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Abstract

This paper presents some new results on Parisian ruin under Lévy
insurance risk process, where ruin occurs when the process has gone below
a fixed level from the last record maximum, also known as the high-water
mark or drawdown, for a fixed consecutive periods of time. The law of
ruin-time and the position at ruin is given in terms of their joint Laplace
transforms. Identities are presented semi-explicitly in terms of the scale
function and the law of the Lévy process. They are established using recent
developments on fluctuation theory of drawdown of spectrally negative
Lévy process. In contrast to the Parisian ruin of Lévy process below a
fixed level, ruin under drawdown occurs in finite time with probability
one.
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1 Introduction
Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on filtered
probability space (Ω,F , {Ft : t ≥ 0},P), where Ft is the natural filtration of
X satisfying the usual assumptions of right-continuity and completeness. We
denote by {Px, x ∈ R} the family of probability measure corresponding to a
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translation of X s.t. X0 = x, with P = P0, and define X t = sup0≤s≤tXs the
running maximum of X up to time t. The Lévy-Itô sample paths decomposition
of the Lévy process is given by

Xt = µt+ σBt +

∫ t

0

∫
{x<−1}

xν(dx, ds) +

∫ t

0

∫
{−1≤x<0}

x
(
ν(dx, ds)− Π(dx)ds

)
,

(1.1)

where µ ∈ R, σ ≥ 0 and (Bt)t≥0 is standard Brownian motion, whilst ν(dx, dt)
denotes the Poisson random measure associated with the jumps process ∆Xt :=
Xt−Xt− of X. This Poisson random measure has compensator given by Π(dx)dt,
where Π is the Lévy measure satisfying the integrability condition:∫ 0

−∞
(1 ∧ x2)Π(dx) <∞. (1.2)

We refer to Chapter 2 of [13] for more details on paths decomposition of X.
Due to the absence of positive jumps, it is therefore sensible to define

ψ(λ) =
1

t
logE

{
eλXt

}
= µλ+

1

2
σ2λ2 +

∫
(−∞,0)

(
eλx−1−λx1{x>−1}

)
Π(dx), (1.3)

which is analytic on (Im(λ) ≤ 0). It is easily shown that ψ is zero at the origin,
tends to infinity at infinity and is strictly convex. We denote by Φ : [0,∞) →
[0,∞) the right continuous inverse of the Laplace exponent ψ(λ), so that

Φ(θ) = sup{p > 0 : ψ(p) = θ} and ψ(Φ(λ)) = λ for all λ ≥ 0.

It is worth mentioning that under the Esscher transform Pν defined by

dPν

dP

∣∣∣
Ft

= eνXt−ψ(ν)t for all ν ≥ 0, (1.4)

the Lévy process (X,Pν) is still a spectrally negative Lévy process. The Laplace
exponent of X under the new measure Pν has changed to ψν(λ) given by

ψν(λ) = ψ(λ+ ν)− ψ(ν), for λ ≥ −ν. (1.5)

Subsequently, we define by Φν(θ) the largest root of equation ψν(λ) = θ satisfying

Φν(θ) = Φ(θ + ψ(ν))− ν.

Furthermore, assume that from some reference point of time in the past X
has achieved maximum y > 0. Define drawdown process Y = {Yt : t ≥ 0} of X
by

Yt = X t ∨ y −Xt, (1.6)
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under measure Py,x. Notice that we altered slightly our notation for the prob-
ability measure Py,x to denote the law of X under which at time zero X has
current maximum y ≥ x and position x ∈ R. We simply write P|y := Py,0 the
law of Y under which Y0 = y, and use the notation Ex, Ey,x and E|y to define the
corresponding expectation operator to the above probability measures. Subse-
quently, we denote by Eνy,x the expectation under Pνy,x by which the Lévy process
X has the Laplace exponent ψν(λ) (1.5). Recall that since X is a Lévy process,
it follows that Y is strong Markov.

In recent developments, some results regarding excursion below a (fixed)
default level, say zero, of the Lévy process X with fixed duration (Parisian ruin)
have been obtained and applied in finance and insurance (e.g. option pricing,
corporate finance, optimal dividend, etc). We refer among others to Chesney
et al. [6], Francois and Morellec [9], Broadie et al. [4], Dassios and Wu [8],
Loeffen et al. ([17] & [16]), Czarna and Palmowski [7] and Landriault et al. [15]
and the literature therein for further discussions. In these papers, the excursion
takes effect from the first time T−0 = inf{t > 0 : Xt < 0} the process X has
gone below zero under measure Px, and default is announced at the first time
τr = inf

{
t > r :

(
t − sup{s < t : Xs > 0}

)
> r

}
the Lévy process has gone

below zero for r > 0 consecutive periods of time.
In the past decades attention has been paid to find risk protection mechanism

against certain financial assets’ outperformance over their last record maximum,
also referred to as high-water mark or drawdown, which in practice may affect
towards fund managers’ compensation. See, among others, Agarwal et al. [1]
and Goetzmann et al. [10] for details. Such risk may be protected against using
an insurance contract. In their recent works, Zhang et al. [21], Palmowski and
Tumilewicz [19] discussed fair valuation and design of such insurance contract.

