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Abstract—A general framework for the design of low complex-
ity timing error detectors (TEDs) for orthogonal space-time block
code (OSTBC) receivers is proposed. Specifically, we derive suf-
ficient conditions for a difference-of-threshold-crossings timing
error estimate to be robust to channel fading. General expressions
for the S-curve, estimation error variance and the signal-to-noise
ratio are also obtained. As the designed detectors inherently
depend on the properties of the OSTBC under consideration,
we derive and evaluate the properties of TEDs for a number
of known codes. Simulations are used to assess the system
performance with the proposed timing detectors incorporated
into the receiver timing loop operating in tracking mode. While
the theoretical derivations assume a receiver with perfect channel
state information and symbol decisions, simulation results include
performance for pilot-symbol-based channel estimation and data
symbol detection errors. For the case of frequency-flat Rayleigh
fading and QPSK modulation, symbol-error-rate results show
timing synchronization loss of less than 0.3 dB for practical
timing offsets. In addition it is shown that the receiver is able to
track timing drift with a normalized bandwidth of up to 0.001.

Index Terms—Synchronization, symbol timing estimation, tim-
ing error tracking, orthogonal space-time block coding.

I. INTRODUCTION

RECENTLY, a significant amount of research has been
devoted to multiple-input multiple-output (MIMO) com-

munication systems. In particular, orthogonal space-time block
coding (OSTBC) has received a lot of attention since its
development [1]–[3], due to the ability to provide excel-
lent performance in fading while maintaining low decoding
complexity. It has been recognized that the estimation of
reference parameters, such as timing epoch and channel fading
samples, is critical to the performance of MIMO receivers.
Timing acquisition in space-time coded modems was first
addressed in [4], where the receiver obtains timing information
by maximizing the oversampled log-likelihood function (LLF)
derived from an orthogonal training sequence. A number
of improvements of this maximum likelihood (ML)-based
method have subsequently been proposed, with the focus
on the reduction in algorithm complexity and oversampling
requirement [5], [6].

In contrast to the training-based timing acquisition methods
in [4]–[6], this paper focuses on the problem of timing
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error tracking by means of very low complexity timing error
detectors (TEDs). In a pulse-shaped system, the presence
of timing errors results in intersymbol interference (ISI)-
corrupted data strobes. In the case of a single antenna ISI
channel, it was shown [7] that a timing error measurement
(TEM) in the form of a difference-of-threshold-crossings can
be obtained by simple manipulation of receiver sample strobes
and data symbols. The resulting TEM is then used in a timing
loop for timing error tracking. In the sequel we demon-
strate that in a frequency-flat Rayleigh fading environment
manipulating OSTBC system matrices can result in a timing
error measurement similar to that considered in [7]1. We
present a general framework for the design of TEDs for
OSTBC receivers, deriving sufficient conditions for TEMs
robust to channel fading. In contrast to ML-based optimization
techniques, which require computationally intensive likelihood
function estimation followed by the search for its maximum,
estimators presented here offer very low complexity as they
are based on linear combining of their inputs. The designs
easily lend themselves for analysis. Specifically, under the
assumption of receiver channel state information (CSIR) and
perfect data decisions, we derive analytical expressions for
the detector S-curve, the estimation error variance and the
TED signal-to-noise ratio (SNR). Examples of TEDs for some
known OSTBCs are also presented. The ideal assumptions of
channel and data knowledge are removed when evaluating the
overall system performance by means of simulations.

The remainder of this paper is organized as follows. We
begin with a system overview in Section II. The details
of timing error detector design are covered in Section III,
which includes the derivation of the S-curve in Section III-A,
variance and SNR properties in Section III-B and examples of
TEDs for particular OSTBCs in Section III-C. The analytical
results are confirmed by means of simulations in Section IV.
System simulations are discussed in Section V, where symbol-
error-rate (SER) and timing drift bandwidth range results are
presented. We conclude with a summary of findings in Section
VI.

II. SYSTEM OVERVIEW

We consider a communication system comprising of Nt

transmit and Nr receive antennas employing orthogonal space-
time block coding [1]–[3]. The transmitter encodes Ns in-
formation symbols and transmits them over Nt antennas in
Nc time slots, resulting in a code rate of R = Ns/Nc. We
denote the lth Nt × Nc code block by Xl and its (i, k)th

1A less general approach, one limited to the Alamouti OSTBC, was given
in [8] and further analyzed in [9].
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Fig. 1. Receiver diagram.

entry by2 xi[lNc + k]. Note that l is the code block index,
k = 0, . . . , Nc − 1 is the time slot index within the block
and i = 1, . . . , Nt is the transmit antenna index. Let the mth
information symbol used to encode block Xl be am,l, where
m = 0, . . . , Ns − 1. Then, using the code matrix approach of
[10], Xl is given by the linear combination of am,l and their
conjugates

Xl =
Ns−1∑
m=0

(�{am,l}Am + i�{am,l}Bm) (1)

where the operators �{·} and �{·} return the real and
imaginary parts of their arguments, respectively, and Am and
Bm are integer code matrices of dimension Nt × Nc. The
TED design procedure presented here utilizes matrices Am

and Bm, which can be obtained for a given OSTBC using
(1), and given in [11]. The pulse shaping is split between
the transmitter and the receiver, each using a root raised
cosine (RRC) filter denoted by g̃(t). The combined Nyquist
raised cosine pulse is represented by g(t) = g̃(t) ∗ g̃(t),
where ∗ denotes convolution. We assume a frequency-flat
Rayleigh fading channel modeled by a Nr ×Nt matrix H. Its
components, denoted by hji, correspond to the channel state
from ith transmit to jth receive antenna and are assumed to be
independent and identically distributed (iid), and quasi-static,
that is hji[lNc] ≈ hji[(l + 1)Nc − 1]. Clarke’s 2-D isotropic
scattering model [12] is assumed and thus the autocorrelation
of hji (for all i and j) is given by [13]

Rh(ξ) = σ2
hJ0(2πfDξ) (2)

where σ2
h is the variance of the random process and J0(x)

denotes the Bessel function of the first kind of order zero. The
quantity fD in (2) denotes the maximum Doppler frequency
which is assumed to be known.

