter settings for the backgroundactixin model

The SMC implementations of the PHD filter and theFBD and TF-PHD smoothers are used to
recursively estimate the number of persons and kbeations. Parameters for the filter are shown
in Table 2 and the cardinality estimates are shioviigure 6. The PHD filter is not able to
correctly estimate the number of persons in thegiree of occlusions (frame 287 of the
sequence). Because there are no detected perskas i@@issed detections), the PHD filter
estimate is strongly biased to the error, leavihgaticles with negligible weights [41]. The FB-
PHD smoother is able to alleviate thifeet in a backward pass (see Figure 2(a)). Howévisr,

is not the case for the TF-PHD smoother which akss the observations in order to compute the

backward estimate.

Parameter Value

Number of particles per target 1000

Poisson clutter rate (per unit | 5e-5

value)

Poisson birth rate (per unit le-5
value)
uniform spatial clutter density | U ([1, 352] x [1, 288])
uniform spatial birth density | U ([1, 352] x [1, 288])

initial Poisson birth rate 3




target process noise diag(15, 15, 3, 3)
target observation noise diag(10, 50)
target survival rate 1

target detection rate 0.99

Table 2: Parameter settings for the PHD filter andather.
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{a) FB-PHD smoother (b) TF-PHD smoother
Figure 2: Cardinality estimates for the PHD filtadamoother. The PHD filter (plotted in dashed
lines) fails to estimate the number of personfiengresence of occlusion in frame 287. The FB-
PHD smoother is able to recover from the error lraekward pass, but this is not the case for the
TF-PHD smoother.

Figure 3 shows the Monte Carlo approximation ®RiD filter for the frame number 67 of the
sequence. Location estimates are then obtainegiby alustering techniques and the number of
clusters corresponds to the PHD cardinality esesiaBoth PHD smoothers are able to reduce

uncertainty by means of removing spurious samptes the forward pass (see Figures 3(b) and

3(c)).
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Figure 3: (a) Particle approximation the PHD fiiteframe 67. (b) and (c) Reduced uncertainty
in frame 67 using the TF-PHD smoother and FB-PHDahrer. (d) Particle approximation the
PHD filter in frame 287 with occlusion. (e) the THHP smoother sffers from the missed

detection problem. (f) the FB-PHD smoother solesdcclusion problem.
b. People counting and tracking in crowded envirents

In this worked example, the practical implicatiaisising the PHD filtering in human tracking in
real world surveillance scenarios are studied.tkair purpose, a benchmark pedestrian database
is used which is publicly available for testing nalgorithms in crowd analysis. The UCSDPEDS
(http://www.svcl.ucsd.edu/projects/peoplecnt/) datacontains several videos of pedestrians
taken from a stationary surveillance camera. Theas are 8-bit gray scale, with dimensions
[238 x 158] at 10 frames per second. We focus emp#rsons counting and tracking task and the
worked examples will show the PHD performance fiis tase. Figure 3 shows an example of a

particular scene from the dataset.



Figure 3: Crowded scenario with multiple peoplekiag in different directions. A single
camera captures images at 10 frames per secorntti@gdal is to track and count individual

persons

Multiple observations from a single person causgdver-segmentation would cause problems
in multi-target tracking methods. Moreover, incatrperson detections would worsen the SNR
ratio, deteriorating the performance of the filtarFigure 4 (frame 20 of thedf1 33 001.y
sequence of the dataset), the ellipses are usatttose detected persons and due to the under-
segmentation problem, a group of pedestrians iesepted by a single target. Furthermore,
because no person recognition has been perforimeéstimates are not sensitive to the area
occupied by a single person. Therefore, as a coeseg of a poor SNR ratio, cardinality and

state estimates becomes susceptible to under-séagioarand over-segmentation issues.
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(b)Y TF-PHD smoother

Figure 4: Particle PHD filter and TF-PHD smoothdimeates for frame 20.

Also, since the PHD filter does not perform any desociation, the assessment of
the error on individual person locations and velesiis not straightforward, requiring
an additional step. Parameters for the PHD filter @noothers are shown in Table
3.

Parameter Value

Number of particles per target 150

Poisson clutter rate (per unit | le-4

value)

Poisson birth rate (per unit le-5
value)
uniform spatial clutter density | U ([1, 238] % [1, 152])
uniform spatial birth density | U ([1, 238] x [1, 152])

initial Poisson birth rate 10

target process noise diag(5, 5, .1, .1)
target observation noise diag(8 4)

target survival rate 0.95

target detection rate 0.95

Table 3: Parameter settings for the PHD filter andather.



A person with a bicycle has larger area than tipeeted average, and as a result over-
segmentation causes the PHD filter in Figure 4(&)dorrectly estimate the number of targets in
that area. Nevertheless, the TF-PHD smoother iarEig(b) is able to give an improved estimate

in the region containing a single person.

