
Implementation and Evaluation of Multihop ARQ

for Reliable Communications in Underwater

Acoustic Networks

Alvin Valera Pius W.Q. Lee Hwee-Pink Tan Huiguang Liang Winston K.G. Seah

Institute for Infocomm Research (I2R)

Agency For Science, Technology And Research (A*STAR)

1 Fusionopolis Way, #21-01 Connexis

Singapore 138632

Email: {acvalera,wqlee,hptan,hliang,winston}@i2r.a-star.edu.sg

Abstract—Underwater acoustic networking is an emerging
technology platform for oceanographic data collection, pollu-
tion monitoring, offshore exploration and tactical surveillance
applications. Design of reliable and efficient communications
protocols is challenging due to the unique characteristics of
underwater acoustic channels. In this paper, we present a
modular and lightweight implementation of an opportunistic
multihop automatic repeat request (ARQ) scheme in a real
system. We evaluate the performance of the opportunistic ARQ
using inexpensive underwater acoustic modems in a shallow
underwater environment.

I. INTRODUCTION

Underwater acoustic networking is an emerging technology

platform for oceanographic data collection, pollution monitor-

ing, offshore exploration and tactical surveillance applications.

Underwater acoustic channels are characterized by severe

bandwidth limitations, severe channel impairments due to

multipath and fading, high and extremely variable propagation

delay, high bit error rates and frequent connectivity inter-

ruptions due to shadow zones [1]–[4]. These characteristics

pose difficult challenges in the design of reliable and efficient

communications protocols.

Several automatic repeat request (ARQ) schemes have been

proposed to improve the reliability of underwater acoustic

communications. Recently, Tan et al [5] proposed an op-

portunistic multi-hop ARQ scheme that uses knowledge of

per-hop bit error rate (BER) to decide on whether to per-

form implicit or explicit acknowledgment. The scheme has

been analytically shown to perform well compared with non-

opportunistic ARQ schemes [5]. In this paper, we present an

implementation of the opportunistic ARQ in a real system. To

enable the implementation of the opportunistic ARQ, we de-

sign and implement a network stack and software architecture

that is suitable for challenged underwater acoustic networks.

We validate the implementation by means of an experiment

using inexpensive underwater acoustic modems.

The rest of the paper is organized as follows: Section II

presents related work on reliable communications in under-

water acoustic networks. Section III presents implementation

design details of an underwater network stack, software archi-

tecture, and the opportunistic ARQ. Experimental setup and

results from performance evaluation in a shallow underwater

environment are presented in Section IV. Section V concludes

the paper with a summary of the important findings and future

work.

II. RELATED WORK

To set the scene for this paper, we begin with a review of

related work in the area of reliable communications in multi-

hop underwater acoustic networks.

Several studies have explored the benefits of multi-hop

underwater networks. Sozer [1] showed that the use of re-

lays as opposed to direct communications minimized energy

consumption. A study by Carbonelli and Mitra [6] showed

that multi-hopping significantly improved signal detection in

underwater acoustic networks. Studies by Stojanovic [7] and

Zhang et al [8] further showed that multi-hopping can be used

to improve achievable data rates. Given these positive results, it

is therefore important to support multi-hop communications in

underwater acoustic networks. This paper addresses this need

as it presents a real-world implementation of an underwater

network stack to support multi-hop communications.

Compared with single-hop ARQ, ARQ mechanisms for

multi-hop communications are much less studied. Wiemann

et al [9] employed multi-hop end-to-end ARQ (e2e-ARQ)

to handle node mobility in terrestrial wireless networks. Lott

[10] proposed another multi-hop ARQ mechanism (M-ARQ)

for terrestrial wireless networks by coupling a per-hop ARQ

protocol with an e2e-ARQ. As these schemes are not suitable

for underwater acoustic networks, Tan et al [5] proposed an

opportunistic multi-hop ARQ scheme that dynamically selects

between implicit and explicit acknowledgment depending on

the underwater channel conditions. This paper presents an real-

world implementation of this scheme.

