
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wananga o te Upoko o te Ika a Maui

Computer Science
PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@mcs.vuw.ac.nz

Genetic Programming for
Multiple Class Classification

Yun ZHANG

Supervisor: Dr Mengjie Zhang

May 12, 2005

Submitted in partial fulfilment of the requirements for
Bachelor of Science with Honours in Computer Science.

Abstract

Genetic Programming is a relative young machine learning paradigm with many open
areas for accepting new ideas. Multiple class classification is a standard though
non-trivial real life problem that is good for testing the ability of learning algorithms. In
this report, we will describe two developments regarding refining techniques involved
in the learning process of genetic programming, along with the estimation of the value of
the development by applying the new techniques to multiple-class (object) classification
tasks, then comparing the result with conventional GP approaches, in terms of
effectiveness and efficiency.

The first development Modi regards the invention of a multiple outputs genetic program
tree structure. With the use of it on multi-class classification we get the classification
accuracy substantially improved. The second development the Pres algorithm regards a
theoretically linear time program tree simplification algorithm involving using prime
numbers. With the use of it we get the training time of GP substantially shortened
without affecting the effectiveness of the learning. Ideas behind both developments
would be valuable in more general sense, but not only restricted in the area of GP.
Reasonable future works are also derived, which are quite worthwhile to go and try.

Comics - Spokesperson

5 z

+ x

×

(5 + z) × x

Standard Program Tree

Modi is
something

in between
It uses the LHS
structure to
simulate the

RHS one

−

5 x z

+ ÷ y

× -

(
(5 + z) × (x ÷ z) , (x ÷ z) − y

)

Multiple-output Loopy DAG

Figure 1: Spokesperson of Modi – “multiple-output” evil squid

a ⇐= a + b − b + b − b

a ⇐=
c+5+b
5+b+c

+ a − 1

a ⇐= if(x) then a else a

a ⇐= if(0) then b else a

Figure 2: Spokesperson of Pres – “redundant” poor pig

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Focus Problems . 2
1.3 Goals . 3
1.4 Contributions . 3
1.5 Structure of Document . 4

2 Background Survey 5
2.1 Genetic Programming . 5

2.1.1 The Evolutionary Learning Process . 6
2.1.2 Key Concepts . 7
2.1.3 Key Features . 10

2.2 Classification . 11
2.3 Genetic Programming on Multiple-class Classification 12

3 Experimental Design 13
3.1 Data Sets . 13

3.1.1 Shapes . 13
3.1.2 Coins . 14
3.1.3 Digits . 15

3.2 Genetic Programming System Configuration . 17

4 Multiple Outputs Program Tree – the Modi Structure 18
4.1 Multiple-outputs Structures in GP . 19

4.1.1 Evolutionary Consistency re Datatype . 19
4.1.2 Evolutionary Consistency re Program Architecture 19
4.1.3 Multiple-outputs Structures . 20

4.2 The Modi Program Tree Structure . 23
4.2.1 Modi Program Structure . 23
4.2.2 Evaluation of the Modi Program . 24
4.2.3 The loopy DAG Simulation Effect of Modi . 24
4.2.4 Modi Program Generation . 25

4.3 Experimental Results and Analysis . 28
4.3.1 Overall Classification Performance . 28
4.3.2 Effectiveness of the Modi Rate µ . 30
4.3.3 Efficiency Analysis . 31

4.4 Further Analysis and Discussions . 33
4.4.1 Modi Advantages . 33
4.4.2 Modi Desires Bigger Tree Depth . 33
4.4.3 A Note on the Digit Dataset . 34

4.5 Chapter Summary . 36

ii

5 Simplification with Prime – the Pres Algorithm 37
5.1 The Pros and Cons of Program Simplification . 38
5.2 The Pres Algorithm . 39

5.2.1 Pres-1: Neat one-level simplification . 39
5.2.2 Pres-2: Messy one-level simplification . 42
5.2.3 Pres-3: Deeper-level simplification . 45
5.2.4 Pres-4: Get back the simplified program . 49
5.2.5 Pres-5: Dealing with other operators . 49
5.2.6 Summary . 50

5.3 Experimental Results . 51
5.3.1 The Effectiveness . 51
5.3.2 The Efficiency . 53

5.4 Further Analysis and Discussion . 54
5.4.1 The restructuring side effect . 54
5.4.2 The Potential of Simplification as a Genetic Operator (Future work) 55
5.4.3 The Practical Achievement of the “Theoretically Linear Time” 56

