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Abstract

Engineers have for some time known that singularities play a significant role
in the design and control of robot manipulators. Singularities of the kinematic
mapping, which determines the position of the end–effector in terms of the manipu-
lator’s joint variables, may impede control algorithms, lead to large joint velocities,
forces and torques and reduce instantaneous mobility. However they can also en-
able fine control, and the singularities exhibited by trajectories of the points in the
end–effector can be used to mechanical advantage.

A number of attempts have been made to understand kinematic singularities and,
more specifically, singularities of robot manipulators, using aspects of the singularity
theory of smooth maps. In this survey, we describe the mathematical framework
for manipulator kinematics and some of the key results concerning singularities.
A transversality theorem of Gibson and Hobbs asserts that, generically, kinematic
mappings give rise to trajectories that display only singularity types up to a given
codimension. However this result does not take into account the specific geometry of
manipulator motions or, a fortiori , to a given class of manipulator. An alternative
approach, using screw systems, provides more detailed information but also shows
that practical manipulators may exhibit high codimension singularities in a stable
way. This exemplifies the difficulties of tailoring singularity theory’s emphasis on
the generic with the specialized designs that play a key role in engineering.
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1 Robot Manipulators

The International Federation for the Promotion of Mechanism and Machine Science [47]
has defined a mechanism to be “a system of bodies designed to convert motions of, and
forces on, one or several bodies into constrained motions of, and forces on, other bodies”;
a robot is a “mechanical system under automatic control that performs operations such
as handling and automation”, while a manipulator is a “device for gripping and the
controlled movement of objects”. More comprehensively, the International Organisation
for Standardisation (ISO) [46] defines a manipulator to be “a machine, the mechanism of
which usually consists of a series of segments, jointed or sliding relative to one another, for
the purpose of grasping and/or moving objects (pieces or tools) usually in several degrees
of freedom. It may be controlled by an operator, a programmable electronic controller,
or any logic system (for example cam device, wired, etc.)”. Certainly these definitions
are necessarily imprecise, but we can construct succinct mathematical descriptions that
capture the important aspects of robot kinematics and dynamics. These must capture the
relationship between inputs and outputs so, in their simplest form, consist of a function,
the kinematic mapping, between a manifold of inputs and the manipulator’s configuration
space.

Typically, the component bodies or segments of a robot manipulator are rigid, or at least
can be treated as such for the purposes of kinematic analysis. Each can be furnished
with an orthonormal coordinate frame. One component is usually designated as the base
and assigned a fixed coordinate frame, though, for some problems, it may be preferable
to regard all components as mobile relative to an ambient coordinate frame. Of primary
interest in most problems is the motion of the end-effector—the grasping component, or
component to which the operative tool is attached. Its pose (position and orientation)
relative to the base can be described by a Euclidean isometry mapping its coordinate
frame to that of the base.

The components of a manipulator are connected by joints of various kinds: revolute (R),
slider or prismatic (P), screw or helical (H), ball or spherical (S), planar (E). This is
not an exhaustive list but these and other joints all arise from the contact of surfaces
(lower kinematic pairs), or curves and points (higher kinematic pairs) in the components.
The classic book of Hunt [45] provides an engineering perspective. Those joints which
are subject to an input (e.g. via a servo-motor) are termed actuators, while others are
passive joints. The R and P–joints are simplest to engineer and their kinematic analysis is
generally more straightforward. Nearly all practical manipulators use these as actuators.
Some of the other joints can be synthesized by means of combinations of R and P joints. A
universal (U) joint is a combination of 2 R–joints with intersecting axes while a spherical
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joint can be synthesized by 3 R–joints and both occur frequently as passive joints.

The global architecture of a manipulator (or any rigid–body mechanism) may be partially
encoded combinatorially by means of a graph whose vertices are the components and
edges denote a joint between components or, dually, with vertices the joints and edges the
components (see, for example, [17]). Additional information is required to fully specify
the robot. This information is partly topological—the nature of each joint, including its
number of degrees of freedom (dofs)—and partly geometric, namely the design parameters
that specify the size and relative placement of the components and joints.

A mechanism whose graph is a path is called a kinematic chain and a manipulator with
this architecture is called serial. Related to serial manipulators are those whose graph is a
tree, a class that includes most robot hands having fingers or other gripping mechanisms.
In such manipulators, all joints are actuated.

Parallel mechanisms are those in which the end-effector, usually called the platform in
this context, is connected to the base by two or more independent kinematic chains [67].
Typically, only some of the joints in each chain are actuated and if this number is 1,
the mechanism is called fully parallel, otherwise hybrid parallel. In particular, the graphs
of parallel mechanisms contain cycles which impose equational constraints on the joint
variables.

An important question regarding parallel mechanisms is to determine their mobility. This
can be determined in the generic case from the graph using the Grübler–Kutzbach mobility
formula [45] for a spatial mechanism with n components, g joints, the ith joint having fi

dof, i = 1, . . . , g:

M = 6(n− g − 1) +

g∑
i=1

fi. (1)

The mobility M represents the number of inner degrees of freedom of the mechanism as a
whole. An extension of this formula that takes into account symmetries has recently been
derived [40]. For planar and spherical mechanisms, for example, one needs to replace 6 in
(1) by 3, the dimension of the relevant isometry subgroup. The mobility also tells us the
number of joints that need to be actuated. Note however that we provide a more precise
definition of mobility in the next section.

2 Geometry of Manipulator Kinematics

We will assume that our manipulators consist of rigid bodies connected by standard joints,
operating in 3–dimensional Euclidean space. The Euclidean group of isometries, SE(3) is
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isomorphic, via choice of coordinates in the moving and fixed spaces, to the semi-direct
product of the proper rotation group SO(3) and the additive group of translations, R3. In
this form the elements of SE(3) are pairs (A, a) ∈ SO(3)nR3, A a 3×3 orthogonal matrix
with determinant +1 and a a 3–vector. The group product, representing composition of
isometries, is

(A2, a2) · (A1, a1) = (A2A1, A2a1 + a2).

The group acts on R3 by
(A, a).x = Ax + a

and we can regard this is a map from the end–effector coordinates to base coordinates,
describing the pose of the end–effector.