Motivated by the above works, we consider a Parisian ruin problem, where
ruin occurs when the Lévy risk process X has gone below a fixed level a > 0
from its last record maximum (running maximum) X t∨y for a fixed consecutive
periods of time r ≥ 0. This excursion takes effects from the first time τ+

a =
inf{t > 0 : X t ∨ y − a > Xt} the process under Py,x has gone below a fixed level
a > 0 from the last record maximum X t ∨ y. Equivalently, this stopping time
can be written in terms of the first passage above level a > 0 of the drawdown
process Y as τ+

a = inf{t > 0 : Yt > a}. Ruin is declared at the first time the
process Y has undertaken an excursion above level a for r consecutive periods
of time before getting down again below a, i.e.,

τr = inf{t > r : (t− gt) ≥ r} with gt = sup{0 ≤ s ≤ t : Ys ≤ a}. (1.7)

Working with the stopping time τr (1.7), we consider the Laplace transforms

Ey,x
{
e−uτr1{τr<∞}

}
and Ey,x

{
e−uτr+νXτr1{τr<∞}

}
, (1.8)

for u, ν, r ≥ 0 and y ≥ x. The first quantity gives the law of the ruin time τr,
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whereas the second describes the joint law of the ruin time τr and the position
at ruin Xτr .

The rest of this paper is organized as follows. Section 2 presents the main
results of this paper. Some preliminary results are presented in Section 3. Section
4 discusses the proofs of the main results. Section 5 concludes this paper.

2 Main results

The results are expressed in terms of the scale function W (u)(x) of X defined by∫ ∞
0

e−λxW (u)(x)dx =
1

ψ(λ)− u
, for λ > Φ(u), (2.1)

with W (u)(x) = 0 for x < 0. We refer to W
(u)
ν the scale function under Pν .

Following (2.1), it is straightforward to check under the new measure Pν that

W (u)
ν (x) = e−νxW (u+ψ(ν))(x), (2.2)

for all u and ν such that u ≥ −ψ(ν) and ψ(ν) < ∞. To see this, take Laplace
transforms on both sides. We will also use the notation W

(u)

ν (x) to denote∫ x
0
W

(u)
ν (y)dy.

It is known following [5] that, for any u ≥ 0, the u−scale function W (u) is
C1(0,∞) if the Lévy measure Π does not have atoms and is C2(0,∞) if σ > 0.
For further details on spectrally negative Lévy process, we refer to Chapter VI of
Bertoin [3] and Chapter 8 of Kyprianou [13]. Some examples of Lévy processes
for which W (q) are available in explicit form are given by Kuznetzov et al. [11].
In any case, it can be computed by numerically inverting (2.1), see e.g. Surya
[20].

In the sequel below, we will use the notation Ω
(u)
ε (x, t) defined by

Ω(u)
ε (x, t) =

∫ ∞
ε

W (u)(z + x− ε)z
t
P{Xt ∈ dz}, for ε ≥ 0,

and define its partial derivative w.r.t x, ∂
∂x

Ω
(u)
ε (x, t), by Λ

(u)
ε (x, t), i.e.,

Λ(u)
ε (x, t) =

∫ ∞
ε

W (u)′(z + x− ε)z
t
P{Xt ∈ dz}.

For convenience, we write Ω(u)(x, t) = Ω
(u)
0 (x, t) and Λ(u)(x, t) = Λ

(u)
0 (x, t).

We denote by Ω
(u)
ν the role of Ω(u) under change of measure Pν , i.e.,

Ω(u)
ν (x, t) :=

∫ ∞
0

W (u)
ν (z + x)

z

t
Pν{Xt ∈ dz}, (2.3)
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similarly defined for Λ
(u)
ν (x, t). Using (1.4), we can rewrite Ω

(u)
ν (x, t) as follows

Ω(u)
ν (x, t) = e−νxe−ψ(ν)tΩ(u+ψ(ν))(x, t). (2.4)

The main result concerning the Laplace transform (1.8) is given below.