The estimated number of targets in the backwalisteess sensitive to fluctuations in the
number of observations (see Table 4). Since essratd ground truth might havefdrent
cardinalities, the OSPA error is used for comparigorposes [36,37]. Figure 5 shows the
estimated number of persons for the PHD filter amtth Bmoothers for the first 50 frames of the

sequence.

Error PHD FB-PHD TF-PHD
RMS 2.23 1.62 1.53
OSPA (EM) 1.61 1.61 1.60
OSPA (Gibbs 1.61 1.62 1.61
sampler)

Table 4: OSPA error (with parameters p=2,c=2) fier PHD filter and fixed-interval smoothing

for visual tracking.



(a) FB-PHD smoother (b) TF-PHD smoother

Figure 4: Crowd counting estimates using the PHPriilg and smoothing. Both, the
TF-PHD and the FB-PHD smoothers give an improvéithese of the number of targets.

Person locations that are incorrectly addressedaloardinality errors (wrongly estimated
number of persons in the crowd) in the forward gassbe re-estimated in a backward pass.
However, since re-sampling was performed in bapstit is more challenging for the PHD
smoothers to provide improved location estimatesthiérmore, since the PHD filter proposes
individual samples for each person, location edare not sensitive to inter person distances.
This issue is also inherited by particle PHD smerghso location estimatesffar from the same
problem. Figure 5 shows the PHD filter, the FB-PHd the TF-PHD smoothers using the EM
algorithm and the Gibbs sampler in frame 14 ofdamset.
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Figure 5: Particle approximations for frame 14haff pedestrian tracking sequence. Location
estimates from the PHD filter §ars from an incorrectly estimated number of persSigce the
Gibbs sampler is less sensitive to the initial ¢bows, it manages to allocate person locations
more accurately and with less variance than thealg)drithm. Monte Carlo approximations by

means of the FB-PHD and the TF-PHD smoothers peovigbroved estimates over the PHD

filter alone.



Now the performance of the PHD smoothing approacthe sequencédfl 33 001.y using
fixed-lag implementations is analyzed. As opposdikaal-interval, fixed-lag implementations
can be implemented in real time using a small {ege Four diferent time lags are considered
and Table 5 shows the performance of the TF-PHDia@dB-PHD smoothers when the EM
algorithm and the Gibbs sampler are used for sistiemation. In this case we expected to have a
large number of outliers in the estimated locatiditerefore, in order to measure the
performance of smoothing over filtering, we chodee@SPA metric to be less sensitive to

outliers.

Error PHD FB-PHD TF-PHD
Fixed—lag (1 time step)
RMS 2.62 211 2.11
OSPA(EM) 1.60 1.61 1.61
OSPA(Gibbs) 1.60 1.60 1.60
Fixed—lag (2 time steps)
RMS 2.26 2.04 2.02
OSPA(EM) 1.60 1.59 1.60
OSPA(Gibbs) 1.62 1.59 1.60
Fixed—lag (3 time steps)
RMS 2.26 1.88 1.86
OSPA(EM) 1.60 1.57 1.57
OSPA(Gibbs) 1.62 1.58 1.59
Fixed—lag (5 time steps)
RMS 2.26 1.83 1.81
OSPA(EM) 1.60 1.57 1.57
OSPA(Gibbs) 1.62 1.57 1.57

Table 5: Cardinality and OSPA (c=2,p=2) error fog PHD filter and smoothers for visual

tracking



Increasing the time-lag improves performance, bcam be seen that the OSPA error for both

EM and Gibbs sampler estimation converges at tages|

VI.  CONCLUSIONS

An important remark on PHD filter for visual tracginan be discussed in terms of whether
measurement-to-measurement and measurement-toasackiations are available or not. If a
particular tracking scenario in consideration abaws to concatenate multiple single target filters,
then standard multi-hypothesis approach will penfeeamlessly without any distributional
assumption (e.g. first-order moment approximatiodsjvever, if we cannot override clutter
using gating techniques or we cannot distinguigtvéen a new-born or an existing target, the
algorithm would potentially end up having a comiameal explosion in the number of

association hypotheses.

The PHD filter was originally conceived in a somettbifferent scenario, where the expected
value of the unknown number of targets is calcudldtg estimating the ratio of false
measurements and the likelihood of a single taath modeling is useful in highly cluttered

environments with targets having large signal-ts@aeatio.

This setup is not always well suited in visual kiag, where the first-order moment
approximation has an adversariffeet in the estimation procedure which cannot alvseys
alleviated in a backward pass. Nevertheless, weodstrated the benefits of two PHD smoothing
techniques for estimating person locations. Funti@k will consider integrating person
detection schemes into the PHD filter. Using thigrapch, the likelihood of a single person
would not only consider the false alarms ratio dlab the geometry or the shape of each person
being also defined by random parameters. Moreavierstochastic model would also allow
departing from the first-order moment approximatmithe posterior, including persons

interactions and larger occlusions.
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