The receiver diagram is given in Fig. 1. The received signal
at antenna j is given by

rj(t) =
Nt∑
i=1

hji(t)
∑
n′

xi[n′]g̃(t − n′T − τ) + η̃j(t) (3)

where xi[n′] is the encoded symbol transmitted by antenna
i for time slot n′ = lNc + k and η̃j(t) is a zero mean
complex Gaussian noise with variance σ2

η̃ = N0/2 per signal

2We will differentiate between discrete and continuous quantities by placing
their arguments within square brackets or parenthesis, respectively (e.g., x(t)
or x[n] = x(nT )).

dimension. Received signal time delay is denoted in (3) by
τ . After matched filtering, the signal yj(t) = rj(t) ∗ g̃(t) is
sampled at time instants tn = nT + τ̂ , where τ̂ is the timing
correction applied at the receiver. The residual timing error
is thus given by ε = τ − τ̂ . Due to the assumption of quasi-
static fading, we have that hji(tn) ≈ hji(nT ) = hji[n] and
the resulting samples are given by

yj [n] =
Nt∑
i=1

hji[n]
∑
n′

xi[n′]g(nT − n′T + ε) + ηj [n] (4)

where ηj [n] denotes the samples of the matched filtered noise,
ηj(t) = η̃j(t) ∗ g̃(t), which are uncorrelated if sampled at the
symbol rate [4]. We can re-write (4) as

yj [n] =
Nt∑
i=1

hji[n]xε
i [n] + ηj [n] (5)

where xε
i [n] are the ISI-equivalent encoded symbols given a

sampling error ε,

xε
i [n] =

∑
n′

xi[n′]g(nT − n′T + ε). (6)

Consider the samples for n = lNc, . . . , (l + 1)Nc − 1,
corresponding to time slots k = 0, . . . , Nc − 1 within a single
code block l. We can express the output samples in (5) by a
Nr × Nc matrix Yl,

Yl = HlXε,l + Nl (7)

where Hl and Nl denote the channel state and noise matrices,
respectively. The quantity Xε,l denotes the Nt ×Nc matrix of
symbols xε

i [n]. Using (6), we express Xε,l as

Xε,l =
∑

n

Xl+nGε,n (8)

where Gε,n is a Nc × Nc Toeplitz matrix given by

Gε,n =

⎡
⎢⎢⎢⎢⎢⎣

gε
−nNc

gε
−nNc+1 gε

−nNc+2 · · ·
gε
−nNc−1 gε

−nNc
gε
−nNc+1

. . .

gε
−nNc−2 gε

−nNc−1 gε
−nNc

. . .
...

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦ (9)

where we denote the pulse shape samples by gε
n � g(nT + ε).

Finally, the detection variables for each information symbol
m = 0, . . . , Ns − 1 within block l are given by [10]

sm,l = ‖Hl‖−2 [�{tr(YH
l HlAm)} − i�{tr(YH

l HlBm)}]
(10)

where Am and Bm are the encoding matrices used in (1),
tr(·) denotes the trace operator, superscript H is the Hermitian
transpose operator and ‖Hl‖ is the Frobenius norm of Hl. We
note that strictly speaking (10) represents ML detection when
no timing error is present. However, for small values of ε
considered here, we assume that (10) is an close approxima-
tion to ML detection. The projection of sm,l onto the signal
constellation then forms the data decisions denoted by âm,l.
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III. TIMING ERROR DETECTOR DESIGN

It was shown in [8] that for a 2-transmit antenna OSTBC,
a TED in the form of ε̂ = �{a0s1 − a1s0} results in an S-
curve, that is the expectation E{ε̂}, of E{ε̂} = gε

−1 − gε
1. The

expression gε−1 − gε
1 has been referred to in literature [7] as

the difference-of-threshold-crossings. We refer to C(gε
−1−gε

1),
where C is a constant, as the TEM. Under the assumption
of perfect channel knowledge at the receiver the above TEM
is independent of the channel state, giving robustness in poor
channel conditions. We will define a TED whose TEM is inde-
pendent of the channel fading process as a robust TED. It will
be shown that E{ε̂} for higher order OSTBC is composed of
a dominant TEM term and a bias which is a rational function
of quadratic forms with a denominator containing magnitude
terms of the channel states, and a numerator consisting only
of cross products of the channel variables. Under the realistic
condition of slow timing drift, the average of the TED bias
taken over the channel fading, which in practice is carried out
by virtue of the iterative operation of the timing loop, will
thus be small. Such TEDs will be referred to as quasi-robust.

In what follows, we derive sufficient conditions for the
design of robust or quasi-robust timing error detectors. We
point out that the following conditions are not necessary for a
valid TED - other methods may also lead to TEM functions.

A. Conditions for TED Robustness

We consider a general expression for an estimate of ε in the
form of a linear combination of products3 ansm and a∗

nsm,
that is

ε̂ = �
(∑

k

αkanα,k
smα,k

+ βka∗
nβ,k

smβ,k

)
(11)

where nα,k, mα,k, nβ,k and mβ,k denote the data and decision
metric indices chosen for each TED term corresponding to αk

and βk. From (11) we define a set

S = {αk, βk, mα,k, nα,k, mβ,k, nβ,k} (12)

which contains sum weights as well as the indices within a
block of data symbols and decision variables to be chosen.
In (11) we have ignored the imaginary component of the
estimator. The design problem is to choose the parameters
in the set S to obtain a TEM that is close to C(gε

−1 − gε
1).

We examine the expectation E{ε̂}, taken over the data,
noise and the channel state. Assuming that the channel fading
is independent of data and channel noise, we will first evaluate
the expectation over the information symbols and the noise,
conditioned on the channel matrix H. We will denote such
an operator by4 EH{ε̂}. The complete expectation E{ε̂} can
then be obtained by evaluating the expectation of EH{ε̂} over
the channel matrix H, that is

E{ε̂} = EH{EH{ε̂}} (13)

3In the interest of clarity, we remove the block index l from the notation,
with the dependence of an, sm, ε and ε̂ on l implied.