5.5 Chapter Summary . 57

6 Conclusions and Future works 58
6.1 Modi . 58
6.2 Pres . 60

A Experimental Result - Tabular 63

Bibliography 63

iii

List of Figures

1 Spokesperson of Modi – “multiple-output” evil squid i
2 Spokesperson of Pres – “redundant” poor pig . i

2.1 Flowchart of the Learning Procedure of Genetic Programming 6
2.2 A Toy Genetic Program Tree . 7
2.3 Genetic Operators in Action . 9
2.4 System Complexity Control — the overfitting problem 11

3.1 Sample Datasets – Shape . 14
3.2 Sample Datasets – Coins . 15
3.3 Sample Datasets – Digits . 16

4.1 Standard Program Tree (SDtree) . 19
4.2 Multiple-outputs Structure — Array-Typed Tree . 20
4.3 Multiple-outputs Structure — Polytree . 21
4.4 Multiple-outputs Structure – Loopy DAG . 21
4.5 An example Modi program structure. (a) Modi program tree; (b) Output vector. 23
4.6 Evaluation of the example Modi program structure. 24
4.7 Modi simulated graph classifier. 25
4.8 A toy Modi genetic program when it is being evaluated - full version 27
4.9 Classification Accuracy – Full View . 29
4.10 Classification Accuracy – Best Worst View (regarding Modirates) 29
4.11 Modi Rate Analysis – Full View . 30
4.12 Modi Rate Analysis – The Improvement . 31
4.13 Learning Time . 32
4.14 Number of Training Generations . 32

5.1 PRES-1, The “prime number” solution for one-level simplification on neat expressions 41
5.2 “Past-free” Bottom-Up Tidy-Up . 42
5.3 Bottom-Up Tidy-Up . 43
5.4 Double Decked Bus (DDB) . 43
5.5 Pres2, “Past-free” Tidy-up Rewriting with DDB . 44
5.6 Prime Number Storage Table - The Primetable . 45
5.7 The Hashtable . 47
5.8 Operator Family Rule . 48
5.9 Effectiveness in terms of the classification accuracy. 52
5.10 Effectiveness in terms of the terminating generation. 52
5.11 Efficiency in terms of the per-learning CPU time. 53
5.12 A Redundant Program . 54
5.13 The stable simplification . 54
5.14 An unstable simplification (PRES) . 54

iv

List of Tables

4.1 Results of the new Modi approach over the basic GP. 28

5.1 GP with PRES simplification, on SRS multiclass classification 51

A.1 Result of Basic-SRS . 63
A.2 GP on Object Classification: Modi on the Shapes [1/1] 64
A.3 GP on Object Classification: Modi on the Coins [1/1] 65
A.4 GP on Object Classification: Modi on the Digits [1/3] 66
A.5 GP on Object Classification: Modi on the Digits [2/3] 67
A.6 GP on Object Classification: Modi on the Digits [3/3] 68

v

vi

Chapter 1

Introduction

1.1 Motivation

Genetic Programming (GP) is a relatively young machine learning and searching paradigm pioneered
by Nichael Lynn Cramer in 1985 and was firstly explored in depth by John Koza in his 1992 book
[?]. The field then grows quickly. So far, GP has been tried on many of AI’s problems and has shown
to be well qualified for some of them. For example, it has been used to determine classes of image
objects for both the object classification and detection, with reasonable success.

Different from traditional learning methods such as Hill Climbing [?] and Neural Networks [?], which
take more advantage of the detail of individual creature hence learn by that individual alters the
configuration of itself, the evolutionary learning procedure of GP learns on an entire population of
individuals thus produces skillful survival though they do not themselves learn during their individ-
ual lifetime. This results in at least two advantages: firstly a bigger chance of escaping from getting
stuck around a local optima, secondly multiple solutions in every single learning. However, the
soundness, effectiveness, reasonability, and re problem applicability of GP in comparing with tradi-
tional methods are still under debate, so attract researches.

Another attribute that makes GP different from the other machine learning algorithm is the way
it represents the solution. The searching (solution) space of GP consists of just programs such as Lisp
[?], hence connects the field of Machine Learning with Automatic Programming [?]. This makes GP
possible to solve problems in a wider range of disciplines, covers AI, mathematics, control engineer-
ing, and more.

In the domain of AI especially supervised learning, classification, due to its fundamentality in both
the theoretical and application domain, is often used for testing the performance of the learner. Clas-
sification in an AI sense means a task of Data Mining where a class value is to be sought from details
of the given data, which can be a paragraph of plain text, cutouts from digital images, a section
of acoustic signal, or whatever whose feature can be extracted and represented in a machine inter-
pretable format.

Multiple-class classification is a subset of classification, in which there are three or more classes
of interest. Due to the nature of the technique being used on classification tasks, further difficulty
would be added as the number of classes increased. On the other hand, a good solution on multiple-
class classification would be more practically valuable, as most of the real-life application problem
involves multiple states.