Theorem 2.1 Define z = y−x, with y ≥ x. For a > 0 and u, r ≥ 0, the Laplace
transform of τr is given by

Ey,x
{
e−uτr1{τr<∞}

}
= e−ur

{
1 + u

[
W

(u)
(a− z)− Ω(u)(a− z, r)

Λ(u)(a, r)
W (u)(a)

+

∫ r

0

(
Ω(u)(a− z, t)− Ω(u)(a− z, r)

Λ(u)(a, r)
Λ(u)(a, t)

)
dt
]}
. (2.5)

By inserting u = 0 in (2.5), we see that in contrary to the Parisian ruin
probability under the Lévy process X, see e.g. [17], we have the following result.

Corollary 2.2 For y ≥ x and r ≥ 0, Py,x{τr <∞} = 1.

Following the result of Theorem 2.1 and applying Esscher transform of mea-
sure, the joint law of ruin-time τr and the position at ruin Xτr is given below.

Proposition 2.3 Define z = y − x, with y ≥ x, and p = u − ψ(ν), with u ≥ 0
and ν such that ψ(ν) <∞. For a > 0 and r ≥ 0, the joint Laplace transform of
τr and Xτr is given by

Ey,x
{
e−uτr+νXτr1{τr<∞}

}
= e−preνx

{
1 + p

[
W

(p)

ν (a− z)− Ω
(p)
ν (a− z, r)
Λ

(p)
ν (a, r)

W (p)
ν (a)

+

∫ r

0

(
Ω(p)
ν (a− z, t)− Ω

(p)
ν (a− z, r)
Λ

(p)
ν (a, r)

Λ(p)
ν (a, t)

)
dt
]}
.

(2.6)

3 Preliminaries
Before we prove the main results, we devote this section to some preliminary
results required to establish (2.5)-(2.6); in particular, Theorem 2.1 on the Laplace
transform of τr. By spatial homogeneity of the sample paths of X, we establish
Theorem 2.1 under the measure P|y. To begin with, we define for a > 0 stopping
times:

τ+
a = inf{t > 0 : Yt > a} and τ−a = inf{t > 0 : Yt < a} under P|y. (3.1)

Due to the absence of positive jumps, we have by the strong Markov property
of X that τ−a can equivalently be rewritten as τ−a = inf{t > 0 : Yt ≤ a} and that

E|y
{
e−θτ

−
a
}

= e−Φ(θ)(y−a). (3.2)
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This is due to the fact that τ−a < τ{0} a.s., with τ{0} = inf{t > 0 : Yt = 0},
and that {Yt, t ≤ τ{0},Py,x} = {−Xt, t ≤ T+

0 ,P−z}, with z = y − x, where
T+
a = inf{t > 0 : Xt ≥ a}, a ≥ 0. We refer to Avram et al. [2] and Mijatović and

Pistorius [18].
In the derivation of the main results (2.5)-(2.6), we will also frequently apply

Kendall’s identity (see e.g. Corollary VII.3 in [3]), which relates the distribution
P{Xt ∈ dx} of a spectrally negative Lévy process X to the distribution P{T+

x ∈
dt} of its first passage time T+

x above x > 0 under P. This identity is given by

tP{T+
x ∈ dt}dx = xP{Xt ∈ dx}dt. (3.3)

To establish our main results, we need to recall the following identities.

Lemma 3.1 Define s = y − x, with y ≥ x. For a > 0, u ≥ 0 and ν such that
ψ(ν) <∞, the joint Laplace transform of τ+

a and Yτ+a is given by

Ey,x
{
e
−uτ+a −νYτ+a 1{τ+a <∞}

}
= (ψ(ν)− u)e−νs

∫ ∞
a−s

e−νzW (u)(z)dz (3.4)

+
W (u)(a− s)
W (u)′(a)

[
(ψ(ν)− u)e−νaW (u)(a)− ν(ψ(ν)− u)

∫ ∞
a

e−νzW (u)(z)dz
]
.

The identity (3.4) is due to Theorem 1 in Avram et al. [2] taking account of
(2.1)-(2.2).

Corollary 3.2 Define s = y − x, with y ≥ x. For a > 0 and u, θ ≥ 0,

Ey,x
{
e
−uτ+a −Φ(θ)Y

τ+a 1{τ+a <∞}
}

= (θ − u)e−Φ(θ)s

∫ ∞
a−s

e−Φ(θ)zW (u)(z)dz (3.5)

− W (u)(a− s)
W (u)′(a)

[
(u− θ)e−Φ(θ)aW (u)(a)− (u− θ)Φ(θ)

∫ ∞
a

e−Φ(θ)zW (u)(z)dz
]
.