4A compact notation of EH{·} is chosen over the standard E{·|H}, in
an attempt to simplify expressions in which the arguments of the expectation
operator are very involved.

where EH{·} is the expectation with respect to H, which, as
will be shown, must be carried out via simulation. In evalu-
ating EH{ε̂} we consider the individual components of the
summation in (11), specifically EH{ansm} and EH{a∗

nsm}.
The derivation is presented in Appendix A, where it is shown
that

EH{ansm} = ρ2 ‖H‖−2 ×[
tr

{(
AmGH

ε AH
n − BmGH

ε BH
n

)� (
HHH

)}
−j tr

{(
AmGH

ε BH
n − BmGH

ε AH
n

)� (
HHH

)}] (14)

and

EH{a∗
nsm} = ρ2 ‖H‖−2 ×[

tr
{(

AmGH
ε AH

n + BmGH
ε BH

n

)� (
HHH

)}
−j tr

{(
AmGH

ε BH
n + BmGH

ε AH
n

)� (
HHH

)}] (15)

where An, Bn are the code matrices in (1), and Gε represents
Gε,n for n = 0, as defined by (9). We have used superscripts
R and I to denote real and imaginary components and have
defined a constellation-dependent constant

ρp � E{(aR
i )p} = E{(aI

i )
p}. (16)

Using (14) and (15), one obtains the expectation of the TED
in (11) given by

EH {ε̂} = ρ2 ‖H‖−2 tr
{
Γ� (

HHH
)}

(17)

where we have defined a matrix Γ, dependent on the coeffi-
cient set S chosen in (12), as

Γ =
∑

k

[
αk

(
Amα,k

GH
ε AH

nα,k
− Bmα,k

GH
ε BH

nα,k

)
+βk

(
Amβ,k

GH
ε AH

nβ,k
+ Bmβ,k

GH
ε BH

nβ,k

)]
.

(18)

The design problem now reduces to a consideration of the
matrix Γ in (18). Consider the case where Γ in (18) has the
form of

Γ = f(Gε)I + D (19)

where

1) f(Gε) is a scalar function of Gε that returns a TEM,
usually gε

−1 − gε
1

2) D is an antisymmetric matrix.

Then, using (17)

EH {ε̂} = ρ2 ‖H‖−2 tr
{
(f(Gε)I + D)� (

HHH
)}

= ρ2f(Gε)
= E{ε̂}

(20)

where deriving (20) we have used the following properties

• � (
HHH

)
is symmetric

• tr{AB} = 0 for symmetric A and antisymmetric B
• tr

{�(HHH)
}

= ‖H‖2.

Therefore, if coefficients in (11) are selected such that Γ
satisfies conditions 1) and 2), the TED returns a valid timing
error measurement that is robust to channel fading5. As

5In other words, the tr{·} operator in (20) returns a full-diversity measure-
ment of ε, which removes any dependence on H.
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indicated by (20), no averaging over H is required to obtain
the full expectation of ε̂.

If only condition 1 is satisfied, that is D is an arbitrary
matrix with zeros on the main diagonal, then

EH{ε̂} = μ + δε̂ (21)

where we have defined μ = ρ2f(Gε) as the desired TEM
signal and δε̂, dependent on H, as the TEM bias. The S-curve,
that is the expectation of ε̂ over all random variables, is thus
obtained from (21) by

E {ε̂} = μ + δ̄ε̂ (22)

where the average bias δ̄ε̂ is given by

δ̄ε̂ � EH{δε̂}. (23)

One can show using (20) that

δε̂ = ρ2 ‖H‖−2
Nt∑

m=1

Nt∑
i=1
i�=m

Nr∑
j=1

dmi�
(
h∗

jihjm

)
(24)

where we used dmi to denote the (m, i)th entry of D. We note
that the denominator of the bias contains magnitude terms
of the channel states, while the numerator is made up of
cross products of the channel variables. Thus, for uncorrelated
channels, the expectation of the bias taken over H will be
relatively small, resulting in a quasi-robust TED. Equation
(24) also confirms that if the antisymmetry condition for D is
satisfied, that is, dmi = −dim, then δε̂ = 0 giving zero bias
and a robust TEM.

Recall that the desired design output is one satisfying
conditions 1) and 2) above (20). Examining (18), we see that
the integer code matrices Am and Bm act to shuffle the rows
and columns of GH

ε . Thus the design step is to force the
elements gε

−1 and gε
1, located adjacent to the main diagonal

of Gε, to the main diagonal of Γ for k = 1 and k = 2,
through the choosing of S in (12). Since the composition
of the code matrices Am and Bm in (1) varies for different
OSTBCs, the procedure must be repeated for each code under
consideration. We note that the resulting design may not be
unique. Furthermore, while in [11] it was shown that the
design method presented herein produced valid TEMs for all
codes considered, no proof of existence of a valid solution to S
for every OSTBC has been found. Note that while the design
assumes perfect receiver channel knowledge, the performance
analysis via simulation presented in Section V considers the
effects of channel estimation and data decision errors. Design
criteria for unknown channels are a worthwhile extension to
the work presented here.

B. TED Variance and Output SNR

In this section we derive the variance of the timing error
estimate produced by the TEDs described in Section III-A.
The solution, together with the expression for the S-curve in
(17) allows us to obtain the output SNR of the detector.

The variance of the TED output is defined by

σ2
ε̂ = E

{
ε̂2

} −
[
E

{
ε̂
}]2

. (25)

Similarly to the method in Section III-A, in evaluating the
expectation E

{
ε̂2

}
we first consider the expectation over the

data and noise, conditioned on the channel state H. Once
again, the expectation over H must be computed using a
numerical approach.

By examining (11), one can see that the solution to EH
{
ε̂2

}
for various TED formulations can be obtained by consider-
ing EH{aR

i aR
j sR

msR
n }, EH{aI

i a
I
js

I
msI

n} and EH{aR
i aI

js
R
msI

n}.
We begin with EH{aR

i aR
j sR

msR
n }, which from (10) can be

expressed as

EH{aR
i aR

j sR
msR

n } = ‖H‖−4EH
{

aR
i aR

j ×
tr

{
Am�(

YHH
)}

tr
{
An�

(
YHH

)}} (26)

where we used the fact that �(tr(·)) = tr(�(·)), tr(AB) =
tr(BA) and that the matrices Am and An are real valued.
Assuming that the data is drawn from a symmetrical constel-
lation, and is independent from the noise, the solution to (26),
details of which are presented in Appendix B, is given by

EH{aR
i aR

j sR
msR

n } = ‖H‖−4 tr
{
ρ2
2Φ

RR
ijmn + ρ2

N0

2
ΔRR

ijmn

}
(27)

where ΦRR
ijmn is defined by (28) and

ΔRR
ijmn =

{
0 i �= j

(Am ⊗ An)ΛN (Ω′
RR + Ω′

II) i = j
(29)

with ⊗ denoting the Kronecker matrix product. In (28), ρp is
defined by (16), whereas the constant ρ′p is given by

ρ′p � E{(aR
i )p(aI

i )
p}. (30)