1

1.2 Focus Problems

As a new discipline, there is still much room for the development of the currently imperfect GP. One
typical problem is that in tree-based GP, the evolved program is only able to return a single real
number [?], as arisen from the restriction of the tree structure of the program. For simple tasks like
two class classification, a single real return would be sufficient, as it can just serve as a discriminator
between the two classes being classified [?]. However, the drawback gets manifested when we are
facing more complicated tasks such as multiple-class classification, in which case we do prefer more
robust feedbacks from the learnt classifier, rather than just a single real number.

Current researches on tree-GP learning multi-class classifier are mostly about to work out more and
more reasonable classification strategies, which refer to the algorithm used for converting the single
output of the program to a class label. Reasonable success has been achieved in this direction. Typical
inventions include Static Range Selection, Dynamic Range Selection, and Slotted Dynamic Range Selection,
which will be addressed in more details in chapter two.

We turned around to think about a more natural solution, namely to get out more than one out-
puts from the program tree. There are studies along this direction also, though not much. A typical
development is the Strongly Typed Genetic Programming (STGP), yet has not been widely applied be-
cause of its burdensome complexity, which makes the customization of the system very complicate.

Therefore to come up with a flexible multiple outputs program tree structure is highly desired, as
it would greatly relax the constraint on the choice of classification strategy, hence may improve the
performance and the applicability of GP on real-life multiple class classification, consequently many
higher level intelligent applications.

Another problem that attracts us arises out of the randomnality of the population constructing and
learning processes of GP. The point is that in order to pass enough expressiveness to the GP learning
system, unless one has deterministic confidential knowledge on the configuration of the task (which
rarely happens), we normally do not put detailed control on how exactly would initial programs
be generated, nor on (say) which node point in the program tree would we crossover on. These
processes are all relatively random. By doing in this way, useless redundancies may be brought in
along with the expressiveness we pass to the learning system. Specifically, in the current state of the
art of GP, there is no attempt of the learning system to block the appearance of subexpressions like
x + x − x − x, which can be just reduced to a null.

Leave the program population to carry such redundancies along the learning would uselessly enlarge
the searching space hence slow down the evolution. Redundancies would also occupy limited space
where useful blocks may happen to appear otherwise. With these reasons, it becomes non-trivial to
consider trying out to deliberately eliminate redundancies while learning.

If one decide to try the redundancy elimination, there is another issue needed to be consider be-
forehand. That is the point that separate redundancy elimination by its own would take extra time.
Thus we would desire a redundancy elimination algorithm that can do the job as quick as possible.
In this way the straightforward text matching approach seemed with a too high time complexity.

2

1.3 Goals

The overall objective of this project would be to investigate and refine structures and techniques in-
volved in genetic programming, primarily along the way of extending the power of GP on multiple-
class classification tasks, in terms of effectiveness, efficiency, and the comprehensibility of program
classifiers, comparing with the conventional GP. Specifically, the project is designed to investigate on
the two problems raised in the previous section.

• For the first problem arisen, namely the lack of robust feedback from GP learnt multi-class
classifier, our research focus will be on to develop a flexible multiple outputs program tree
structure.

• For the second problem arisen, namely the carrying of redundancy in program population
while learning, our research focus will be on to develop a fast redundancy elimination algo-
rithm, then based on the result to analyse the advantage and disadvantage of doing program
simplification while learning.

Without losing of generality, we would like to use image object classification for testing our develop-
ment on the GP system. Basic Image Processing techniques would then be involved on doing the
feature extraction of images. We would also take several datasets with various properties for the
experimenting, in order to gain a more thorough reliable evaluation.

1.4 Contributions

The project has two major contributions. The first one provides a multiple outputs tree structure,
which can be used with the Genetic Programming system for a more coherent representation of the
individual. With this structure, the classification accuracy of GP learnt classifier is improved for max-
imumly 11%. Part of this work was submitted to and accepted by the Asia-pacific GP workshop as

Yun Zhang and Mengjie Zhang. A Multiple Outputs GP Tree Structure.

The second one is of a more theoretical aspect. It shows an expression simplification algorithm that
is linear time with respect to the size of the expression to be simplified. The algorithm can be used
to remove redundancies in genetic programs by doing online simplification during the evolutionary
learning, also for many other applications.

3

1.5 Structure of Document

The rest of the report is organized as follows:

Chapter 2 Background Survey, presents the current state-of-the-art in Machine Learning, Genetic
Programming, and multiple-class classification. This chapter also serves as a reference of the
necessary background knowledge involved in this paper.

Chapter 3 Experimental Design, is a minor section presents the common experimental setting used
for estimating both techniques we developed, including a description of the fifteen datasets
used, and the basic configuration of the genetic programming system. Specialized setting that
differs according to topics would be described in their own section along with the experimental
result.