The Euclidean group is a 6–dimensional Lie group. Pure translations form a 3–dimensional
normal subgroup R3, and the set of rotations about any point of R3 is also a 3–dimensional
subgroup isomorphic to SO(3). Two–dimensional Euclidean and spherical motion can
both be regarded as special cases since the relevant isometry groups, SE(2) and SO(3)
are (3–dimensional) subgroups of SE(3). The connected Lie subgroups of SE(3) have
been classified by Hervé [42] (and in a different setting by Beckers et al [4]) and play an
important role in mechanism theory.

Note that SE(3) is also a linear algebraic group that may, for example, by defined as a
real algebraic variety in R12 (representing 9 entries in a 3 × 3 matrix A and a 3–vector
a) by means of the equations AtA = AAt = I, A = adjA. Lazard [55] introduced this
approach to analyze poses of the Gough–Stewart platform described below.

Elements of SE(3) may be represented or parametrized in various forms [8, 60, 73]. For
example, the rotation component can be described by

• Euler angles (φ, θ, ψ), representing successive rotations about specific axes, so that

A =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


This can also be written as a product of exponentials: exp(ψZ) exp(θX) exp(φZ),
where X and Z are elements of the Lie algebra so(3).

• Rodrigues parameters, writing A = (I −B)−1(I +B), B skew-symmetric.

• Unit quaternions q = c0 + c1i+ c2j + c3k ∈ H, which form a double cover of SO(3)
and act on R3, embedded in H as the pure imaginary quaternions, by x 7→ qxq̄
(where q̄ denotes the quaternionic conjugate formed by negating the imaginary part
of q).
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The last of these extends to representation of elements of SE(3) by Clifford’s dual quater-
nions, q + εp, where q, p are unit quaternions and ε2 = 0.

An important observation is that the relative displacements permitted by the various types
of joints are represented, for a choice of coordinates in each of the connected components,
by subgroups of SE(3), which are embedded analytic submanifolds whose dimensions are,
by definition, the number of degrees of freedom of the joints. In particular, the motions
defined by R, P and H–joints are its 1–parameter subgroups.

The terminology for describing the kinematics of manipulators is not standardized. The
following definitions are adapted from those used by the Parallel Mechanisms Information
Centre [67].

Definition 2.1. Given two rigid bodies B1 and B2, equipped with choices of orthonormal
coordinates and connected by a joint J , the joint space of J is the submanifold of SE(3)
corresponding to the set of possible displacements of B2 relative to B1.

The joint space PR of a robot manipulator R is the product of the joint spaces of all its
joints, its articular space QR is the product of the joint spaces of its actuated joints. Its
configuration space is the subset MR = f−1(c) ⊆ PR of attainable values for the joint
variables, where f : PR → Rk is a function determining the constraints.

The kinematic mapping for R, with an identified end–effector or platform B carrying
an orthonormal coordinate frame, is the function λ : MR → SE(3) which to each attain-
able set of joint variables assigns the pose of B. The workspace WR ⊆ SE(3) of R is
the image of the kinematic mapping. In the case that MR is a manifold, its dimension is
the mobility of R.

Given a point w in the end–effector, the evaluation map of w is the smooth function

ew : SE(3) → R3, (A, a) 7→ Aw + a

The trajectory of w under the kinematic mapping λ is the smooth function

τw = ew ◦ λ : MR → R3.

Note that if one treats SE(3) as an algebraic group then, for manipulators with R, P and
S–joints, MR is a subvariety, even in the singular cases, so the mobility can be defined
via the dimension of that variety.
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Rk

M

πM

Q SE(3)

λ

⋃P f

ew R3
(2)

The relation between the joint, articular and configuration spaces (the subscript R has
been suppressed) is illustrated in (2), where πM : M → Q denotes the restriction to M of
the projection from the joint space to the articular space. The broken arrows between Q
and SE(3) indicate the two fundamental relationships that underlie the control and use
of manipulators. The arrow Q→ SE(3) denotes the forward (or direct) kinematics of the
manipulator. If it is possible to find such a function then it determines the configuration
of the end–effector for a given set of joint variables. The arrow SE(3) → Q is the
inverse kinematics of the manipulator, which determines the joint variables required for
a given pose of the end–effector. Where distinct points in M give rise to the same pose,
the mechanism configurations are sometomes referred to as postures. The presence of
singularities in either or both of λ and πM obstructs the existence of global inverse or
forward kinematics.

Topologically, the joint space for an R–joint is a circle S1 and for P and H–joints an
embedded real line R. The joint space of an S–joint is an embedded SO(3). In practice,
there may be physical limitations to a manipulator, restricting the effective joint space of
each joint to some subset, say an interval. However to simplify the mathematical analysis
we will assume the joint space to be the entire subgroup.

Hence, the joint and articular spaces of a robot manipulator are also smooth manifolds.
However whether the configuration space is a manifold will depend on whether the con-
straint function f is submersive along f−1(c), and that may depend on the design param-
eters.
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3 Three Classes of Manipulator

3.1 Serial manipulators.

For a serial manipulator, every joint is actuated so, ignoring any engineering limitations
on joints, the joint space, articular space and configuration space coincide. That means
the left-hand side of (2) collapses and the forward kinematics is simply the kinematic
mapping. In all standard industrial manipulators the joints are either R or P so the
configuration space M is a product of a generalized torus T r = S1 × . . . × S1 (r copies)
and a Euclidean space Rp. We will see shortly that the kinematic mapping is analytic,
so in order for the workspace to have non-empty interior (the end–effector has maximum
freedom of translation and orientation) we require the mobility m = r+p ≥ 6. If equality
holds the manipulator is called non-redundant, while if m > 6, it is called redundant.

B0

θ1

J1

θ2

J1

θ6

B6

Figure 1: Serial manipulator

Associate a coordinate frame to each component and choose a ‘home’ configuration. Label
the components in order from the base B0, . . . , Bm and joints J1, . . . , Jm so that joint Ji

connects Bi−1 and Bi. In the home configuration the coordinates of these components are
related by an element Ui ∈ SE(3). Displacements arising from Ji form a one–parameter
subgroup which can therefore be written in the form exp(θiYi) for some Yi, i = 1, . . . ,m
in the Lie algebra se(3) (see Section 6). In particular, as was shown by Brockett [9], the
kinematic mapping (= forward kinematics) for the end–effector has the form:

λ(θ1, . . . , θm) = U1 exp(θ1Y1)U2 exp(θ2Y2) . . . Um exp(θmYm). (3)

Judicious choice of coordinates enables one to express the matrices Yi in a standard form
and the isometries Ui in terms of a small number of parameters defined by the manipulator
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geometry (Denavit–Hartenberg parameters—see, for example, [19,60,63]). Alternatively,
by choosing coordinate frames that coincide in the home configuration, U2 = · · · = Um = 1
(where we use 1 to represent the identity in the group) the kinematic mapping can be
expressed as a product of exponentials.