The NcNc × NrNr matrix ΛN in (29) is given by

ΛN(i, j) =

{
1 i = nNr + n + 1, j = mNc + m + 1
0 otherwise

(31)
for n = 0, . . . , Nr − 1 and m = 0, . . . , Nc − 1. In (28) and
(29) we have defined channel dependent variables

ΩRR = �(HHH) ⊗�(HHH)

ΩII = �(HHH) ⊗�(HHH)

ΩRI = �(HHH) ⊗�(HHH)

ΩIR = �(HHH) ⊗�(HHH) (32)

and

Ω′
RR = �(H) ⊗�(H)

Ω′
II = �(H) ⊗�(H)

Ω′
RI = �(H) ⊗�(H)

Ω′
IR = �(H) ⊗�(H). (33)

The solution to EH{aI
i a

I
js

I
msI

n} can be obtained by fol-
lowing the same methodology as for EH{aR

i aR
j sR

msR
n }. The

details are once again shown in Appendix B, with the solution
given by

EH{aI
i a

I
js

I
msI

n} = ‖H‖−4 tr
{
ρ2
2Φ

II
ijmn + ρ2

N0

2
ΔII

ijmn

}
(34)
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ΦRR
ijmn =

⎧⎪⎪⎨
⎪⎪⎩

(
AmGH

ε,0 ⊗ AnGH
ε,0

)(
AH

j ⊗ AH
i + AH

i ⊗ AH
j

)
ΩRR i �= j(

AmGH
ε,0 ⊗ AnGH

ε,0

)[
(ρ4

ρ2
2
− 1)

(
AH

i ⊗ AH
i

)
ΩRR + (ρ′

2
ρ2
2
− 1)

(
BH

i ⊗ BH
i

)
ΩII

]
+

∑
l

∑Ns−1
k=0

(
AmGH

ε,l ⊗ AnGH
ε,l

)[(
AH

k ⊗ AH
k

)
ΩRR +

(
BH

k ⊗ BH
k

)
ΩII

]
i = j

(28)

ΦII
ijmn =

⎧⎪⎪⎨
⎪⎪⎩

(
BmGH

ε,0 ⊗ BnGH
ε,0

)(
BH

j ⊗ BH
i + BH

i ⊗ BH
j

)
ΩRR i �= j(

BmGH
ε,0 ⊗ BnGH

ε,0

)[
(ρ4

ρ2
2
− 1)

(
BH

i ⊗ BH
i

)
ΩRR + (ρ′

2
ρ2
2
− 1)

(
AH

i ⊗ AH
i

)
ΩII

]
+

∑
l

∑Ns−1
k=0

(
BmGH

ε,l ⊗ BnGH
ε,l

)[(
BH

k ⊗ BH
k

)
ΩRR +

(
AH

k ⊗ AH
k

)
ΩII

]
i = j

(35)

with ΦII
ijmn is given by (35) and

ΔII
ijmn =

{
0 i �= j

(Bm ⊗ Bn)ΛN (Ω′
RR + Ω′

II) i = j.
(36)

Finally, the expectation EH{aR
i aI

js
R
msI

n}, as outlined in
Appendix B, is given by

EH{aR
i aI

js
R
msI

n} = ‖H‖−4 tr
{
ρ̃ΦRI

ijmn

}
(37)

where

ΦRI
ijmn =

(
AmGH

ε,0 ⊗ BnGH
ε,0

)×((
AH

i ⊗ BH
j

)
ΩRR −

(
BH

j ⊗ AH
i

)
ΩII

) (38)

and ρ̃ is defined as

ρ̃ =

{
ρ2
2 i �= j

ρ′2 i = j.
(39)

Using (27), (34) and (37), one can obtain E
{
ε̂2

}
for a

particular TED, that is

E
{
ε̂2

}
= EH

{
‖H‖−4 tr

{
ρ2
2ΣΦ + ρ2

N0

2
ΣΔ

}}
(40)

where ΣΦ and ΣΔ correspond to the linear combinations
of ΦRR

ijmn, ΦII
ijmn, ΦRI

ijmn and ΔRR
ijmn, ΔII

ijmn, respectively,
as determined by the polynomial expansion of E

{
ε̂2

}
for a

particular TED. Expressions for specific TEDs will be derived
in Section III-C.

Finally, we can define the TED SNR as

SNRTED =
μ2

E{(ε̂ − μ)2}
=

μ2

σ2
ε̂ + δ̄2

ε̂

(41)

where the numerator represents the power of the TEM signal
and the denominator is the equivalent noise power, with σ2

ε̂

defined by (25) with (40) and δ̄ε̂ given by (23). As discussed
in Section III-A, the effect of the TEM bias is small, and thus
one can approximate (41) by

SNRTED ≈ [E{ε̂}]2
σ2

ε̂

. (42)

C. Examples of TEDs

Based on the design conditions for satisfying TED robust-
ness described in Section III-A, we now derive examples
of TEDs for a number of specific OSTBC codes, obtaining
expressions for the S-curve and the estimation variance6. We
note that the examples given here do not represent unique
solutions the parameter set S in (12). Other instances of S
may lead to similar TEM functions.

As proposed in [8], a TED for a 2-transmit antenna OSTBC
(Alamouti encoding) has the form of

ε̂(2) = �{a0s1 − a1s0}
= aR

1 sR
0 − aI

1s
I
0 − aR

0 sR
1 + aI

0s
I
1

(43)

which corresponds to α1 = 1, α2 = −1, mα,1 = nα,2 = 1,
mα,2 = nα,1 = 0 and βk = 0 in the set S in (12) for all k.
For this case, the matrix Γ in (18) can be shown to be

Γ(2) = 2
[
gε
−1 − gε

1 0
0 gε−1 − gε

1

]
(44)

that is, f(Gε) = 2(gε
−1−gε

1) and D = 0, thus satisfying design
conditions 1) and 2) described in Section III-A. Consistent
with the results in [8], the S-curve of the TED in (43) is
given by E{ε̂(2)} = μ = 2ρ2(gε

−1−gε
1), that is a robust timing

estimate with δε̂(2) = 0.
The TED SNR for ε̂(2) can be calculated using (41) (with

δ̄ε̂ = 0), where there the equivalent noise power is computed
using (25) and (40), with

ΣΦ = ΦRR
1100 + ΦRR

0011 − 2ΦRR
1010 + ΦII

1100 + ΦII
0011

− 2ΦII
1010 − 2ΦRI

1100 − 2ΦRI
0011 + 2ΦRI

1001 + 2ΦRI
0110

(45)

and

ΣΔ = ΔRR
1100 + ΔRR

0011 + ΔII
1100 + ΔII

0011. (46)