1-4244-2523-5/09/$20.00 ©2009 IEEE

III. IMPLEMENTATION DESIGN

A. Opportunistic Multi-hop ARQ

Before presenting the implementation design details, we

briefly discuss the salient features of the opportunistic ARQ

scheme proposed by Tan et al [5].

In basic stop-and-wait (SAW) ARQ, a sender waits for an

acknowledgment (ACK) from the receiver after it completes

its transmission of a data packet. If no ACK is received within

the timeout period, the sender re-transmits the data packet. The

proposed multi-hop ARQ modifies the basic SAW operation

with the use of implicit and explicit ACKs.

Implicit Acknowledgment: Due to the isotropic nature of

the underwater acoustic channel, a data packet forwarded by

node j − 1 to node j might be overheard by j − 1 once

j forwards the packet to the next hop node j + 1. This

overhearing of the data packet can serve as an implicit ACK

from j to j − 1.

Explicit Acknowledgment: This type of acknowledgment

is piggy-backed in data packets. For example, when node j

forwards a data packet to node j +1 (the data packet need not

be necessarily from j− 1), it piggy-backs an ACK (or several

ACKs) for j − 1.

The opportunistic multi-hop ARQ scheme uses knowledge

of per-hop bit error rates (BER) for determining whether to

use implicit or explicit acknowledgment. The scheme proposes

two types of thresholds: (i) latency threshold (p∗
l
); and (ii)

energy-efficiency threshold (p∗
e
). When the per-hop BER is

greater than p∗e , then explicit ACK is used. When the per-hop

BER is less than p∗
l
, implicit ACK is used. If the per-hop

BER lies between p∗
l

and p∗
e
, either explicit or implicit ACK

is used, depending on the objective or priority of the system.

If the objective is to improve latency, explicit ACK should

be used; otherwise, implicit ACK should be used for better

energy-efficiency.

B. Protocol States

Figure 1 shows the protocol state transition diagram. In the

diagram, the decision process on whether to use implicit or

explicit ACK when the per-hop BER is between p∗
l

and p∗
e

is

not shown. In such cases, the state may either transition from

IDLE to IMP or EXP, depending on the system objective. The

important protocol transitions are as follows:

• When node j receives a data packet and it is the sink,

the protocol transitions from IDLE to ACK-SEND state.

An ACK is immediately sent to the packet sender and

the protocol immediately transitions to IDLE.

• When node j receives a data packet, it is not the sink

or source and the per-hop BER is less than the threshold

p∗
l
, then the protocol transitions from IDLE to IMP state.

The protocol does not add anything onto the received

data packet but sets the ACK-WAIT timeout period to

IMP TIMEOUT. The protocol immediately transitions to

the DATA-SEND state where the packet is relayed to the

next hop.

Fig. 1. Protocol state transition diagram.

• When node j receives a data packet, it is not the sink or

source and the per-hop BER is greater than the threshold

p∗
e
, the protocol transitions from IDLE to EXP state. An

ACK is piggy-backed onto the received data packet and

sets the ACK-WAIT timeout period to EXP TIMEOUT.

The protocol immediately transitions to the DATA-SEND

state where the packet is relayed to the next hop.

• At the ACK-WAIT state, node j is essentially waiting

for an acknowledgment for a packet it just transmitted.

If acknowledgment is received, the protocol transitions

to IDLE. If no acknowledgment is received within the

timeout period, the protocol transitions to DATA-SEND

again provided that the number of retries is less than

RETRY LIMIT. If no acknowledgment is received within

the timeout period and the number of retries is greater

than or equal to RETRY LIMIT, then the protocol tran-

sitions to the QUEUE-CLEANUP state.

C. Underwater Network Stack and Software Architecture

While it is attractive to design an entirely new protocol stack

for underwater networks, our strategy is to adapt the widely-

accepted and widely-tested TCP/IP protocol stack. However,

due to severely low capacity of underwater acoustic channels,

we must minimize the overhead due to packet headers. To

achieve this, we propose the inclusion of a component that

will perform compression (and decompression) of upper layer

packet headers.

Our proposed software architecture is shown in Figure 2.