Proof The result follows from inserting ν = Φ(θ) in eqn. (3.4) and taking account
that ψ(Φ(θ)) = θ, and

∫ x
0
e−νzW (u)(z)dz = 1

(ψ(ν)−u)
−
∫∞
x
e−νzW (u)(z)dz. �

Along with Lemma 3.1 and Corollary 3.2, the three results below are used
when applying inverse Laplace transforms to get the main results (2.5)-(2.6).

Lemma 3.3 For a given θ > 0 and α such that α < Φ(θ), we have for y ∈ R,∫ ∞
0

e−θte−αy
∫ ∞
y

eαz
z

t
P{Xt ∈ dz}dt =

e−Φ(θ)y(
Φ(θ)− α

) . (3.6)∫ ∞
0

e−θte−αy
∫ ∞
y

eαz
∫ t

0

z

u
P{Xu ∈ dz}dudt =

e−Φ(θ)y

θ
(
Φ(θ)− α

) . (3.7)∫ ∞
0

W (u)(z)
z

t
P{Xt ∈ dz} = eut, for u ≥ 0 and t > 0. (3.8)

The results above are slightly generalizations of those given in [17] and can
be proved in similar fashion of [17] using Kendall’s identity (3.3) and Tonelli.
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4 Proof of the main results

4.1 Proof of Theorem 2.1

The proof is established for the case where X has paths of bounded and un-
bounded variation. To deal with unbounded variation case, we will use a limiting
argument similar to the one employed in [17], [16] and adjust the ruin time (1.7)
accordingly. For this reason, we introduce for ε ≥ 0 the stopping time τ εr defined
by

τ εr = inf{t > r :
(
t− gεt

)
≥ r} with gεt := sup{s < t : Ys ≤ a− ε}.

This stopping time represents the first time that the Lévy insurance risk
process X has spent a fixed r > 0 units of time consecutively below pre-specified
level a > 0 from its running maximum X t ∨ y ending before X getting back up
again to a level a− ε ≥ 0 below the running maximum. Note that τr = τ 0

r .
By spatial homogeneity of X, the proof is given under measure P|y by which

X starts at point zero and has current maximum y. We have for any y > a that

E|y
{
e−uτ

ε
r1{τεr<∞}

}
= e−urP|y{τ−a−ε > r}+ E|y

{
e−uτ

ε
r1{τεr<∞,τ−a−ε≤r}

}
.

By the strong Markov property of the drawdown process Y (1.6), the second
expectation can be worked out using tower property of conditional expectation,

E|y
{
e−uτ

ε
r1{τεr<∞,τ−a−ε≤r}

}
= E|y

{
E
{
e−uτ

ε
r1{τεr<∞,τ−a−ε≤r}

∣∣Fτ−a−ε}}
= E|y

{
e−uτ

−
a−ε1{τ−a−ε≤r}E|Yτ−a−ε

{
e−uτ

ε
r1{τεr<∞}

}}
= E|y

{
e−uτ

−
a−ε1{τ−a−ε≤r}

}
E|a−ε

{
e−uτ

ε
r1{τεr<∞}

}
,

where the last equality is due to the absence of positive jumps of X. Hence,

E|y
{
e−uτ

ε
r1{τεr<∞}

}
= e−ur

(
1− P|y{τ−a−ε ≤ r}

)
+ E|y

{
e−uτ

−
a−ε1{τ−a−ε≤r}

}
E|a−ε

{
e−uτ

ε
r1{τεr<∞}

}
.

(4.1)

Following the above, for y ≤ a we have by strong Markov property of Y that

E|y
{
e−uτ

ε
r1{τεr<∞}

}
= E|y

{
E
{
e−uτ

ε
r1{τεr<∞}

∣∣Fτ+a }}
= E|y

{
e−uτ

+
a 1{τ+a <∞}

(
e−ur

(
1− P|Y

τ+a

{τ−a−ε ≤ r}
))}

+ E|y
{
e−uτ

+
a 1{τ+a <∞}E|Yτ+a

{
e−uτ

−
a−ε1{τ−a−ε≤r}

}}
E|a−ε

{
e−uτ

ε
r1{τεr<∞}

}
= e−urE|y

{
e−uτ

+
a 1{τ+a <∞}

}
− e−urE|y

{
e−uτ

+
a 1{τ+a <∞}P|Yτ+a {τ

−
a−ε ≤ r}

}
+ E|y

{
e−uτ

+
a 1{τ+a <∞}E|Yτ+a

{
e−uτ

−
a−ε1{τ−a−ε≤r}

}}
E|a−ε

{
e−uτ

ε
r1{τεr<∞}

}
.