A number of Nt = 3 OSTBC encoders have been presented
in literature, such as [14, Equations 7.4.8, 7.4.9] and [15,
Equation 3.49] , all of rate R = 3/4. While similar in struc-
ture, each of these codes will require a separately designed
TEDs. Consider the code in Equation 3.49 of [15], denoted
by

X(3) =

⎡
⎣ a0 a∗

1 a∗
2 0

−a1 a∗
0 0 −a∗

2

−a2 0 a∗
0 a∗

1

⎤
⎦ . (47)

6For more examples of TED expressions, including those for rate-one real-
valued OSTBCs, the reader is referred to [11].
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Referring to (18), one can show that, for k = 1, selecting
α1 = β1 = 1 with nα,1 = nβ,1 = 1 and mα,1 = mβ,1 = 0 in
S will cause matrices A0, B0, AH

1 and BH
1 to force the main

diagonal of Γ to be {2gε
−1,−2gε

1, 2gε
−1}. Similarly, for k = 2,

choosing α2 = β2 = −1 with nα,2 = nβ,2 = 0 and mα,2 =
mβ,2 = 1, contributes {−2gε

1, 2gε
−1,−2gε

1}. Subtracting the
k = 2 term from the k = 1 term, which is equivalent to a
TED in the form of

ε̂(3) = �{a1s0 − a0s1 + a∗
1s0 − a∗

0s1}
= 2(aR

1 sR
0 − aR

0 sR
1 )

(48)

results in Γ(3) given by

Γ(3) = 2

⎡
⎣gε−1 − gε

1 −2gε
0 gε−3 − gε−1

2gε
0 gε

−1 − gε
1 2gε

−2

gε
1 − gε

3 −2gε
2 gε

−1 − gε
1

⎤
⎦ (49)

that is f(Gε) = 2(gε
−1 − gε

1) and

D(3) = 2

⎡
⎣ 0 −2gε

0 gε
−3 − gε

−1

2gε
0 0 2gε−2

gε
1 − gε

3 −2gε
2 0

⎤
⎦ . (50)

By examining (49) and (50), we note that the formulation of
(48) satisfies design condition 1), resulting in a quasi-robust
TED. The S-curve for the TED in (48) is given by

E{ε̂(3)} = 2ρ2(gε
−1 − gε

1) + EH{δε̂(3)} (51)

that is a TEM component of μ = 2ρ2(gε
−1 − gε

1) and a bias
term where

δε̂(3) = ‖H‖−2 2ρ2

Nr∑
j=1

[
2

(
gε
−2 − gε

2

)�(h∗
j3hj2)

− (
gε
−1 − gε

1 − gε
−3 + gε

3

)�(h∗
j3hj1)

]
.

(52)

As discussed earlier, the numerator in (52) contains only
cross product terms of the channel coefficients, while ‖H‖
contains magnitude terms. The bias in (52) will be small
relative to first term in (51), and thus the TED is quasi-robust.

The TED SNR can be solved using (41), with the equivalent
noise power computed using (25) and (40), with

ΣΦ = 4
(
ΦRR

1100 + ΦRR
0011 − 2ΦRR

1010

)
(53)

and

ΣΔ = 4
(
ΔRR

1100 + ΔRR
0011

)
(54)

and the bias term in computed by averaging (52) over the
channel variable as per (23).

Codes for Nt = 4 can easily be obtained by appending an
appropriate row to the Nt = 3 counterparts. For example, a
4-transmit antenna code based on X(3) in (47) is given by,

X(4) =

⎡
⎢⎢⎣

a0 a∗
1 a∗

2 0
−a1 a∗

0 0 −a∗
2

−a2 0 a∗
0 a∗

1

0 a2 −a1 a0

⎤
⎥⎥⎦ . (55)

Due to similarities in the structure of X(3) and X(4), a timing
estimate for X(4) can be obtained using ε̂(4) = ε̂(3). The resulting
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Fig. 2. S-curve for ε̂(4) as applied to X(4) in (55), Nt = 4, Nr = 2, 4.

Γ(4) is given by

Γ(4) = 2

⎡
⎢⎢⎣
gε
−1 − gε

1 −2gε
0 gε

−3 − gε
−1 −2gε

−2

2gε
0 gε−1 − gε

1 2gε−2 gε−3 − gε−1

gε
1 − gε

3 −2gε
2 gε

−1 − gε
1 −2gε

0

2gε
2 gε

1 − gε
3 2gε

0 gε
−1 − gε

1

⎤
⎥⎥⎦
(56)

where S-curve is given by

E{ε̂(4)} = 2ρ2(gε
−1 − gε

1) + EH{δε̂(4)} (57)

with the TEM bias of

δε̂(4) = ‖H‖−2 2ρ2

Nr∑
j=1

[
2

(
gε
−2 − gε

2

)�(h∗
j3hj2 − h∗

j4hj1)

− (
gε
−1 − gε

1 − gε
−3 + gε

3

)�(h∗
j3hj1 + h∗

j4hj2)
]
.

(58)

The variance for ε̂(4) can be computed using (53) and (54), with
the components ΦRR

ijmn and ΔRR
ijmn appropriately modified for

the Nt = 4 code.

IV. TED PROPERTIES

We now evaluate the properties of TED ε̂(4) = ε̂(3) given by
(48) as applied to X(4), beginning with the S-curve shown in
Fig. 2. The analytical results were obtained using (57), where
the expectation of δε̂(4) was computed numerically over 104

instances of H. We verify the analytical results via simulation,
where the data was sampled at a fixed, uncompensated timing
error ε and the resulting TED output ε̂ in (48) averaged over
all code blocks transmitted. Finally, the effect of data decision
errors was evaluated by replacing the information symbols
in the data-aided (DA)-TED in (48) by the corresponding
decisions, resulting in a decision-directed (DD)-TED. The
system SNR Es/N0 was set to 10 and 20 dB.

In the case of DA-TED, the simulated results follow the
theoretical expressions very closely. Examining the DD S-
curve, we note that incorrect data decisions reduce the linear
region to approximately |ε/T | = 0.25 and |ε/T | = 0.35 for
Nr = 2 and Nr = 4, respectively. One notes that in the case
DD operation, the output of the TED will be periodic for
increasing ε. As shown in [16], for the case of single antenna
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Fig. 3. SNR for TED ε̂(4) as applied to X(4) in (55), Nt = 4, Nr = 2.
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Fig. 4. SNR for TED ε̂(4) as applied to X(4) in (55), Nt = 4, Nr = 4.

systems where the decisions are made every symbol interval,
the S-curve will exhibit periodicity of T . In contrast, in the
case of OSTBC systems, block decoding at the receiver will
result in TED periodicity of NcT .