The component “Network Header Compression Adapter” is

responsible for compressing (and decompressing) the network

layer packet headers. For outgoing packets, it will “decap-

sulate” packets received from the network layer by stripping

Fig. 2. Software implementation architecture.

off the network header and replacing it with a lightweight

underwater (UW) header. For incoming packets, it will strip off

the UW header and construct the appropriate network header.

The “Multi-hop ARQ” component implements the oppor-

tunistic ARQ described in Section III-A. It uses link quality

measurements obtained from a separate component called

“Link Quality Measurement Module”. Due to the modularity

of the architecture, one can easily implement other ARQ

schemes and integrate them into this architecture.

Addressing: To minimize the overhead due to addressing,

node addresses will be 8 bits wide. The address 0xFF will

be reserved for broadcast address. This results in an address

range from 0x00 to 0xFE, or 254 addressable hosts. The

network and data link layers will use the same address.

Hence, no address resolution protocol will be required. To

accomplish this addressing scheme without changing the IP

layer, the component “Network Header Compression Adapter”

will provide IP address spoofing.

Frame Types: The protocol implementation defines three

types of frames: (i) plain data frame – a frame that contains

data of up to 60 bytes; (ii) data frame with piggybacked

acknowledgment – a frame that contains both data of up to

58 bytes and an acknowledgment for one data frame; and

(iii) acknowledgment frame – a frame that contains acknowl-

edgment for one data frame. Figure 3 shows the fields of

the three frame formats. The meaning/purpose of the fields

are as follows: (i) the 2-bit field ”V” refers to the protocol

version; (ii) the 3-bit field ”R” is reserved for future use; (iii)

the 1-byte sequence number is a sender-generated number to

uniquely identify frames that the sender has sent out; (iv) the

1-byte sender address field contains the address of the sending

node; (v) the 1-byte receiver field contains the address of the

Fig. 4. Compressed and uncompressed IPv4 header.

receiving node; (vi) the 1-byte data length indicates the length

of the data field. For the 2nd and 3rd frame types, the fields

Sequence Number of Data to ACK and Previous Hop of Data

to ACK, which are both 1 byte long, essentially refer to the

identity of the data frame being acknowledged.

D. Header Compression

One of the most difficult challenges in underwater acoustic

networking is its severely low channel capacity [1]–[4]. Thus,

protocols must ensure that packet overheads due to headers

are minimized. The proposed architecture includes a header

compression component that is designed to operate with an

IPv4-based network layer. The advantage of this approach is

that we can tap the rich array of applications written for IP-

based networks.

Figure 4 shows the compressed and uncompressed IPv4

header. In this compression scheme, only those fields that

cannot be calculated or mocked are included. The compressed

header version is only five bytes long. The IP address only uses

one byte, that is, the fourth octet in the four-octet IPv4 address.

Obviously, the compression scheme does not allow IP options.

Furthermore, it does not include the protocol field. Hence,

applications that will use this stack must directly inject packets

above the IP layer. In Linux, this can be easily accomplished

with the use of raw IP sockets.

E. Implementation Details

We implemented the underwater stack and all the relevant

components in the Linux operating system (using kernel

version 2.6). In this study, we used the 480 bps Aquacomm

acoustic modems from DSPComm Pty Ltd as the hardware

platform [11]. Table I shows the detailed specifications of

the modem while Figure 5 shows the modem’s underwater

casing and transducer. Each of the components (i.e., multi-

hop ARQ, framing component, network header compression

adapter, and low level device driver) was written as a stand-

alone loadable kernel module. The underwater stack provides

a programming interface and hooks to easily implement and

replace the individual components. For example, if acoustic

Fig. 3. Frame formats used by the proposed underwater network stack.

TABLE I
AQUACOMM ACOUSTIC MODEM SPECIFICATIONS.

Parameter Value

Data rate 480 bits per second

Bandwidth Broadband operation 16 KHz to 30 KHz

Range Up to 3 km

Modulation Direct sequence spread spectrum / OFDM

Error detection CRC-16 error detection

Host interface Serial port (RS-232)

modems from other vendors were used, only the low level

device driver component needs to be replaced.