Chapter 4 Modi, is the place for our solution of the first research problem, regarding a flexible
multiple-outputs program tree structure. A discussion on other possible solutions of the prob-
lem were made in the first place to raise the necessity of our development. Experimental results
were presented and analyzed after described the core idea.

Chapter 5 Pres, is the place for our solution of the second research problem, regarding a program
tree simplification algorithm that can do the simplification in theoretically linear time, by means
of prime numbers. The pros and cons of doing program simplification while learning was
addressed at the beginning of the chapter, then our solution, afterwards the experimental result
and finally the analysis and conclusions.

Chapter 6 Conclusions and Future Works, summarizes the achievement of our works and conclu-
sions derived. Potential problems is also addressed, further works thus derived.

Appendix A presents the full testing results of Modi, though the core part has already been pre-
sented in chapter 5.

4

Chapter 2

Background Survey

2.1 Genetic Programming

Genetic Programming (GP) is an optimization-based machine learning technique whose learning pro-
cedure is analogous to biological evolution. Precisely speaking, GP learns by following a genetic
beam search on a set of candidate solutions known as genetic programs. The genetic beam search is in
principle an exhaustive search over the solution space, which is all legal compositions over possible
functions, constants, and variables, constrained by the prefixed architecture of the genetic program.

The searching process is heuristically guided by the fitness of the genetic program, and is performed
in a nondeterministic order based on the choice made by genetic operators. The search stops by itself if
it reaches the goal, namely the case that it has found a genetic program with a perfect fitness. How-
ever, in consideration of the tractability of the searching space, the length of the running time is also
a criterion to terminate the searching.

There are several families of genetic programming resulting from different representations of the
genetic program. Linear GP manipulates on solutions in the form of sequence of imperative instruc-
tions (C, machine code), whereas Tree-based GP manipulates on tree structured programs, say Lisp.
It has been shown that the two GPs are equivalent on the experimental performance. In this project,
we will only focus on the tree-based one, which will be referred to as GP in the rest of this paper, for
convenience.

In the rest of this chapter, we will describe the evolutionary learning process of GP in details, clarify
key concepts involved, also to summarize main features that make the evolutionary learning to be
different from classical optimization methods, such as neural networks [?] and hill climbing [?].

5

2.1.1 The Evolutionary Learning Process

Figure 2.1 shows the flowchart of core procedures involved in the evolutionary learning system of
GP. Basically they can be summarized into the following four steps:

1. Generate an initial population of genetic programs.

2. Execute each program in the population and assign it a fitness value (page 8).

3. Create a new population of genetic programs by maintaining good solutions through repro-
duction (page 9), creating new solutions through mutation (page 8), and combining solutions
through crossover (page 8).

4. Do step 2 and 3 repeatedly until the best-so-far solution is considered to be acceptable, or run
out of the time that the system is allowed to explore on.

Figure 2.1: Flowchart of the Learning Procedure of Genetic Programming
This figure is extracted from, and owned by, the GP Tutorial [?].

6

2.1.2 Key Concepts

Solution Representation

In evolutionary learning, to somehow code the problem to be solved into the learning system is a
primitive concept, also could sometimes be very difficulty. Basically it involves two concepts: the
encoding of population (will be addressed immediately), and the choosing of fitness function (will
be addressed afterwards).

Encoding of population means to find an appropriate representation of the candidate solution. A
good representation should be a one that is powerful enough to represent a good solution, flexible
enough so that it could preserve the diversity of the evolution process, and the most important, it has
to make easy for the evolutionary learning process (say crossover and mutation) to be carried on.

The representation of solutions can be a very awkward concern in some of the evolutionary learn-
ing algorithms, say genetic algorithm [?], though in GP it is just to define the alphabet of the genetic
program, which involves only the customization of two well-defined primitive sets:

Terminal Set: consists of variables and constants of the program. This set is not too strongly task-
dependent, as the variables are often whatever can be fed into the program, and the constant
are often randomly generated numbers based on some distribution (often a uniform one).

Function Set: consists of the functions of the program. This set is strongly task-dependent and need
to be carefully customized for different tasks. A very basic choice of the function set could be
{+,-,×,÷,iflz}, in which the ÷ is often defined to be protected (return 0 when divided by
0) for safety; and iflz means if less than zero, which takes three arguments, if the first one is
less than zero then returns the second one otherwise returns the third one. In the case that we
are trying to simulate a cosec function, to add sine into the function set would be a smart
shortcut (cheating) choice. More complex functions or some task dependent functions (say, go
north), can be included in a similar way.