In practice, many industrial serial manipulators are wrist–partitioned. Orientation of the
end–effector is achieved by means of a 3R spherical wrist—that is, the 3 axes of rotation
intersect at a point, the wrist centre. Motion of the wrist relative to its centre can be
represented, for example, using Euler angles. Location of the wrist centre is achieved by
means of a 3–joint arm, often referred to as a regional manipulator having p = 0, 1, 2 or
3 P–joints and r = 3 − p R–joints. This partitioning simplifies singularity analysis as
discussed in Section 4.

3.2 Planar 4–bar mechanisms.

The study of the kinematics of mechanisms, dating back at least to Watt’s parallel mo-
tion [54] used for converting linear to rotary motion in steam engines, can be seen as a
forerunner of robot kinematics. A simple but informative example of a parallel mechanism
is provided by the planar 4–bar (classically referred to as the 3–bar) mechanism [34, 71],
of which Watt’s motion is an example. The mechanism (Figure 2) consists of 4 compo-
nents linked in a closed quadrilateral ABCD by revolute joints. Regard the base AD as
fixed. AB is referred to as the input bar, BC as the coupler bar and CD as the output
bar. The design parameters are the lengths of the 4 bars di, i = 0, 1, 2, 3. The planar
Grübler–Kutzbach formula confirms that the mobility of this mechanism is generically

M = 3(4− 4− 1) + 4 = 1.

The joint space is a 3–dimensional torus, parametrized by the angles (α, β, γ) and the
constraint equations, arising from the closure of the quadrilateral, are:

d1 cosα+ d2 cos β + d3 cos γ = d0

d1 sinα+ d2 sin β + d3 sin γ = 0 (4)

Gibson and Newstead [34] showed that the configuration space is indeed a 1–dimensional
manifold (diffeomorphic to either S1 or S1 × {0, 1}) so long as max{di : i = 0, 1, 2, 3} is
less than the sum of the other 3 sides and the Grashof condition

d0 ± d1 ± d2 ± d3 6= 0
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C

A

β

d0

Figure 2: Planar 4–bar mechanism

is satisfied. This can be readily derived from the constraint equations (4) via the Sub-
mersion Theorem (see, for example [36]).

In classical industrial applications, the actuated joint is at A and the output bar is the
end–effector. The restriction to MR of the projection of the joint space PR onto the
joint space of each joint is either onto, in which case the joint is called a crank, or not,
when it is a rocker. A crank–rocker (referring to the behaviour of the input and output
bars) enables conversion of rotary motion into rectilinear motion. However, from the
perspective of parallel mechanisms, it makes more sense to take the coupler bar BC as
the end–effector (platform). The kinematic mapping in terms of (α, β, γ) ∈ MR is given,
in one form, by

λ(α, β, γ) =

((
cos β − sin β
sin β cos β

)
,

(
a cosα
a sinα

))
∈ SE(2) ∼= SO(2) n R2,

but recall that the joint variables are constrained by (4).

3.3 The Gough–Stewart Platform.

Gough devised this famous parallel mechanism as a tyre–testing rig for Dunlop Tyres in
the 1950s [39]. A similar design was later proposed by Stewart for use as the platform for a
flight simulator [76]. MacCallion [59] first considered its use as a workspace manipulator.
The vertices of an equilateral triangle in the base are connected pairwise to those of a
similar triangle in the platform by articulated struts as in Figure 3. The 6 struts are
joined to the base by universal joints and to the platform by spherical joints and each
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has a single prismatic actuator enabling the strut length to be altered (Figure 3). The
platform is therefore a 6-UPS mechanism. This architecture is also called an octahedral
hexapod. In greatest generality, the 6 struts may connect arbitrary points in the base
and platform. Between these extremes are numerous architectures embodying different
degrees of symmetry. In fact, the original platform properly has planar hexagonal base
and platform, each with triangular symmetry. A brief history of such mechanisms can be
found in Bonev [7] and a recent review of the theory is in [18].

U

P

S

Figure 3: Gough–Stewart platform

The Grübler–Kutzbach formula predicts that such structures generically have mobility 6
(there are 14 links: 6× 2 in the struts, plus base and platform; 6× 3 = 18 joints having
6× 6 = 36 degrees of freedom). Realizing this result in terms of Definition 2.1 is a little
harder. It is simpler to replace the configuration space M by M̃ , defined to be the subset
of (R3)3 × R6 ∼= R15 representing the 3 sets of coordinates for platform vertices together
with the variable strut lengths, subject to 3 independent equations fixing the distances
between the vertices and 6 equations relating the coordinates to the strut lengths in terms
of the base joint coordinates. The Submersion Theorem gives mobility 6. In fact, it is
clear that M̃ is diffeomorphic to SE(3) since there is a correspondence between platform
poses and feasible coordinates for the joints. The relation between M and M̃ is less clear
since it is possible that a family of joint coordinates all give rise to the same pose. (This
occurs, for example of the UPS struts are replaced by SPS struts, in which case the struts
are free to rotate about their axes in any pose.)

If we allow the replacement of M by M̃ in (2), then the right-hand side of the trian-
gle collapses and the inverse kinematics are well defined. The forward kinematics of the
Gough–Stewart platform has attracted interest amongst both kinematicians and mathe-
maticians. Methods from topology and algebraic geometry have been used to show that
for a given set of actuator variables there may be up to 16 poses for the platform in the
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architecture described here (40 for the general architecture). This number depends on
both the actuator variables and the design parameters and a full understanding of the way
in which the number changes presents a highly technical challenge in singularity theory
and topology. (For more detail, see [55,61], for example.)