(4.2)



8 B.A. Surya

The first expectation in the last equality of (4.2) can be worked out in terms
of the scale function W (u)(x) using identity (3.4), whereas the second and the
third expectations are given by the following propositions. To establish the re-
sults, we denote throughout by eθ exponential random time with parameter θ,
independent of X.

Proposition 4.1 For given u, r, ε ≥ 0 and a > 0, we have for any y ≥ 0 that

E|y
{
e−uτ

+
a 1{τ+a <∞}P|Yτ+a

{
τ−a−ε ≤ r

}}
= Ω(u)

ε (a− y, r)− u
∫ r

0

Ω(u)
ε (a− y, t)dt

− W (u)(a− y)

W (u)′(a)

(
Λ(u)
ε (a, r)− u

∫ r

0

Λ(u)
ε (a, t)dt

)
.

(4.3)

Proof On recalling (3.2), we have by Tonelli, Lemma 3.1 and Corollary 3.2,∫ ∞
0

dre−θrE|y
{
e−uτ

+
a 1{τ+a <∞}P|Yτ+a

{
τ−a−ε ≤ r

}}
=

1

θ
E|y
{
e−uτ

+
a 1{τ+a <∞}P|Yτ+a

{
eθ ≥ τ−a−ε

}}
=

1

θ
eΦ(θ)(a−ε)E|y

{
e
−uτ+a −Φ(θ)Y

τ+a 1{τ+a <∞}

}
.

(4.4)

Furthermore, observe following the result of Corollary 3.2 that for θ > u we have

E|y
{
e
−uτ+a −Φ(θ)Y

τ+a 1{τ+a <∞}

}
=

(θ − u)

Φ(θ)
e−Φ(θ)aW (u)(a− y)

+
(θ − u)

Φ(θ)
e−Φ(θ)a

∫ ∞
0

e−Φ(θ)zW (u)′(z + a− y)dz

− W (u)(a− y)

W (u)′(a)

[
(θ − u)e−Φ(θ)a

∫ ∞
0

e−Φ(θ)zW (u)′(z + a)dz
]
.

Define Γ(x, r) =
∫∞
x

z
r
P{Xr ∈ dz}. Following the above, we have from (4.4) that∫ ∞

0

dre−θrE|y
{
e−uτ

+
a 1{τ+a <∞}P|Yτ+a

{
τ−a−ε ≤ r

}}
=

1

θ
E|y
{
e−uτ

+
a 1{τ+a <∞}P|Yτ+a

{
eθ ≥ τ−a−ε

}}
=

(θ − u)

θΦ(θ)
e−Φ(θ)εW (u)(a− y)

+
(θ − u)

θΦ(θ)
e−Φ(θ)ε

∫ ∞
0

e−Φ(θ)zW (u)′(z + a− y)dz

− W (u)(a− y)

θW (u)′(a)

[
(θ − u)e−Φ(θ)ε

∫ ∞
0

e−Φ(θ)zW (u)′(z + a)dz
]
.
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Next, recall following (3.6)-(3.7), (3.2) and the Kendall’s identity (3.3) that( 1

Φ(θ)
− u

θΦ(θ)

)
e−Φ(θ)x =

∫ ∞
0

dre−θr
(

Γ(x, r)− u
∫ r

0

Γ(x, t)dt
)

∫ ∞
0

(
1− u

θ

)
e−Φ(θ)(z+ε)W (u)′(z + a)dz =

∫ ∞
0

dre−θr
(

Λ(u)
ε (a, r)− u

∫ r

0

Λ(u)
ε (a, t)dt

)
.

Moreover, by applying integration by part we have after some calculations that∫ ∞
0

dzW (u)′(z + x)Γ(z + ε, t) = Ω(u)
ε (x, t)−W (u)(x)Γ(ε, t). (4.5)

The claim in (4.3) is established following the above and by Tonelli and Laplace
inversion (noting that both sides of (4.4) is right-continuous in r) to (4.4). �

Proposition 4.2 For given u, r, ε ≥ 0 and a > 0, we have for any y ≥ 0 that

E|y
{
e−uτ

+
a 1{τ+a <∞}E|Yτ+a

{
e−uτ

−
a−ε1{τ−a−ε≤r}

}}
= e−ur

(
Ω(u)
ε (a− y, r)− W (u)(a− y)

W (u)′(a)
Λ(u)
ε (a, r)

)
.