Implementing the framing component and network header

compression adapter was straight-forward and was easily ac-

complished. Implementing the low level device driver requires

knowledge of the Aquacomm acoustic modem programming

interface. In this case, the interface is in the form of RS-

232 AT commands. We wrote a software development kit

to encapsulate the commands supported by the modem and

exposed it to higher layers through the “High Level Hardware

Interface” component. The SDK takes advantage of the mature

TTY support in Linux to communicate with the modem

through the serial port.

We encountered several challenges while implementing the

multihop ARQ using the Aquacomm acoustic modems. Recall

that the ARQ requires per-hop bit error rate (BER) threshold to

determine which acknowledgment scheme is to be applied. As

this particular model does not provide BER information, we

slightly modified the threshold to use per-packet receive signal

strength (RSS) instead as it is provided by the modem. We later

discovered that the RSS values provided by the modem have

very low correlation with the packet delivery ratio. While we

are still investigating methods to accurately predict channel

conditions, for this paper, we simply set p∗
e

= 0 (so that EXP

ACK is always used).

IV. EVALUATION

A. Experimental Setup

We used the relatively inexpensive 480 bps Aquacomm

acoustic modems (see Table I for the detailed specifications

and Figure 5 for an image of the underwater casing and

Fig. 5. Aquacomm acoustic modem casing and transducer (red).

Fig. 6. Experimental setup for single-hop tests. The two boats are tied using
a nylon rope. The modems are submerged at around 1 meters from the water
surface.

transducer) to evaluate the real-world performance of the

opportunistic ARQ scheme. In this performance evaluation,

we focus our attention first on the single-hop performance.

We deployed two acoustic modems in an area that is approxi-

mately 3 square kilometers and with depths ranging from 4 to

9 meters. We fixed the inter-node distance to 100 m by tying

the boats together as shown in Figure 6.

We used the default modem settings for all the experiments.

We used nemesis [12], an IP packet injection program, to

generate constant bit rate traffic at 1 packet every 10 seconds.

We varied the packet size from 16 bytes to 32 bytes. Although

the modem supports up to 64 bytes of packet size, we

did not use it as the performance using this parameter was

extremely inconsistent due to severe channel conditions. For

the opportunistic ARQ, we set the ACK timeout to three

seconds and limited the data packet retransmissions to three. If

no ACK is received after four transmissions (one transmission

plus three retransmissions), the data packet is dropped.

Fig. 7. Packet delivery ratio.

Fig. 8. End-to-end delay.

B. Results

We now present our results obtained from the experiments.

Figures 7 and 8 show the packet delivery ratio (PDR) and end-

to-end delay, respectively, of the opportunistic ARQ scheme

compared with the broadcast (no ARQ or reliability). The

PDR results show that the opportunistic ARQ scheme provides

significant improvement on the reliability of the channel.

Without ARQ, PDR is at most 73% and 52% for 16 bytes

and 32 bytes, respectively. With the opportunistic ARQ, PDR

increase by more than 20% for 16 bytes and almost 30% for

32 bytes.

However, the use of ARQ to provide improvement in data

delivery ratio has a negative impact on the delay. In both 16

bytes and 32 bytes, the delay when no ARQ is employed

is very low. At 16 bytes, the delay is around one second

while at 32 bytes, the delay is around 1.3 seconds. When the

opportunistic ARQ is employed, the delay shows a dramatic

increase. At 16 bytes, the delay increases to 12.5 seconds while

at 32 bytes, the delay increases to 58 seconds. These results

are not surprising given the fact that the opportunistic ARQ

utilizes packet retransmissions.

We elaborate on why the delay can significantly increase

when the opportunistic ARQ is deployed. Recall that in these

experiments, we limited the retransmissions to three for the

opportunistic ARQ. Intuitively, the maximum delay using the

opportunistic ARQ is approximately four times the timeout

when no ARQ is deployed (around 12 seconds). Note however

that the traffic is being generated at a faster pace, namely,

one packet every ten seconds. What happens is that when

the network layer receives a packet and the ARQ is still in

the process of retransmissions (i.e., not in the IDLE state),

the packet is simply queued at the network layer. Once

ARQ completes the process and returns to the IDLE state,

it processes the next packet from the network layer queue.