4 Instantaneous Kinematics and Singularities

While singularities have non-local implications for the control and use of manipulators,
they arise as local or instantaneous phenomena from the rank deficiency of a derivative.
The diagram (2) illustrates that this may occur in a number of ways in relation to manip-
ulators. For serial manipulators, it is the singularities of the kinematic mapping/forward
kinematics and trajectories that are of interest, whereas for fully parallel manipulators it
is those of the constraint function defining the configuration space and of the projection
onto the articular space (inverse kinematics). The distinction between the classes of mech-
anisms in respect of their singularities was first recognized by Gosselin and Angeles [37]
and subsequently refined by Zlatanov et al in [88, 89]. Simaan and Shoham have used
their ideas to analyze singularities of hybrid serial/in–parallel mechanisms [74].

The importance of singularities from an engineering perspective arises for several reasons:

(a) Loss of freedom. The derivative of the kinematic mapping or forward kinematics
represents the conversion of joint velocities into generalized end-effector velocities,
i.e. linear and angular velocities. This linear transformation is generally referred
to as the manipulator Jacobian in the robotics literature. A drop in rank reduces
the dimension of the image, representing a loss of instantaneous motion for the end-
effector of one or more degrees. The proper setting for describing this is the theory
of screw systems, discussed below in Section 6, which is used in many papers in the
robotics literature, for example [58,77,82].

(b) Workspace. When a manipulator is at a boundary point of its workspace, the ma-
nipulator is necessarily at a singular point of its kinematic mapping, though the
converse is not the case. Interior components of the singular set separate regions
with different numbers or topological types of inverse kinematics. These are usually
associated with a change of posture in some component of the manipulator. There-
fore knowledge of the manipulator singularities provides valuable information about
its workspace [52].

(c) Loss of control. A variety of control systems is used for manipulators. Rate control
systems require the end–effector to traverse a path at a fixed rate and therefore
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determine the required joint velocities by means of the inverse of the derivative of the
(known) forward kinematics. Near a singularity, this matrix is ill-conditioned and
either the control algorithm fails or the joint velocities and accelerations may become
unsustainably great. Conversely, force control algorithms, well-adapted for parallel
manipulators, may result in intolerable joint forces or torques near singularities of
the projection onto the joint space.

(d) Mechanical advantage. Near a singular configuration, large movement of joint vari-
ables may result in small motion of the end–effector. Therefore there is mechanical
advantage that may be realised as a load-bearing capacity (interesting examples in
human activities are presented by Kieffer and Lenarc̆ic̆ [53]) or as fine control of
the end–effector (an example of a telescope-focussing device is given by Carretero
et al [12,13]). Another aspect of this is in the design of mechanisms possessing tra-
jectories with specific singularity characteristics. In traditional 1–dof mechanisms
(such as the planar 4–bar) a cusp singularity provides ‘dwell’—the trajectory is close
to stationary for a period of time allowing some step in a production process to be
performed [44]. A higher–dimensional example is the use of a corank 3 singularity
by the remote centre compliance device [64, 83,86] (see also Section 7).

The following theorems are central examples illustrating the necessity of singularity analy-
sis for serial and parallel manipulators. The following result of Gottlieb [38], also discussed
in [2], is for the forward kinematics of serial manipulators.

Theorem 4.1. For any serial manipulator with configuration space M = T p×Rn−p with
n ≥ 6, the kinematic mapping λ : M → SE(3) possesses singularities.

The proof is based on the observation that if there were no singularities then λ would be
a submersion, giving rise to a fibration of Rn (the universal covering space for M) over
SO(3). But this is ruled out on topological grounds. Moreover, it is not possible globally
to avoid singularities by introducing redundancy in the manipulator. That is, for n > 6
there is no continuous function θ : SE(3) →M such that λ(θ(X)) = X.

There has been extensive analysis of the actual singularity configurations for industrial
robot manipulators. Wang and Waldron [82] analyzed the general 6–dof serial manipula-
tor using screw theory (see section 6) and showed that the singularity field (set of singular
configurations) is independent of the joint variables θ1 and θ6. Litvin et al [57, 58] ex-
plicitly examined 6R manipulators and showed that there were three sets of singularities
relating to different configurations, subsequently dubbed wrist, elbow and shoulder sin-
gularities. Stanĭsić and Engelberth [75] looked at wrist-partitioned manipulators, where
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the Jacobian determinant factors into one component for the wrist and one for the arm
subassembly. They showed that there are surfaces in R3, dependent on the manipulator’s
configuration, such that when the wrist centre lies on them then the manipulator is in a
singular configuration. The surfaces themselves are determined by the associated screw
system of the arm subassembly in its current configuration, described in further detail in
Sections 6 and 7.

In [78, 79], Tchoń and Muszynski sought to characterize serial manipulator singularities
by finding normal forms with respect to A–equivalence (right–left equivalence). They
showed that among corank 1 singularities (i.e. away from intersections of the singular
surfaces), the elbow and shoulder singularities are folds and hence stable, but the wrist
singularities have infinite A–codimension (‘differential degree’ in their terminology).

In relation to fully parallel manipulators of the Gough–Stewart kind, Merlet [61] showed
the following:

Theorem 4.2. The inverse kinematics of a 6-UPS parallel mechanism are singular if and
only if the lines spanned by the 6 struts are linearly dependent.

This follows because the rows of the inverse Jacobian can be shown to be the Plücker line
coordinates of the struts. Again this is closely linked to the theory of screw systems.

It is worth noting here that for parallel manipulators, the full joint space is important
for singularity analysis, since there may be configurations for which platform motion is
possible because of passive joint velocities. This was originally observed by di Grego-
rio and Parenti-Castelli [20] and has been the subject of further exploration, under the
terminology constraint singularities by Zlatonov et al [87].

5 Genericity and Transversality Theorems

5.1 One-genericity

A general theory for kinematic mappings λ can be set up by considering spaces of smooth
(or analytic) mappings C∞(M,SE(3)) where M is the configuration space of a manip-
ulator or, locally, germs of such mappings. The Whitney Immersion Theorem (see, for
example, [36]) assures us that for manipulators with up to 3 dof, there is an open and
dense set of mappings that are immersions (and if M is compact, then this is true for 1–1
immersions). In practice, we are frequently interested in cases where dimM ≥ 6, and for
dimension 4 and upwards singularities will occur stably.
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Several authors have sought to identify generic properties for kinematic mappings—that
is, properties possessed by a suitably large subset, say open and dense, or at least residual.
A starting point is usually to identify relevant submanifolds of a jet bundle Jk(M,SE(3))
(or multi-jet bundle) and require transversality to these for the associated jet extension.
Then the Thom Transversality Theorem [36] guarantees genericity.