(4.6)

Proof On recalling (3.2), we have by Tonelli, Lemma 3.1 and Corollary 3.2,∫ ∞
0

dre−θrE|y
{
e−uτ

+
a 1{τ+a <∞}E|Yτ+a

{
e−uτ

−
a−ε1{τ−a−ε≤r}

}}
=

1

θ
E|y
{
e−uτ

+
a 1{τ+a <∞}E|Yτ+a

{
e−uτ

−
a−ε1{eθ≥τ−a−ε}

}}
=

1

θ
eΦ(θ+u)(a−ε)E|y

{
e
−uτ+a −Φ(θ+u)Y

τ+a 1{τ+a <∞}

}
.

(4.7)

From Corollary 3.2, the expectation on the right hand side is given by

E|y
{
e
−uτ+a −Φ(θ+u)Y

τ+a 1{τ+a <∞}

}
=

θ

Φ(θ + u)
e−Φ(θ+u)aW (u)(a− y)

+
θ

Φ(θ + u)
e−Φ(θ+u)a

∫ ∞
0

e−Φ(θ+u)zW (u)′(z + a− y)dz

− W (u)(a− y)

W (u)′(a)
θe−Φ(θ+u)a

∫ ∞
0

e−Φ(θ+u)zW (u)′(z + a)dz.

Following the above, we have from the Laplace transform (4.7) that∫ ∞
0

dre−θrE|y
{
e−uτ

+
a 1{τ+a <∞}E|Yτ+a

{
e−uτ

−
a−ε1{τ−a−ε≤r}

}}
=

1

Φ(θ + u)
e−Φ(θ+u)εW (u)(a− y)

+
1

Φ(θ + u)
e−Φ(θ+u)ε

∫ ∞
0

e−Φ(θ+u)zW (u)′(z + a− y)dz (4.8)

− W (u)(a− y)

W (u)′(a)
e−Φ(θ+u)ε

∫ ∞
0

e−Φ(θ+u)zW (u)′(z + a)dz.
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Moreover, following (3.2), we have by applying Kendall’s identity and (3.6)

1

Φ(θ + u)
e−Φ(θ+u)x =

∫ ∞
0

dre−θre−urΓ(x, r)∫ ∞
0

e−Φ(θ+u)(z+ε)W (u)′(z + a)dz =

∫ ∞
0

dre−θre−urΛ(u)
ε (a, r).

The claim (4.6) is justified using the above and (4.5) and by Tonelli and Laplace
inversion of (4.8) - noting that both sides of (4.8) is right-continuous in r. �

From the above two propositions, we have following (4.2) and (3.4) that

E|y
{
e−uτ

ε
r1{τεr<∞}

}
= e−ur

[
1 + uW

(u)
(a− y)− uW

(u)(a)

W (u)′(a)
W (u)(a− y)

]
− e−ur

[
Ω(u)
ε (a− y, r)− u

∫ r

0

Ω(u)
ε (a− y, t)dt (4.9)

− W (u)(a− y)

W (u)′(a)

(
Λ(u)
ε (a, r)− u

∫ r

0

Λ(u)
ε (a, t)dt

)]
+ e−ur

(
Ω(u)
ε (a− y, r)− W (u)(a− y)

W (u)′(a)
Λ(u)
ε (a, r)

)
E|a−ε

{
e−uτ

ε
r1{τεr<∞}

}
.

We arrive at our claim (2.5) once the expectation on the right hand side is
found. For this purpose, set y = a− ε on both sides of the above equation to get[

1− e−ur
(

Ω(u)
ε (ε, r)− W (u)(ε)

W (u)′(a)
Λ(u)
ε (a, r)

)]
E|a−ε

{
e−uτ

ε
r1{τεr<∞}

}
= e−ur

[
1 + uW

(u)
(ε)− uW

(u)(a)

W (u)′(a)
W (u)(ε)− Ω(u)

ε (ε, r) + u

∫ r

0

Ω(u)
ε (ε, t)dt

+
W (u)(ε)

W (u)′(a)

(
Λ(u)
ε (a, r)− u

∫ r

0

Λ(u)
ε (a, t)dt

)]
. (4.10)

However, on account of (3.8), we can rewrite the terms Ω
(u)
ε (ε, t) as follows

Ω(u)
ε (ε, t) = eut −

∫ ε

0

W (u)(z)
z

t
P{Xt ∈ dz},

from which the equation (4.10) simplifies further after some calculations to[ ∫ ε

0

W (u)(z)
z

r
P{Xr ∈ dz}+

W (u)(ε)

W (u)′(a)
Λ(u)
ε (a, r)

]
E|a−ε

{
e−uτ

ε
r1{τεr<∞}

}
=

∫ ε

0

W (u)(z)
z

r
P{Xr ∈ dz}+

W (u)(ε)

W (u)′(a)
Λ(u)
ε (a, r) + u

[
W

(u)
(ε)− W (u)(a)

W (u)′(a)
W (u)(ε)