Figs. 3 and 4 show the TED SNR for ε̂(4). The theoretical re-
sults were obtained via (41), with the variance term computed
by (40) with (53) and (54), and averaged over 104 instances
of H. Similarly to the S-curve results, we verify the analytical
results by means of simulation, using the approximated TED
SNR in (42), with the error variance calculated by averaging
(ε− ε̂)2 over all code blocks transmitted. Once again, DA and
DD (Es/N0 = 10 and 20 dB) modes were used.

We note that for moderate Es/N0, the TED SNR peaks at a
normalized timing error of below |ε/T | = 0.25, which falls in
the operating region of the timing loop. For large timing offset,
the estimation variance is large, reducing the TED SNR. This
suggests that the loop filter bandwidth should be reduced for
low SNR.

Finally, we note that the property being evaluated is the
TED output SNR, which constitutes the input SNR of the tim-
ing loop. Thus, the TED SNR will be significantly increased
by the averaging operation by virtue of the loop filter and the
threshold device, described in Section V. Specifically, for a

loop that processes Neff inputs between timing corrections,
the TEM error variance will be reduced by approximately
Neff, which is equivalent to an increase in the loop SNR of
10 log10 Neff dB7. Thus, for a loop with high Neff, as will
be considered in Section V, even a small or moderate TED
SNR will result in high loop SNR, allowing for good system
performance.

V. SIMULATION RESULTS

We now present simulation results evaluating the timing
error tracking8 performance of the TEDs proposed in Section
III in a system with QPSK-modulated data transmitted over
a frequency-flat Rayleigh fading channel. Specifically, we
consider the receiver depicted in Fig. 1 with a timing loop
employing TED ε̂(3) applied to codes X(3) and X(4)

9. Sections
V-A and V-B evaluate the SER performance as a function of
system SNR and timing drift bandwidth, respectively. While
the discussion in Sections III and IV assumed a receiver
with perfect channel knowledge, we also examine the effects
of channel estimation errors on the system performance. To
that end we present results for CSIR as well as pilot-symbol
assisted modulation (PSAM)-based receivers.

The data was encoded using X(3) and X(4), given by (47)
and (55), respectively. The resulting data streams were passed
through a RRC filter with a rolloff of βMF = 0.35. The
fading was assumed to be Rayleigh distributed, with the
autocorrelation given by (2) with a known normalized Doppler
frequency of fDT = 0.01. In the simulations, we used a
modified Jakes model in [17]. Since, as stated in Section II, the
channel response was assumed to be quasi-static, the channel
gains generated by the simulator in [17] were held constant
for the duration of an OSTBC block and subsequently updated
for the next block according to the correlation defined by (2).

As the focus of the simulations is on timing error tracking,
we assume that the receiver has performed coarse timing
acquisition, which would typically be done using a training
sequence. The timing drift was simulated by perturbing the
sampling phase τ . In order to add a random component to
the timing drift, the time between timing slips, measured
in symbol intervals and denoted by Nτ , was modeled by a
Gaussian random variable, with a mean of N̄τ and with a
variance of σ2

Nτ
= 0.1N̄τ .

The drift direction was random and equiprobable, with a
resolution of T/16. We note that since all aspects of the drift
model were assumed unknown to the receiver, the step sizes
for the drift and the correction were chosen independently,
with the latter set to T/8.10

7If the loop filter was in the form of a true integrator, the gain in TED
SNR would be 10 log10 Neff dB. In the case of a low pass filter considered
in Section V, this effective TED SNR gain is only an approximation.

8Receiver incorporating a feedback timing loop is used throughout the
simulations. The problem of timing acquisition, where a feed-forward con-
figuration exhibiting fast recovery is preferred [16], is not considered in this
paper.

9The performance of TED ε̂(2) was described in [8].
10Unlike other timing offset models employed (see, for example [18]), the

discrete nature of the model considered here may result in residual timing
errors. The authors have found, however, that the magnitude of such errors
is negligible. Results equivalent to those presented here were also obtained
using simulations with sampling resolutions of T/32 and T/8.
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The resulting mean timing error bandwidth, normalized to
the symbol duration T , is given by

B̄τT =
T/16
N̄τT

=
1

16N̄τ
. (59)

We note that modern day clocks, such as temperature com-
pensated crystal oscillators (TCXOs), exhibit a frequency-
temperature stability of well under 10 parts per million
(ppm) [19]. Using the notation of (59), this corresponds to
B̄τT < 10−5. The simulations results presented here consider
a much higher (B̄τT = 10−4 in Section V-A and up to
B̄τT = 10−3 in Section V-B) in order to ensure frequent
timing corrections and to maintain a safe margin in relation
to hardware specifications.

In the case of results for a receiver with imperfect channel
knowledge, we consider a PSAM-based channel estimation
approach based on the method presented in [4]. Orthogonal
pilot blocks were inserted following Nb = 3 data code blocks,
each spanning Nc = 4 symbol intervals. The resulting pilot
spacing of Lf = 16 is adequate for the estimation of channel
with normalized Doppler frequency up to fDT = 0.03. The
channel state for the data portion of the frames was obtained
by interpolating channel estimates from K = 9 pilot blocks,
following which the data was decoded according to (10). In all
of the reported results, the system SNR takes into account the
overhead due to pilot insertion. Specifically, we define SNR
as the average energy Ēs per information symbol, that is Ēs

is given by the ratio of the total energy transmitted to the
number of information bearing symbols in each frame.

Timing estimation was done using the TED ε̂(3), which as
mentioned previously, is applicable to codes X(3) and X(4).
Since the focus of the investigation is the tracking performance
of the detector, the timing estimation was done without the
knowledge of the data symbols at the receiver. Hence the data
symbols am were replaced by the corresponding decisions âm.
The TED output was filtered according to

ε̂′l = αε̂′l−1 + (1 − α)ε̂l (60)

with α = 0.9. If the filtered timing measurement ε̂′l exceeded
a threshold value εth = 0.25, the timing correction τ̂l was
adjusted by T/8 depending on the polarity of the error
estimate. In practice, the error correction procedure can be
implemented by means of a bank of polyphase filters [20].