Pai and Leu [65] adopt this approach, using the stratification of the 1–jet bundle by corank,
that is Σr = {σ ∈ J1(M,SE(3)) : corankσ = r}. A kinematic mapping transverse
to this stratification is called 1–generic. They analyze the standard architectures for
serial manipulators from this perspective, distinguishing the orientation singularities of
the wrist from the translational singularities of the regional manipulator, by composing
the kinematic mapping with projection onto its components. In the case of translations,
this projection is coordinate dependent and amounts to analyzing the trajectory of the
wrist centre. The singular point set in the joint space is always invariant under rotation
about the first axis. Hence, in the generic case where Σrλ = (j1λ)−1(Σr) can only be
non-empty for r = 0, 1, the singular point set can be identified with a union of circles in
the 2–torus corresponding to θ2, θ3 in equation (3). This led Burdick [11] to propose a
classification of 3R regional manipulators with generic kinematic mapping based on the
homotopy class(es) of the components of Σ1λ.

Subsequent work by Wenger et al [1,84,85] resolved some conjectures of Burdick concern-
ing 3R manipulators. In particular, they showed that the presence of a cusp singularity,
that is Σ1,1 in the Thom–Boardman classification, is a necessary and sufficient condi-
tion for the existence of a path in the configuration space realizing a change of posture
without encountering a singularity. This is an interesting result in the area of singularity
avoidance, which is concerned with the topology of the singularity field.

5.2 Trajectory singularities and a transversality theorem

A deeper approach was pursued by Gibson et al. They sought to examine the relation
between the kinematic mapping λ = (A, a) and its family of trajectories

τλ = ew ◦ λ : M × Rp → Rp, (x,w) 7→ A(x)w + a(x)

for planar (p = 2) and spatial (p = 3) kinematics. The key result is the following theorem
of Gibson and Hobbs [28]. For integers k, r ≥ 1, there is a multijet extension

rj
k
1 τλ : M (r) × Rp → rJ

k(M,Rp)

where 1 means take jets w.r.t. first component only. This map assigns the k–jets of the
p–parameter family of trajectories to a set of r distinct configurations in M .
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Theorem 5.1. Given a finite stratification S of the multijet bundle rJ
k(M,Rp), the set

of λ ∈ C∞(M,SE(p)) such that rj
k
1 τλ is transverse to S is residual.

The original proof followed that of Wall [81] for singularities of projections of generic
immersions; a simpler proof, using the fact that the evaluation map is a submersion,
follows from a theorem of Montaldi [62] on composite maps. Note that this, in some sense,
subsumes Pai and Burdick’s approach for regional manipulators, since that concerns the
wrist–centre trajectory, by taking r = k = 1 and S the corank stratification. The theorem
underpins a programme, described in [26], for exploring singularities of trajectories.

• Classify A-types of multigerm singularities up to relevant codimension. Subject
to amalgamating orbits with moduli, this typically provides an A–invariant finite
stratification of the multijet bundles.

• Transversality imposes constraints on codimension of strata that can be encountered.
Gibson and Hobbs [28] show that the requirement for a non-stable multigerm with
A–modality m to occur transversely is that its Ae–codimension is ≤ dimM +m.

• Versal unfoldings of these singularity types give local models for the bifurcation sets
in Rp.

In a sequence of papers [25,27–31,33,41,43], Gibson and co-workers filled out details of this
programme for planar and spatial motions up to 3–dof, in the process generating new lists
of (multi-)singularities of maps between spaces of dimension up to 3. It was shown in [25]
that the stable singularity type of the kinematic mapping germ itself imposes restrictions
on the singularity type of its trajectory germs. However the A–classification of map-
germs becomes computationally harder as the number of degrees of freedom increase.
For example, there are more than 50 classes up to Ae–codimension 3 for 3–dof spatial
motions [41].

5.3 Problems with genericity

There is a fundamental difficulty with the genericity approach. The idea of genericity is
to identify properties of mappings that are typical among all such mappings. The space
C∞(M,SE(3)) is infinite-dimensional. However in robotics one is almost always concerned
with a specific class of manipulators defined by a finite number of design parameters. It
is by no means sure that this finite–dimensional space will lie in such a way that a given
property that is generic in C∞(M,SE(3)) will remain so on restriction to the subset. One
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can use the Elementary Transversality Theorem [36] in this setting but that is likely to
require explicit calculation of transversality, stratum by stratum.

For serial manipulators, the design parameters can be chosen to be Denavit–Hartenberg
parameters. Pai and Leu showed explicitly that within this parameter space, all the
standard regional manipulator architectures (i.e. with a combination of 3 R or P joints)
and orientation (wrist) architectures have an open and dense set—the complement of an
analytic function in the parameters—of 1–generic mappings.

However even in one of the simplest cases involving parallelism, coupler curves of planar 4–
bar mechanisms, it has not yet been established that the restricted version of the Gibson–
Hobbs Transversality Theorem holds, the remaining obstruction being the monogerm
stratum of A4 singularities (ramphoid cusps) [14].

A second drawback is that these approaches do not explicitly take into account the struc-
ture of SE(3) or its tangent spaces. In a singular configuration we are interested not only
in the dimension of the image of the derivative but also in how it lies with respect to that
structure.

Finally, it is important to note that from an engineering perspective it is often advanta-
geous to use special, that is non-generic, architectures in order to achieve desirable motion
characteristics. One example is the emphasis on wrist-partitioned serial manipulators with
only R and P joints. Another example is the interest in so-called over-constrained struc-
tures, where the mobility exceeds that predicted by the Grübler–Kutzbach formula. A
well-known example is the Bennett mechanism [5,6], a closed 4–link kinematic chain with
1 dof, though the formula predicts that spatial closed chains with up to 6 links should
be rigid. The study of singularities is relevant to over-constrained mechanisms because
their motion can be regarded as a motion contained entirely within the subset of singular
configurations of an associated open chain or serial mechanism (realised by unlinking one
of the joints). This approach to closed mechanisms is exploited, for example, by Lerbet
and Hao [56].