−
∫ r

0

dt
(∫ ε

0

W (u)(z)
z

t
P{Xt ∈ dz}+

W (u)(ε)

W (u)′(a)
Λ(u)
ε (a, t)

)]
,
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or equivalently, we obtain after dividing both sides of the equation by W (u)(ε),

E|a−ε
{
e−uτ

ε
r1{τεr<∞}

}
=1 + u

[
W

(u)
(ε)

W (u)(ε)
− W (u)(a)

W (u)′(a)
−
∫ r

0
dt
( ∫ ε

0
W (u)(z)

W (u)(ε)
z
t
P{Xt ∈ dz}+ Λ

(u)
ε (a,t)

W (u)′(a)

)]
( ∫ ε

0
W (u)(z)

W (u)(ε)
z
r
P{Xr ∈ dz}+ Λ

(u)
ε (a,r)

W (u)′(a)

) .

Using this result and putting it back in the equation (4.9), we arrive at

eurE|y
{
e−uτ

ε
r1{τεr<∞}

}
= 1 + uW

(u)
(a− y)− uW

(u)(a)

W (u)′(a)
W (u)(a− y)

+ u

∫ r

0

dt
(

Ω(u)
ε (a− y, t)− W (u)(a− y)

W (u)′(a)
Λ(u)
ε (a, t)

)

+ u

[
W

(u)
(ε)

W (u)(ε)
− W (u)(a)

W (u)′(a)
−
∫ r

0
dt
( ∫ ε

0
W (u)(z)

W (u)(ε)
z
t
P{Xt ∈ dz}+ Λ

(u)
ε (a,t)

W (u)′(a)

)]
( ∫ ε

0
W (u)(z)

W (u)(ε)
z
r
P{Xr ∈ dz}+ Λ

(u)
ε (a,r)

W (u)′(a)

)
×
(

Ω(u)
ε (a− y, r)− W (u)(a− y)

W (u)′(a)
Λ(u)
ε (a, r)

)
. (4.11)

We now want to compute the limit as ε ↓ 0 of (4.11). In order to do this,
recall by the spatial homogeneity that P|y{τ εr ≤ t} = P|y+ε{τr ≤ t} and
therefore by the right-continuity of the map y → P|y{τr ≤ t}, we have
P|y{τr ≤ t} = limε↓0 P|y{τ εr ≤ t}. Hence, by weak convergence theorem the
Laplace transform of P|y{τ εr ≤ t} converges as ε ↓ 0 to that of P|y{τr ≤ t}, i.e.,
limε↓0 E|y

{
e−uτ

ε
r1{τεr<∞}

}
= E|y

{
e−uτr1{τr<∞}

}
.

We consider two cases: W (u)(0+) > 0 (X has paths of bounded variation)
and W (u)(0+) = 0 (X has unbounded variation). For the case W (u)(0+) > 0,

eurE|y
{
e−uτr1{τr<∞}

}
= 1 + uW

(u)
(a− y)− uW

(u)(a)

W (u)′(a)
W (u)(a− y)

+ u

∫ r

0

dt
(

Ω(u)(a− y, t)− W (u)(a− y)

W (u)′(a)
Λ(u)(a, t)

)
(4.12)

− u
( W (u)(a)

Λ(u)(a, r)
+

∫ r

0

Λ(u)(a, t)

Λ(u)(a, r)
dt
)(

Ω(u)(a− y, r)− W (u)(a− y)

W (u)′(a)
Λ(u)(a, r)

)
,

which after some further calculations simplifies to the main result (2.5).
For the case W (u)(0+) = 0, we have after applying integration by parts that∫ ε

0

W (u)(z)

W (u)(ε)

z

r
P{Xr ∈ dz} =

∫ ε

0

z

r
P{Xr ∈ dz}−

∫ ε

0

dz
W (u)′(z)

W (u)(ε)

∫ z

0

w

r
P{Xr ∈ dw}.

Therefore, by employing l’Hôpital rule we obtain

lim
ε↓0

∫ ε

0

W (u)(z)

W (u)(ε)

z

r
P{Xr ∈ dz} = lim

ε↓0

W (u)′(ε)
∫ ε

0
z
r
P{Xr ∈ dz}

W (u)′(ε)
= 0.
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The claim is established once we show that limε↓0
W

(u)
(ε)

W (u)(ε)
= limε↓0

W (u)(ε)

W (u)′(ε)
= 0.