With this kind of processing, it is obvious that packets may

accumulate at the network layer queue. Thus, in extremely

poor channel conditions, the packets can experience high delay

due to both queuing delay and retransmissions, with the former

contributing a significant fraction in the 32 byte case.

Packet size shows a significant effect on the PDR and delay.

Without ARQ, the higher packet size of 32 bytes has 20% less

PDR. With ARQ, the higher packet size has 15% less PDR.

These result is expected since a bigger packet has a higher

probability of being corrupted and therefore not received at the

network layer. In terms of delay, the results are consistent, with

the bigger packet size having larger delays than the smaller

packet size.

V. CONCLUSION AND FUTURE WORK

Underwater acoustic networks is an emerging technology

platform for oceanographic data collection, pollution monitor-

ing, offshore exploration and tactical surveillance applications.

Design of reliable and efficient communications protocols is

challenging due to the unique characteristics of underwater

acoustic channels. In this paper, we presented a modular

and lightweight implementation of an opportunistic multi-hop

ARQ in a real system. We also designed and implemented

a lightweight, flexible and extensible network stack that is

suitable for challenged underwater acoustic networks. We

evaluated the performance of the ARQ using inexpensive

underwater acoustic modems in a shallow environment and

demonstrated that the opportunistic ARQ can provide sig-

nificant improvement in terms of data delivery ratio. The

disadvantage is an increase in end-to-end delay due to queuing

and retransmissions.

The single-hop results presented in this paper are important

to verify the stability and functional correctness of the protocol

implementation. We have sufficiently demonstrated that the

implemented ARQ is indeed stable and functionally correct.

As the implemented opportunistic ARQ scheme is targeted for

multi-hop networks, we are currently conducting experiments

in an underwater multi-hop network.

ACKNOWLEDGMENT

The authors would like to thank Mr. Lim Kok Tong and the

staff of Public Utilities Board (PUB) Pandan Reservoir Office

for allowing us to use their facilities and also providing us

with logistical support during our field experiments.

REFERENCES

[1] E. Sozer, M. Stojanovic, and J. Proakis, “Underwater acoustic networks,”
IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 72–83, Jan.
2000.

[2] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor
networks: research challenges,” Ad Hoc Networks (Elsevier), vol. 3, pp.
257–279, 2005.

[3] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research challenges
and applications for underwater sensor networking,” in Proc. IEEE

WCNC 2006. Las Vegas, Nevada, USA: IEEE, April 2006, pp. 228–
235.

[4] J. Preisig, “Acoustic propagation considerations for underwater acoustic
communications network development,” SIGMOBILE Mob. Comput.

Commun. Rev., vol. 11, no. 4, pp. 2–10, 2007.
[5] H.-P. Tan, W.K.G. Seah, and L. Doyle, “A multi-hop ARQ protocol for

underwater acoustic networks,” in Proc. OCEANS 2007 - Europe, Jun.
2007.

[6] C. Carbonelli and U. Mitra, “Cooperative multihop communication for
underwater acoustic networks,” in Proc. ACM WUWNet 2006. New
York, NY, USA: ACM, 2006, pp. 97–100.

[7] M. Stojanovic, “Capacity of a relay acoustic channel,” in Proc. OCEANS

2007, 29 Sept–4 Oct 2007, pp. 1–7.
[8] W. Zhang, M. Stojanovic, and U. Mitra, “Analysis of a simple multihop

underwater acoustic network,” in Proc. ACM WuWNeT 2008. New
York, NY, USA: ACM, 2008, pp. 3–10.

[9] H. Wiemann, M. Meyer, R. Ludwig, and P. Chang, “A novel multi-hop
ARQ concept,” in Proc. IEEE VTC 2005-Spring, vol. 5, May-1 June
2005, pp. 3097–3101.

[10] M. Lott, “ARQ for multi-hop networks,” in Proc. IEEE VTC-2005-Fall,
vol. 3, Sep. 2005, pp. 1708–1712.

[11] DSPComm Pty Ltd, “Aquacomm: Underwater wireless modem,”
http://www.dspcomm.com/products aquacomm.html.

[12] J. Nathan, “Nemesis – packet injection tool suite,”
http://nemesis.sourceforge.net.

	Select a link below
	Return to main menu
	Return to previous view