The customization on the architecture of the program is sometimes also needed in, say, linear GP. In
tree-based GP, programs are just prefix expressions (like Lisp program) that can be represented as a
tree, as one shown in figure 2.2.

5 z

+ x

×

(5 + z) × x Leaf nodes are elements from the terminal set, forms the
input and the constant space of the program.

Non-leaf nodes are elements from the function set, defines
the functionality of the program.

Root node is the top node, forms the output space of the
program. By the fact that a tree can only have one root,
a genetic program in turn could only have one output
value.

Figure 2.2: A Toy Genetic Program Tree

7

Fitness Function

The fitness function is a mapping from an individual program, to a measurement of how good does the
program fit with the learning objective. Fitness function to evolutionary learning is like the heuristic
function to heuristic search, thus is considered to be the most important concept of genetic program-
ming.

Fitness function is highly task dependent. For regression problems the mean squared error is often
used, though for classification problems the classification accuracy is the standard choice. Unfortu-
nately, many real-life problems do not have an easy obvious fitness function. Sometimes one may
even need to modify the problem a bit in order to find the fitness. For a good fitness function, its
computational speed is also important, because the fitness function need to be evaluated on all pro-
grams in the population for each evolution, hence is strongly related to the overall learning speed of
the system.

Selection

Selection is inspired by the role of natural selection in evolution [?]. In short it just means individuals
in the population should survive on the fitness. The selection criteria, together with the fitness func-
tion, forms the heuristic of the genetic beam search, which guide the evolutionary learning algorithm
towards ever-better solutions.

There are many kinds of selection criteria, including roulette wheel selection [?], rank selection [?],
tournament selection [?], and many others. Some selection methods, for example the rank selection
one, is deterministic. However some of them are not. A typical one of this case is the tournament
selection, which uses a model in which individuals compete inside a random subgroup then the fittest
one is selected. This criterion is not deterministic, though even carries a certain level of randomness.

Selection is a basic operation used to decide the partitioning of the population towards different
genetic operators, namely crossover, mutation, also reproduction in the basic case. The evolutionary
learning system often ask for a user defined ordering and ratio over different genetic operators (the
ratios for all operators should be added up to one), then choose which of the genetic operation would
be performed on which of the individual program based on the selection criterion and the fitness.

Mutation

Mutation is inspired by the role of mutation of an organism’s DNA in natural evolution. It means an
evolutionary algorithm should periodically make random changes (i.e. mutations) in one or more
members of the current population, yielding a new candidate solution, which may be better or worse
than existing population members. An example that shows how mutation would work to produce
new individuals is shown in figure 2.3a. Mutation is currently considered as the most important
genetic operator over the others, due to its effect of creating new solutions along with the learning
process thence brings diversity into the learning.

Crossover

Crossover is inspired by the role of sexual reproduction in the evolution of living things. It means an
evolutionary algorithm should attempt to combine elements of existing solutions in order to create a
new solution, with some of the features of each parent. An example that shows how crossover would
work to produce new individuals is shown in figure 2.3b. there are many possible ways to perform a
crossover operation, referred to as crossover strategies which are addressed in details in [?].

8

(a) Mutation (b) Crossover

Figure 2.3: Genetic Operators in Action
These figures are extracted from, and owned by, the GP Tutorial [?].

Reproduction

Reproduction is a very simple genetic operator that just copies the selected individuals that is con-
sidered to be qualified by the selection criterion into the next generation without any modifications
on them. Different from crossover and mutation, the objective of reproduction is not to explore on
the searching space, but to preserve the existing achievement on the population fitness, which is
something that may be broken by the the other exploring-based operators.

9

2.1.3 Key Features

Randomness

The evolutionary learning process relies in part of random sampling. This makes it a nondetermin-
istic method, which may yield somewhat different solutions on different runs even if one have not
change the learning model nor the starting point. This is different from classical optimization-based
learning methods such as neural networks [?] and hill climbing [?], in which the learning procedure
is deterministic under a fixed model and a fixed starting point.

Relative Optimality

In evolutionary learning algorithms, a solution is “better” only in the sense of comparing with the
other presently known solutions. Namely, the learning system actually has no concept of an abso-
lutely optimal solution in its learning process. This is a drawback on one hand. However, on the other
hand, it makes the evolutionary algorithm to be better employed on problems where it is difficult or
impossible to test for optimality.

Population

Where most classical optimization methods concentrate on the refinement of a single solution, evo-
lutionary learning methods maintain a population of candidate solutions. Only one (or a few, with
equivalent objectives) of these are considered as the “best”, though the other members of the pop-
ulation are still sampled points in other regions of the searching space, where a better solution may
later be found. This feature helps the evolutionary algorithm avoid becoming “trapped” at a local
optimum [?], which is a problem most of classical learning methods are suffering from.