A. SER Performance

Figs. 5 and 6 show QPSK SER plots for the 3- and 4-
transmit antenna codes. The figures include TED tracking
performance for CSIR and PSAM receivers. Also provided are
two reference curves: ideal timing with perfect channel knowl-
edge, and ideal timing with PSAM channel estimation. The
mean timing drift bandwidth was fixed to B̄τT = 1 × 10−4.

The results demonstrate that the receiver is able to track
the timing variation with a performance drop resulting from
the timing synchronization of less than 0.3 dB. Similar results
hold for PSAM-based receivers. By examining the reference
curves, it is clear that for most part, the performance loss
is due to channel estimation. For the case of QPSK system
considered here, the losses due to timing synchronization are
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Fig. 5. QPSK SER for Nt = 3 code X(3) in (47).
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Fig. 6. QPSK SER for Nt = 4 code X(4) in (55).

very low and leave no practical room for improvement with
ML techniques11. Further research is required to determine
the suitability of the proposed methods for higher order
constellations.

B. Performance as a Function of Timing Bandwidth

We now consider the SER performance for varying timing
drift rate. Figs. 7 and 8 show SER as a function of B̄τT for
Nt = 3 and Nt = 4 codes with Nr = 2 receiver operating at
Ēs/N0 = 8 dB and 10 dB. Both CSIR and PSAM (K = 9,
Lf = 16) cases are shown.

In the case of CSIR, the system is able to track timing
up to B̄τT = 10−3, which is over two orders of magnitude
greater than the requirements of present day TXCOs [19].
For PSAM-based channel estimation, the range decreases just
below B̄τT = 10−3. The difference in performance of CSIR
and PSAM receivers can be attributed to the effect of channel
estimation error on the TED output, as well as the delay
associated with PSAM interpolation resulting in data decoding
delay and thus outdated timing information. This effect is more
pronounced for faster timing drift, as seen in Figs. 7 and 8.

11Similar results were observed for BPSK signaling in [11].
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EH{ansm} = ‖H‖−2 tr
{
AmGH

ε

[
E

{�(
aR

n XH
)

+ j�(
aI

nXH
)}�(

HHH
) − E

{�(
aR

n XH
)

+ j�(
aI

nXH
)}�(

HHH
)]}

−j ‖H‖−2 tr
{
BmGH

ε

[
E

{�(
aR

n XH
)

+ j�(
aI

nXH
)}�(

HHH
)

+ E
{�(

aR
n XH

)
+ j�(

aI
nXH

)}�(
HHH

)]}
(67)
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Fig. 7. SER vs B̄τ T for Nt = 3 code X(3) in (47).
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Fig. 8. SER vs B̄τ T for Nt = 4 code X(4) in (55).

VI. CONCLUSION

We have described a method for the design of low com-
plexity TEDs for a general OSTBC system. A set of sufficient
conditions for timing estimate robust to channel fading was
presented, along with examples of TEDs for 2-, 3- and 4-
transmit antenna codes. In addition to the S-curve of the TEDs,
analytical expressions for the estimation error variance and
TED SNR were obtained. We have evaluated the performance
of the TEDs in timing loop of a receiver operating in a tracking
mode, for both CSIR and PSAM systems. We have shown that
the SER performance exhibits negligible degradation due to
timing synchronization and that the proposed TEDs are able
to track timing drift up to approximately B̄τT = 10−3 with a
reduction in range due to PSAM.

APPENDIX A
TED DESIGN CONDITIONS

This section gives details on the derivation of (14) and
(15). We begin by noting that using (7) and (10), the decision
variables sm,l can be expressed as

sm,l = ‖Hl‖−2 tr
{
Am�(XH

ε,lH
H
l Hl)

−jBm�(XH
ε,lH

H
l Hl)

}
+ η′ (61)

where we have used the fact that tr(AB) = tr(BA) and
�(tr(·)) = tr(�(·)), �(tr(·)) = tr(�(·)). The noise term η′

in (61) is given by

η′ = ‖Hl‖−2 tr
{�(NH

l HH
l Am) − j�(NH

l HH
l Bm)

}
. (62)

Substituting (8) into (61) we obtain

EH{an,lsm,l} =

‖Hl‖−2 tr
{
Am

∑
n′ G

H
ε,n′E

{
an,l�(XH

l+n′HH
l Hl)

}
−jBm

∑
n′ G

H
ε,n′E

{
an,l�(XH

l+n′HH
l Hl)

}}
.

(63)

Since the data symbols an,l are used to encode
only the lth block Xl, E

{
an,l�(XH

l+n′HH
l Hl)

}
=

E
{
an,l�(XH

l+n′HH
l Hl)

}
= 0 for n′ �= 0. Therefore (63)

simplifies to

EH{an,lsm,l} =

‖Hl‖−2 tr
{
AmGH

ε EH
{
an,l�(XH

l HH
l Hl)

}
−jBmGH

ε EH
{
an,l�(XH

l HH
l Hl)

}} (64)

where we have dropped the zero-valued subscript n′ from
Gε,n′ for notational convenience. In addition, we can now
remove the code block index l, with the understanding that
an, sm, X and H refer to the block used for the estimation
of the timing error. Using the fact that

�{AB} = �{A}�{B} − �{A}�{B} (65)

and
�{AB} = �{A}�{B} + �{A}�{B} (66)

we now expand (64) to give (67).
Using (1), and assuming independent data with independent

real and imaginary components, one can show that

E
{
aR

n XH
}

� ρ2AH
n

E
{
aI

nXH
}

� −jρ2BH
n (68)

where the constant ρp is defined by (16). Substituting (68),
and noting that �(jρ2BH

n ) = 0 and �(ρ2AH
n ) = 0, one can

simplify (67) to the final result given by (14).
The derivation of E{al∗

n sl
m} follows the same line of

reasoning as for E{al
nsl

m}, resulting in the solution given in
(15). See [11] for more details.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 27, 2008 at 15:55 from IEEE Xplore.  Restrictions apply.



1948 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 11, NOVEMBER 2008

EH{aR
i aR

j sR
msR

n } = ‖H‖−4EH
{

aR
i aR

j ×
tr

[∑
l
AmGH

ε,l�(XH
l HHH) ⊗

∑
l′
AnGH
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l′ H
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.