6 Screw Systems

Theorems 4.1 and 4.2 indicate the importance of the tangent spaces to the Lie group
SE(3) as either the range or domain of the relevant derivatives. The essential structure
is that of the Lie algebra se(3), which can be variously identified as the tangent space
to SE(3) at the identity, the space of one-parameter subgroups of SE(3) or the space of
Killing vector fields on R3 (see, for example, [72]). It inherits from the group structure
described in Section 1 the structure of a semi-direct product of the Lie algebras so(3) of
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the rotation group and t(3) of the translation group. Thus, elements may be represented
by a pair (B,v) ∈ so(3)n t(3) where B is a skew-symmetric 3×3 matrix and v a 3-vector.

If B has the form  0 −u3 u2

u3 0 −u1

−u2 u1 0


then it can be identified with the vector u = (u1, u2, u3)

t that (if non-zero) spans its
kernel. Thus elements of se(3) can be represented by 6–vectors (u,v). The orbits of the
associated Killing vector fields are illustrated in Figure 4.

Figure 4: Infinitesimal motions of se(3)

Following ideas in [21, 22], the following local equivalence was defined in [23], where it is
assumed that coordinates are chosen so that at the configuration x ∈ M , λ(x) = 1 (the
group identity).

Definition 6.1. Two kinematic mapping germs λi : M,x → SE(n), 1, i = 1, 2 are I-
equivalent if there exists a germ of a diffeomorphism φ : M,x → M,x and an element
g ∈ SE(n) such that

λ2 = g−1.(λ1 ◦ φ).g.

First-order invariants for I–equivalence arise from the adjoint action of SE(3) on se(3).
The Lie algebra has non-trivial radical (maximal solvable ideal) 1n t(3) so is not semisim-
ple. In particular its Killing form is degenerate and the polynomial invariant theory for
reductive algebras does not apply. Donelan and Gibson [23] determined generators for
the ring of invariant polynomials for the adjoint action of SE(n) and in particular:
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Theorem 6.2. The ring of invariant polynomials of the adjoint action of SE(3) on se(3)
is generated by the Killing form 〈u,u〉 and the Klein form 〈u,v〉.

This is a special case of the theorem of Panyushev for semi-direct products g n V with g

reductive [66].

The effect of φ in Definition 6.1 is that we are only interested in the subspace Txλ(M) ⊆
se(3), which can be regarded as an element of the Grassmannian of subspaces of dimen-
sion k = rankTxλ. Elements of the projective space P se(3) are called screws. Since the
invariants in Theorem 6.2 are both quadratic, their ratio h = 〈u,v〉/〈u,u〉 is a projective
invariant, called the pitch of the screw, and indeed it measures the displacement parallel
to the axis during one revolution, as in Figure 4 (a)(i). In the case u = 0, set h = ∞.

Since the adjoint action is linear it induces an action on the Grassmannians. The theory of
screws and screw systems was first developed extensively by Ball [3] and later revived by
Hunt [45]. Hunt put forward a classification scheme based on geometric and engineering
intuition. He noted that in engineering it was almost always the special systems that were
of interest. A mathematical foundation for the classification was provided by Gibson and
Hunt [32]. The principles underlying the classification, which is I–invariant, are the
following [23].

(a) P se(3) is partitioned by the pencil of quadric hypersurfaces of constant pitch:

Qh(u,v) = 〈u,v〉 − h〈u,u〉 = 0, h ∈ R ∪ {∞}.

where we use Qh to denote both the quadratic form and the associated hypersurface.
For h 6= ∞, Q∞ ⊂ Qh so properly we should use Q̃h = Qh − Q∞. For h 6= ∞
these quadrics have two rulings: by the α-planes, corresponding to the screws of
pitch h whose axes pass through a given point, and by the β-planes, corresponding
to those whose axes lie in a given plane. Q0 corresponds to the classical Klein
quadric, representing the set of lines in projective 3–space, in terms of Plücker line
coordinates, which the screw coordinates generalize. It plays a special role in that
its axis (see Figure 4 (a)(ii)) consists of instantaneously stationary points and these
are the only screws having such points.

(b) Classify screw systems of a given dimension by how they meet this pencil of quadrics:

(a) Type I systems do not lie wholly in a pitch quadric and type II do.

(b) Subtypes A, B, C, D are classified according to the dimension of their inter-
section with Q∞.

17



(c) Type I subclasses are further subdivided by the projective type of the pencil of
intersections. For example 3–systems intersect the pitch quadrics in a pencil
of real conics. Subtype IA systems can be distinguished by whether their three
principle pitches, corresponding to singular conics in the pencil, are distinct
(IA1) or whether two coincide (IA2).

(d) Further refinement is provided by the signs of the moduli such as principal
pitches [24], e.g. type IA+0−

1 denotes the subclass with principal pitches hα > 0,
hβ = 0 and hγ < 0.

(c) Each Qh derives from an associated bilinear form which gives rise to a polarity on
the set of screws: Qh($1, $2) = 0. Polarity with respect to Q0, called reciprocity,
has a particular physical significance in that screws can be used to represent both
infinitesimal motion and generalized force (force + torque). Reciprocity indicates
that a generalized force on a screw $1 produces zero rate of work on a body free
to move on screw $2. The set of screws S⊥ reciprocal to a k–system S is itself a
(6− k)–system, so one can deduce a classification of (6− k)-systems from that for
k-systems, k = 1, 2.

In [24], it is shown that all the classes described above are submanifolds in the relevant
Grassmannian and their adjacency diagrams are established. In particular:

Theorem 6.3. The Hunt–Gibson classification of screw systems and its refinement form
Whitney regular stratifications of the relevant Grassmannians.

The stratifications can be translated across the jet bundle J1(M,SE(3)), within motion
germs of each rank, to give a regular stratification. It follows from the transversality
theorem for stratified sets [35] that for a residual set in C∞(M,SE(3)) the 1–jet extension
is transverse to the stratification. In particular, generically, we only encounter screw
systems up to codimension dimM in the Grassmannian. For example, for dimM = 3,
type IA+0−

1 has codimension 1 so one would expect to find a surface in m along which the
screw system is of this type; but IIA0, which is an α–plane in Q0, has codimension 6 so
one does not expect to encounter this 3–system generically.

It should be noted that there exist other classifications, though essentially equivalent,
such as that of Rico Mart́ınez and Duffy [69,70] and there does not, at this stage, appear
to be an accepted standard.