Architecture Based

The evolutionary learning is performed by a heuristic search over all legal compositions of primitives.
In another word, the learning process is somehow to try through all possible architectures over the
primitives, under a nondeterministic heuristic. This is different from classical optimization algo-
rithms, which are mostly learning by refining the parameter (say, weights of neural networks) under
a prefixed architecture. The feature of architecture-based learning brings in the flexibility on the
representation of the solution, along with the ability of learning architectures.

10

2.2 Classification

Basic Concepts

Classification is the task that takes a feature representation of an object or concept and maps it to a
classification label. It arises in a very wide range of applications, such as detecting faces from video
images, recognizing digits from the postal codes, and diagnosing tumors in a database of x-ray im-
ages. Classification on cut-outs of images has been given its own name, called the object classification.

Multiple class classification refers to the classification problem with three or more class of interest,
in contrast to the binary classification problems, which has only two classes. Due to the natural of
the technique being used on classification tasks, further difficulty will be added as the number of
class increases.

Classification in Machine Learning

In a machine learning sense, classification is considered as a supervised learning problem. This
means that precise class labels are provided along with details of the pattern to the learning system
for it to learn from. On hand (readily-labeled) data examples are often partitioned into two sets,
namely the training set and the testing set. Data examples in the training set are directly used for the
system to learn from. Though examples in the testing set are used for measuring the effectiveness of
the learning after it terminates. Three-way partitioning of the on hand data with an extra validation
set is also a common choice in consideration of the system complexity control.

This means to avoid the overfitting problem. In machine learning, overfitting means that the learner
has exceeded its maximum ability of approaching to the targeted function by using the available
training examples, and gets to adjust itself to very specific random features of the training data that
have no casual relation to the target function, hence results in that the performance on the training
examples still increases while the performance on unseen data becomes worse, as shown in figure 2.4.

Overfitting would come into play if the learning has been performed too long on relatively rare
training examples, or that there are unbalanced redundancies in the training dataset. With a valida-
tion set, which is used within the learning process, though not directly applied to the training but
is purely used to monitor the training fitness on unseen data (i.e. data in the validation set), the
overfitting problem can be kind of avoided.

Training Set

A
v
e
r
a
g
e

E
r
r
o
r

Test Set

Set
Validation

U
N

D
E

R
−

F
IT

T
IN

G

Learning Time/
Complexity of the Learner

OVER−F
IT

TIN
G

Figure 2.4: System Complexity Control — the overfitting problem

11

2.3 Genetic Programming on Multiple-class Classification

The research of applying GP on multiple class classification is an active area. Previous works are
mainly on how to transform the output from the genetic program classifier, which is often just a sin-
gle floating-point number, into a class label over multiple alternatives. Algorithms of this kind are
called classification strategy. Current solutions are mostly to partition the range of the program output
into regions, one per class, then consider the range that the output value lies in as the finally classified
one. The range partitioning, which needs to decide both region boundaries and the class ordering,
can either be manually predefined (hard and expensive), or automatically learnt (time consuming,
and often results in unnecessarily complex programs).

The standard classification strategy that converts the output of a genetic program into a class la-
bel is the static range selection (SRS) . It is very similar with a multiple thresholding approach that
defines a fixed ordering on all possible classes with threshold values between each of the pair, so that
the output region of the program classifier is fully partitioned over all classes. The fixed ordering is
a problem. Consider the classification between black, grey, and white from the average intensity
of the pattern. If one carelessly (or more often because of the short of knowledge on the task) defines
the class ordering to be, say, grey, black, and white, and put the threshold between the pair to be
1 and 254, it would be very hard for a classifier to do the right classification.

Other more reasonable though more complicated classification strategies on genetic programs in-
clude the dynamic range selection, class enumeration, and the evidence accumulation, as stated in [?]. More
recent development include centered dynamic range selection and the slotted dynamic range selection, as
stated in [?].

12

Chapter 3

Experimental Design

We use multiple class classification on image objects as our experimental tasks. For a thorough test-
ing, fifteen such datasets are carefully chosen to provide classification problems of varying difficulty.
They are: two for shapes, four for coins, and nine for digits. All of them will be described in details in
section sec:alldata.

Four out of those fifteen datasets are considered as key datasets, and will be the concentration when
doing detailed dataset-based analysis of the experimental result. They are squ-4, cHard, dig15,
and dig30, which will all be described in details below.

We do not use early stopping (say validation set techniques) to cope with the overfitting problem. For
each of the classification task, our data on hand is partitioned into two equally sized sets for training
and testing respectively. We decide to do so because, firstly the overfitting problem does not seem to
be a serious issue for our experiments; secondly, it is for the convenience of the experiment.