(70)

EH{(aR
i )2 tr(ΨRR

X )} = ρ2
2 tr

{∑
l

∑
k

(
AmGH

ε,l ⊗ AnGH
ε,l

)[(
AH

k ⊗ AH
k

)
ΩRR +

(
BH

k ⊗ BH
k

)
ΩII

]}
+ tr

{(
AmGH

ε,0 ⊗ AnGH
ε,0

)[
(ρ4 − ρ2

2)
(
AH

i ⊗ AH
i

)
ΩRR + (ρ′2 − ρ2

2)
(
BH

i ⊗ BH
i

)
ΩII

]} (77)

EH{(aR
i )2 tr(ΨRR

N )} = ρ2 tr
{

(Am ⊗ An)EH
{(�(NH) ⊗�(NH)

)
Ω′

RR +
(�(NH) ⊗�(NH)

)
Ω′

II

−(�(NH) ⊗�(NH)
)
Ω′

RI −
(�(NH) ⊗�(NH)

)
Ω′

IR

}} (78)

APPENDIX B
TED VARIANCE

We present the derivations of (27), (34) and (37)12. We
begin by considering EH{aR

i aR
j sR

msR
n }, as defined by (26).

Using the fact that tr(A) tr(B) = tr(A⊗B) [21, p.250], we
can express (26) by

EH{aR
i aR

j sR
msR

n } = ‖H‖−4EH
{
aR

i aR
j ×

tr
(
Am�(

YHH
) ⊗ An�

(
YHH

))}
.

(69)

Using (7) along with the distributive property [21, p.243] of
the Kronecker product, and assuming mutually independent
data and noise, we expand (69), obtaining (70). We note that
the expectation of the last two arguments of the trace operator
in (70) is zero since the noise is assumed to be zero-mean and
independent of data ai and Xl. Thus, after some manipulation
we can simplify (70) to obtain

EH{aR
i aR

j sR
msR

n } =‖H‖−4EH
{
aR

i aR
j tr

(
ΨRR

X + ΨRR
N

)}
(71)

where ΨRR
X and ΨRR

N correspond to the data and noise
components of the trace argument in (70), respectively, and
are defined by

ΨRR
X =

∑
l

AmGH
ε,l�(XH

l HHH)⊗
∑
l′

AnGH
ε,l′�(XH

l′ H
HH)

(72)

and
ΨRR

N = Am�(NHH) ⊗ An�(NHH). (73)

Examining (72), we recall that the data blocks are given by
(1) and note that the data symbols ai and aj in (71) belong to
block l = 0. Since data symbols are zero mean, the summation
in (72) will contribute only the l = l′ terms, with the remaining
components vanishing with the expectation operator. Thus,
using the fact that AB⊗CD = (A⊗C)(B⊗D) [21, p.244],
we obtain

EH{aR
i aR

j tr(ΨRR
X )} = tr

{∑
l

(
AmGH

ε,l ⊗ AnGH
ε,l

)×
EH

{
aR

i aR
j �(XH

l HHH) ⊗�(XH
l HHH)

}}
(74)

12A more detailed derivation has been presented in [11].

which can be further expanded using (65) and (66) resulting
in

EH{aR
i aR

j tr(ΨRR
X )} =

tr
{∑

l

(
AmGH

ε,l ⊗ AnGH
ε,l

)
EH

{
aR

i aR
j ×[(�(XH

l ) ⊗�(XH
l )

)
ΩRR +

(�(XH
l ) ⊗�(XH

l )
)
ΩII

−(�(XH
l ) ⊗�(XH

l )
)
ΩRI −

(�(XH
l ) ⊗�(XH

l )
)
ΩIR

]}}
(75)

with ΩRR, ΩII, ΩRI, ΩIR defined by (32). Substituting (1), and
assuming independent and zero mean data components, once
can show [11] that for i �= j,

EH
{
aR

i aR
j tr(ΨRR

X )
}

= ρ2
2 tr

{(
AmGH

ε,0 ⊗ AnGH
ε,0

)×(
AH

j ⊗ AH
i + AH

i ⊗ AH
j

)
ΩRR

}
(76)

where ρ2 is defined by (16). Similarly, for i = j, one obtains
(77), where ρ2 and ρ4 are defined by (16) and ρ′2 by (30). We
note that the first summation accounts for ISI components over
all data blocks and will converge since Gε,l → 0 as l → ∞.

Having solved for the data component in (71), we now solve
for the noise term, starting with (73). Since E{aR

i } = 0 and
assuming independent data symbols, EH{aR

i aR
j tr(ΨRR

N )}
will be non-zero only for i = j. In such a case, we obtain
(78), where Ω′

RR, Ω
′
II, Ω

′
RI, Ω

′
IR are defined (33). Since the real

and imaginary noise components are assumed independent and
zero-mean, the last two terms in (78) will vanish, resulting in

EH{(aR
i )2 tr(ΨRR

N )} = ρ2
N0

2
tr

{
(Am⊗An)ΛN (Ω′

RR+Ω′
II)

}
(79)

where the matrix ΛN is defined by (31). Combining (76), (77)
and (79) with (71), leads to (26).

The solution to EH{aI
i a

I
js

I
msI

n} can be obtained by fol-
lowing the same methodology as for EH{aR

i aR
j sR

msR
n } with

the solution give by (34). Finally, we consider the term
EH{aR

i aI
js

R
msI

n}, which, using the same reasoning as for
EH{aR

i aR
j sR

msR
n } can be expressed as

EH{aR
i aI

js
R
msI

n} = −‖H‖−4EH
{
aR

i aI
j tr

(
ΨRI

X + ΨRI
N

)}
(80)
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where

ΨRI
X =

∑
l

AmGH
ε,l�(XH

l HHH)⊗
∑
l′

BnGH
ε,l′�(XH

l′ H
HH)

(81)

and
ΨRI

N = Am�(NHH) ⊗ Bn�(NHH). (82)

We note that since real and imaginary components of N are
independent, EH{aI

i a
I
i tr(ΦRI

N )} = 0 and thus we need only
consider the first term of (80). One can show that

EH{aR
i aI

j tr(ΨRI
X )} =

− tr
{∑

l

(
AmGH

ε,l ⊗ BnGH
ε,l

)
EH

{
aR

i aI
j×[(�(XH

l ) ⊗�(XH
l )

)
ΩRR −

(�(XH
l ) ⊗�(XH

l )
)
ΩII

+
(�(XH

l ) ⊗�(XH
l )

)
ΩRI −

(�(XH
l ) ⊗�(XH

l )
)
ΩIR

]}}
.

(83)

Substituting (1) and considering the cases for i = j and
i �= j together, following the same line of reasoning as for
EH{aR

i aR
j sR

msR
n }, one arrives at the solution given by (37).
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