The relevance of screw systems to the study of kinematic singularities is obvious. For
example, a 6–link serial manipulator is in a singular configuration precisely when the
screws defined by its joints span a screw system of dimension ≤ 5. Karger has written
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several papers [48–50] exploring the singularities of serial manipulators. Starting from the
product of exponentials formula (3), he highlights the connection with closed loops and
the significance of not only the screw system itself but also the Lie algebra it generates.

7 Instantaneous Singular Sets and Applications

The Transversality Theorem 5.1 indicates a connection between a kinematic mapping
λ and singularities of the associated family of trajectories τλ. However, the equivalence
relations do not preserve much of the rigid geometry that is an explicit feature of kinematic
mappings. On the other hand, I–equivalence does preserve this geometry so it is natural
to study trajectory singularities in the context of screw theory.

Definition 7.1. Given the germ of a motion λ : M,x → SE(n), 1, its instantaneous
singular set (ISS) at x is

Iλ,x = {w ∈ Rn : τλ,w singular at x}

where τλ,w = ew ◦ λ.

For example, for a 3R regional manipulator, the ISS in a given configuration is precisely
the union of singular surfaces identified by Stanĭsić and Engelberth [75]. Indeed, they
characterize these surfaces in terms of the principal pitches of the associated 3–system.
Their classification can be derived from the following [15] which applies to screw systems
of any dimension.

Theorem 7.2. Let λ : M,x → SE(3), 1 be a kinematic mapping germ with rank d and
let S be the associated screw system. For a point w ∈ R3 let Aw be the α–plane in the
Klein quadric Q0 representing the bundle of lines through w. Then w ∈ Iλ,x if and only
if S ∩ Aw has projective dimension ≥ max (0, d− 3).

This follows by applying the Chain Rule to τλ,w:

w ∈ Iλ,x ⇐⇒ rankTxτλ,w < min{d, 3}
⇐⇒ dim(imTxλ ∩ kerT1ew) > max{0, d− 3} (5)

and noting that the relevant subspaces correspond to S and Aw on projectivization. An
important corollary is that the ISS is the union of all the lines corresponding to points of
S ∩ Aw satisfying the condition of the theorem. Also, the affine dimension of the inter-
section in (5) is precisely the corank of the singularity of the trajectory of w. Moreover,
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it was also shown that the ISS of a screw system is identical to the ISS of its reciprocal
system.

It is a straightforward exercise to describe the ISS associated to a given class of screw
systems. In the simplest cases of a 3–system, IA+−−

1 , for example, the ISS is an elliptic
single-sheeted hyperboloid, and each point on it has a singularity of corank 1. For type
IA+0−

1 , where the intersection with Q0 is a line pair (singular conic) rather than a non-
singular conic, the ISS is an intersecting pair of planes and on the line of intersection there
are two distinguished points which have corank 2 singularities. For type IIA0, correspond-
ing to an α–plane of lines through a given point in R3, the whole space is singular but
the given point has a corank 3 singularity. From the point of view of singularity theory,
such a singularity is highly non-generic.

As a final application, we consider a family of parallel manipulators: those for which
three points on the platform are constrained to lie on three given surfaces (not necessarily
distinct), as in Figure 5. There are connections with the research of Pottmann and
Ravani [68] on the singularities of motions where the constraint is that one surface (e.g.
a milling head) is required to be in contact with another. However they use only the line
geometry relevant to screws of zero pitch rather than full screw systems.

Figure 5: Three–point constrained parallel manipulator and RCC

Examples are:

• the Darboux motion, described in [8], where three points in a body are constrained
to lie in three planes in general position
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• the telescope-focussing mechanism of Carretero et al [12,13], where three points on
the telescope mirror lie on 3 mutually intersecting planes

• a simplified model of the remote centre compliance device [86], illustrated, in which
the contact points are constrained to lie on symmetrically placed, congruent spheres.

It was shown in [14, 16] that the screw system in any given configuration is determined
by the surface normal lines at the contact points; thought of as screws of pitch 0, they
span the reciprocal system. It follows that the normal lines lie in the ISS of the reciprocal
system and hence the screw system of the motion itself. This enables us to deduce the
screw type from the geometric configuration of the lines. For example, if the normal lines
are mutually skew and their directions span R3 then the screw system type is IA++−

1 or
IA+−−

1 . If, however, the normals have independent directions but intersect in a finite
point then the type is IIA0.

Among all 3–dof motions one does not encounter type IIA0 transversely since it forms
a stratum of codimension 6. Moreover it is associated to the existence of a trajectory
of corank 3 and hence A–codimension at least 9 (sitting within a 3–parameter family of
trajectories). However, among 3–point constrained parallel motions we have the follow-
ing [16].

Theorem 7.3. Suppose a 3–point motion has a type IIA0 screw system. So long as a
simple transversality condition is satisfied, then there is an open neighbourhood of contact
triangles (and indeed of contact surfaces), containing the given motion, for which the
corresponding motion also has a type IIA0 screw system.

For a Darboux motion with acute contact triangle and for the simplified RCC, there exist
configurations at which the screw system is type IIA0 and the conditions of Theorem 7.3
are satisfied. Hence these can be regarded as stable occurrences, meaning that the class
of surface–constrained motions is not generic in the sense of Gibson and Hobbs.

A similar theorem holds also for type IIB0 3–systems, which also form a class of codimen-
sion 6. This includes the telescope-focussing device. However in that case the transver-
sality condition fails, meaning that the singular phenomenon being utilized is sensitive to
the design parameters of the mechanism.

8 Conclusion

Singularities are of great interest and importance in robot manipulator design and con-
trol. A number of attempts have been made to apply the methods and perspective of
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singularity theory. This has resulted in the discovery of some powerful general kinematic
theorems and, in some cases, a better understanding of the singularities of specific classes
of manipulators. However there is a tension between the engineering and mathematical
approaches. Many practical manipulators have special geometries that render statements
about generic situations inapplicable. In practice, one often focusses on the non-generic
cases, though here singularity theory can provide the right conceptual framework and
language and may provide standard local models of the bifurcation set within the manip-
ulator class.

There are several directions for future research in robot manipulator singularities that are
likely to be fruitful. These include:

• Further exploration of specific finite–dimensional classes of manipulators with a view
to finding transversality theorems in the spirit of, for example, [10].

• A more detailed understanding of the singularities of serial robot manipulators,
where the product of exponentials representation of the kinematic mapping high-
lights the important interaction with the Lie algebra structure of the screw space.