We use a common GP system setting for all experiments carried. The setting will be described in
section 3.2. Noting that to have a common system setting for experiments of all datasets is not a
practically reasonable choice. We decide to do so because a common setting is convenient for ob-
serving the strength and weakness of the learning methodology, which is our primitive experimental
goal.

Each of the experiment is repeated for fifty times with all settings the same except the random seed,
which would affect the initial population, as well as the learning procedure wherever the “random”
come into play. The averaged result over the fifty runs will then be taken as the final experimental
result. The random number generator we use produces pseudo random numbers based on the seed,
meaning that all experimental results are repeatable.

3.1 Data Sets

3.1.1 Shapes

Shapes provides two easy object classification problems. Images of this dataset are deliberately gener-
ated to give well defined objects against a relatively clean background, as shown in figure 3.1. Pixels
of the object are produced using a Gaussian generator with different means (intensity) and variances
(fuzziness) for different classes. Objects to be classified are pre extracted, each extracted object is
represented by a vector of eight floating-point numbers, referred to as the feature vector. Eight values
in the feature vector are averaged means and variances over pixel values from four cocentric square
windows with different size centralized precisely at each of the object. Specifically, two classification
problems of this dataset are:

13

squ-3: Classification data set is formed by 720 small objects cut out from 24 images similar with one
in figure 3.1. It has three classes: dark circles, squares, and light circles.

squ-4: Classification data set is formed by 960 small objects cut out from 24 images similar with one
in figure 3.1. It has four classes: dark circles, squares, light circles, and noisy background.

Figure 3.1: Sample Datasets – Shape

3.1.2 Coins

Coins contains images of scanned 5 cents and 10 cents New Zealand coins with or without Gaussian-
noisy background. These coins are scanned with 75pt resolution, some of them are even not clear to
human eyes, thus is considered as harder classification problems than the shape one. Feature values
used to represent the object of this kind are the same as for the shapes, namely, means and variances
from four cocentric square windows. Four classification problems of coins with a roughly increasing
difficulty are as the following:

c-5c: means coin 5 cents. This classification data set is formed by 384 small objects cut out from 24
images contains 5 cent New Zealand coins with a consistent orientation. The background the
objects are placed on is highly noised, but it will not hurt much because for this problem we
do not consider the background as a separate class of interest, and the object to be classified
has already been (manually) detected and represented as numerical feature vectors ready to be
classified. Namely, the problem considers two classes only, which are 5 cent head and 5 cent
tail. An example image is shown in figure 3.2a.

c-10c: means coin 10 cents. This classification data set is formed by 576 small objects cut out from
24 images contains 10 cent New Zealand coins with arbitrary orientation. The background the
objects are placed on is highly noisy, which makes the classification problems much harder. It
has three classes: 10 cent head, 10 cent tail, and noisy background. An example image is shown
in figure 3.2b.

cEasy: means easy coins. This classification data set is formed by 480 small objects cut out from
24 images contains 5 cent and 10 cent New Zealand coins with arbitrary orientation, on a clear
background. However, the problem is still a hard one because the number of classes is relatively
big, namely five. They are 5 cent head, 5 cent tail, 10 cent head, 10 cent tail, and the clear
background. An example image is shown in figure 3.2c.

14

cHard: means hard coins. This classification data set is formed by 480 small objects cut out from 24
images contains 5 cent and 10 cent New Zealand coins with arbitrary orientation, and a highly
noisy background. This is considered as the hardest coin problem. It has five classes of interest,
which are 5 cent head, 5 cent tail, 10 cent head, 10 cent tail, and the noisy background.

(a) c-5c (b) c-10c

(c) cEasy (d) cHard

Figure 3.2: Sample Datasets – Coins

3.1.3 Digits

Digits contains nine digit recognition tasks, known as dig00, dig05, dig10, dig15, dig20, dig30,
dig40, dig50, dig60. Each of those nine tasks involves a collection of binary (i.e. black-white) digit
objects, with 100 examples for each of the 10 digits (0,1,2,3,4,5,6,7,8,9), making a total number of 1000
digit examples. Each digit example is an image of 7×7 bitmap, thus the feature vector that represents
each of the digit object, as this time we choose to use raw pixel values as feature values, in turn con-
sist of 49 binary numbers.

The nine tasks are chosen to provide hard classification problems of increasing difficulty. In all these
problems, the goal is to automatically recognize (correctly classify) which of the ten classes each digit
pattern belongs to. Except for the first task which contains clear patterns, all data patterns for the
other eight tasks are corrupted by noises. The noise is randomly generated based on the percentage
of flipped pixels, and was given by the two numerical suffix of the dataset name, say, dig10 means

15

(a)all (b) dig15 (c) dig30

Figure 3.3: Sample Datasets – Digits

the noisy-level is about 10%, so on so forth. It is also the case that the problem gets harder as the level
of noise (i.e. flipped-rate) increases.