This turns out to be the case when X has paths of unbounded variation since
W (u)′(0+) = 2/σ2 if σ 6= 0 and is equal to ∞ if σ = 0. See for instance Lemma
4.4. in Kyprianou and Surya [12]. On account of these results, we arrive at the
identity (4.12), which after some further calculations simplifies to the main result
(2.5). �

We have shown that (2.5) holds for z ≤ a. We now prove that (2.5) holds for
z > a. For this purpose, recall that under measure P|y, with y > a, τ+

a = 0 a.s.
On account of the fact W (u)(x) = 0 for x < 0, we have from (4.3) and (4.6) for
ε = 0 and y > a,

P|y{τ−a ≤ r} = Ω(u)(a− y, r)− u
∫ r

0

Ω(u)(a− y, t)dt. (4.13)

E|y
{
e−uτ

−
a 1{τ−a ≤r}

}
= e−urΩ(u)(a− y, r). (4.14)

These identities can be proved by Kendall’s identity, Tonelli, (3.2) and Laplace
inversion taking account for x < 0,

∫∞
0
e−θtΩ(u)(x, t)dt = eΦ(θ)x/(θ − u), θ > u.

Indeed, ∫ ∞
0

e−θtΩ(u)(x, t)dt =

∫ ∞
0

e−θt
∫ ∞

0

W (u)(z + x)
z

t
P{Xt ∈ dz}dt

=

∫ ∞
0

e−θt
∫ ∞

0

W (u)(z + x)P{T+
z ∈ dt}dz

=

∫ ∞
0

W (u)(z + x)

∫ ∞
0

e−θtP{T+
z ∈ dt}dz

=

∫ ∞
0

W (u)(z + x)e−Φ(θ)zdz

= eΦ(θ)x

∫ ∞
x

e−Φ(θ)zW (u)(z)dz. �

Starting from eqn. (4.1) with ε = 0, we obtain following identities (4.13)-
(4.14),

E|y
{
e−uτr1{τr<∞}

}
= e−ur

[
1 + u

∫ r

0

Ω(u)(a− y, t)dt− Ω(u)(a− y, r)
]

+ e−urΩ(u)(a− y, r)E|a
{
e−uτr1{τr<∞}

}
.

(4.15)

The expression for E|a
{
e−uτr1{τr<∞}

}
is given by setting z = a in (2.5):

E|a
{
e−uτr1{τr<∞}

}
= 1− u

( W (u)(a)

Λ(u)(a, r)
+

∫ r

0

Λ(u)(a, t)

Λ(u)(a, r)
dt
)
, (4.16)

where we have used in the calculation above the fact that Ω(u)(0, t) = eut, see
eqn. (3.8). By inserting (4.16) in (4.15) we obtain after some further calculations
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that

E|y
{
e−uτr1{τr<∞}

}
= e−ur

{
1 + u

[
− Ω(u)(a− y, r)

Λ(u)(a, r)
W (u)(a)

+

∫ r

0

(
Ω(u)(a− y, t)− Ω(u)(a− y, r)

Λ(u)(a, r)
Λ(u)(a, t)

)
dt
]}
,

which corresponds to (2.5) for z > a showing that (2.5) holds for any z ≥ 0. �

4.2 Proof of Proposition 2.3

Applying Esscher transform of measure (1.4) to the result (2.5), we have

Ey,x
{
e−uτr+νXτr1{τr<∞}

}
=eνxEy,x

{
e−pτreν(Xτr−x)−ψ(ν)τr1{τr<∞}

}
=eνxEνy,x

{
e−pτr1{τr<∞}

}
, (4.17)

where we have defined p = u− ψ(ν). Under the new measure Pν ,

Eνy,x
{
e−pτr1{τr<∞}

}
= e−pr

{
1 + p

[
W

(p)

ν (a+ x− y)− Ω
(p)
ν (a+ x− y, r)

Λ
(p)
ν (a, r)

W (p)
ν (a)

+

∫ r

0

(
Ω(p)
ν (a+ x− y, t)− Ω

(p)
ν (a+ x− y, r)

Λ
(p)
ν (a, r)

Λ(p)
ν (a, t)

)
dt
]}
,

following which and the equation (4.17) our claim in (2.6) is established. �

5 Conclusions
We have presented some new results concerning Parisian ruin problem under
Lévy insurance risk process, where ruin is announced when the risk process has
gone below a certain level from the last record maximum of the process, also
known as the drawdown, for a fixed consecutive period of time. They further
extend the existing results on Parisian ruin below a fixed level of the risk process.
Using recent developments on fluctuation and excursion theory of the drawdown
of the Lévy risk process, the law of ruin-time and the position at ruin was given
in terms of their joint Laplace transforms. Identities are presented semi-explicitly
in terms of the scale function and the law of the Lévy process. The results can be
used to calculate some quantities of interest in finance and insurance as discussed
in the introduction.
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