• Application of algebraic and semi-algebraic singularity theory to the study of parallel
manipulators where, frequently, the relevant constraints and mappings can be writ-
ten in polynomial form. This is linked to generalizations of Kempe’s Theorem [51]
that (arbitrary large sections of) every plane algebraic curve can be generated as
the output curve of a planar mechanism.

• The identification of higher order invariants of the adjoint action. For time depen-
dent motion these were developed by Veldkamp [8, 80]. These are also important
for understanding the differential-geometric properties of manipulator motions and
their trajectories.

• Exploration of the role of symmetry on manipulator singularities. Frequently, the
presence of symmetries can give rise to unexpected singularity types. For example,
most of the known over-constrained closed loop mechanisms possess symmetries and
Z2–symmetries arise where mechanisms have up–down poses arising from consecu-
tive revolute joints.

• Extension of existing results on singularity avoidance through determination of the
topology of the sets of singularities and how these bifurcate under change of design
parameters.
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• Links to control theory and Lagrangian singularities for the dynamics of manip-
ulators. It is already known that there are subtle links between the geometry of
mechanisms and the theory of caustics [10] so it is not unreasonable to expect that
there are links between symplectic geometry and the singularities of manipulators.
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Mechanism and Machine Theory , 13 (1978) 437–450

[43] Hobbs, C. A., Kinematic Singularities of Low Dimension, Ph. D. Thesis, University
of Liverpool , 1993

[44] Hobbs C. A., Singularities of Mechanisms with One Degree of Freedom, unpublished

[45] Hunt, K. H. Kinematic Geometry of Mechanisms , Clarendon Press, Oxford, 1978

[46] Manipulating Industrial Robots—Vocabulary, ISO 8373, 1994

[47] IFToMM Commission A, Terminology for Theory of Machines and Mechanisms,
Mechanism and Machine Theory , 26 (1991) 435–539

[48] Karger, A., Classification of Robot–Manipulators with only Singular Configurations,
Mechanism and Machine Theory , 30 (1995) 727–736

[49] Karger, A., Classification of Serial Robot–Manipulators with Non–Removable Singu-
larities, Trans. ASME J. Mechanical Design, 118 (1996) 202–208

[50] Karger, A., Singularity Analysis of Serial Robot–Manipulators, Trans. ASME J.
Mechanical Design, 118 (1996) 520–525

[51] Kempe, A. B., A Method of Describing Curves of the nth Degree by Linkwork, Proc.
London Math. Soc., 7 (1876) 213–216

[52] Kieffer, J., Differential Analysis of Bifurcations and Isolated Singularities for Robots
and Mechanisms, IEEE Trans. Robotics and Automation, 10 (1994) 1–10

26



[53] Kieffer, J. and Lenarc̆ic̆, J., On the Exploitation of Mechanical Advantage Near Robot
Singularities, Proc. 3rd Intl. Workshop on Advances in Robot Kinematics, Ferrara,
Italy, (1992) 65–72

[54] Koetsier, T., A Contribution to the History of Kinematics I, Mechanism and Machine
Theory , 18 (1983) 37–42

[55] Lazard, D., On the Representation of Rigid–Body Motions and its Application to
Generalized Platform Manipulators, Computational Kinematics , J. Angeles et al.
(eds), Kluwer Academic, Dordrecht, (1993) 175–181

[56] Lerbet, J. and Hao, K., Kinematics of Mechanisms to the Second Order—Application
to the Closed Mechanisms, Acta Applicandae Mathematicae, 59 (1999) 1–19

[57] Litvin, F. L. and Parenti-Castelli, V., Configurations of Robot Manipulators and
Their Identification and the Execution of Prescribed Trajectories, Trans. ASME J.
Mechanisms, Transmissions and automation in Design, 107 (1985) 170–188

[58] Litvin, F. L., Yi, Z., Parenti-Castelli, V. and Innocenti, C., Singularities, Configu-
rations and Displacement Functions for Manipulators, Int. J. Robotics Research, 5
(1986) 66–74

[59] MacCallion, H. and Pham, D. T., The Analysis of a Six Degree of Freedom Work Sta-
tion for Mechanized Assembly, Proc. 5th World Congress on the Theory of Machines
and Mechanisms, Montreal , (1979) 611–616

[60] McCarthy, J. M., Introduction to Theoretical Kinematics , MIT Press, Cambridge
MA, 1990

[61] Merlet, J. P., Singular Configurations of Parallel Manipulators and Grassmann Ge-
ometry, Int. J. Robotics Research, 8 (1992) 45–56

[62] Montaldi, J., On Generic Composites of Maps, Bull. London Math. Soc., 23 (1991)
81–85

[63] Murray, R. M., Li, Z. and Shastry, S. S., A Mathematical Introduction to Robotic
Manipulation, CRC Press, Boca Raton, 1994

[64] Nevins, J.L. and Whitney, D. E., Assembly Research, Automation, 16 (1980) 595–613

[65] Pai, D. K. and Leu, M. C., Genericity and Singularities of Robot Manipulators, IEEE
Trans. Robotics and Automation, 8 (1992) 545–559

27



[66] Panyushev, D. I., Semi-Direct Products of Lie Algebras, Their Invariants and Rep-
resentations, arXiv:math.AG/0506579

[67] ParalleMIC, Terminology Related to Parallel Mechanisms,
http://www.parallemic.org/Terminology/General.html

[68] Pottmann, H. and Ravani, B., Singularities of Motions Constrained by Contacting
Surfaces, Mechanism and Machine Theory , 35 (2000) 963–984

[69] Rico Mart́ıez, J. M. and Duffy, J., Orthogonal Spaces and Screw Systems, Mechanism
and Machine Theory , 27 (1992) 451–458

[70] Rico Mart́ıez, J. M. and Duffy, J., Classification of Screw Systems I and II, Mechanism
and Machine Theory , 27 (1992) 459–490

[71] Roberts, S., On Three–Bar Motion in Plane Space, Proc. London Math. Soc.. 7 (1875)
14–23

[72] Sagle, A. and Walde, R., Introduction to Lie Groups and Lie Algebras , Academic
Press, New York, 1973

[73] Selig, J., Geometrical Methods in Robotics, Springer Verlag, New York, 1996

[74] Simaan, N. and Shoham, M., Singularity Analysis of Composite Serial In–Parallel
Robots, IEEE Trans. Robotics and Automation, 17 (2001) 301–311
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