Sample digit objects for all nine tasks are shown in figure 3.3a ordered up-down by the level of
noise, with each line of digits corresponds to a recognition task. It can be seen that, lower lines,
which correspond to harder problems, have shown to be difficult for human. Figure 3.3b and 3.3c
are the enlarged view of problems of dig15 and dig30. From them we can see that, in the dig15
problem, although some digits can be clearly recognized by human eyes, such as “0”, “2”, “5”, “7”,
also possibly “4”, it is already not easy to distinguish between “6”, “8”and “3”, also somehow hard
between “1” and “5”. The dig30 one is more difficult. In this problem, human eyes cannot recognize
majority of digits, particularly “8”, “9” and “3”, “5” and “6”, and even “1”, “2” and “0”.

It is obvious that digit problems is hard for human. Though for learnt program classifiers, further
difficulty is added by the big number of classes (i.e. 10), as well as the huge feature vector size (i.e.
49). Given these, digits problems are considered to be much harder than shapes and coins, and is
supposed to serve as very strict testing problems.

16

3.2 Genetic Programming System Configuration

Program Population:

• Initial program generation methodology: ramped-half-half.

• Population size: 500.

• Program tree depth limitation: (max : 7,min : 4); Initially (max : 6,min : 3);

• Terminal Node: feature terminals and floating-point random numerical terminals from a
uniform distribution between -1 and 1.

• Function Node: uniformally picked from function set = +,−, ∗,%, if < 0

• Program fitness: classification accuracy on the training dataset, namely the number of
objects that are correctly classified by the genetic program as a proportion of the total
number of objects in the training dataset.

Genetic Operators:

• Elite Reproduction: fixed application ratio = 10%

• Mutation: fixed application ratio = 30%

• Crossover: fixed application ratio = 60%

• Elite-program Selection Criteria: random small scope tournament by using a predefined
tournament size, in our case we consistently used 10.

Training Termination Criteria:

• There exists a program in the population with perfect training set fitness of 100%.

• The training has exceeded the pre-defined maximum number of generations, namely 50.

• No early stopping or validation techniques are used.

17

Chapter 4

A Multiple Outputs Program Tree
— the Modi Structure

Modi stands for “modify”, is a virtual multiple outputs program structure that simulates the effect
of loopy acyclic graphs (details later), yet its actual structure is just the standard tree. As its name
derives, the idea behind Modi is to take the program as a Modifying procedure, in which outputs are
computed by the program tree modifies a predefined sequence of outputs. This makes a contrast with
the traditional outputting based program tree, which releases its single output from the tree root. The
elite of Modi is that, it is structurally equivalent to the standard tree thence freely preserves the con-
sistency of the evolutionary learning process, though it is functionally simulating the loopy acyclic
graph, thus is able to reasonably output a sequence of values.

Given that our primitive design goal of the multiple outputs program structures to get more robust
feedback from the learnt classifier, the Modi structure is tested and evaluated on some typical multi-
ple class classification problems with varying difficulty. A winner takes all strategy is used to convert
program outputs into class labels, thus get around the problem of having to choose a classification
strategy.

The rest of this chapter is organized as follows:

SECTION 4.1 serves as a motivation. In this section we will introduce and evaluate some alternative
multiple outputs structures, thus derives the untrivialness of our design of Modi.

SECTION 4.2 will present our multiple outputs program structure – the Modi structure.

SECTION 4.3 will show the experimental result of the GP with Modi structured programs on some
typical multiple class classification problems with varying difficult, as well as an analysis of the
result.

SECTION 4.4 will make further analysis on the experimental result observed, along with some more
detailed discussion from the theoretical point of view, thus derives some non-trivial future
works.

SECTION 4.5 will be the chapter summary.

18

4.1 Multiple-outputs Structures in GP

Our primitive design goal is to come up with a program representation that can reasonably output
a vector of values, so that the learnt program classifier of such a representation can fit in easier, thus
hopefully better, with its task. There are plenty of structures that can do multiple outputs, though
hard to be evolved by the evolutionary learning system of GP, also vice versa. In this section, we
would like to further clarify how this dilemma comes by going through some of the typical multiple
outputs structures, evaluate both their tractability of being embedded into GP, and their suitability
of working as a multiple class classifier, thus derives the untrivialness of our design of Modi.

4.1.1 Evolutionary Consistency re Datatype
– The Closure Property

5 z

+ x

×

(5 + z) × x

Figure 4.1: Standard Pro-
gram Tree (SDtree)

In tree-based GP, solutions are in the form of program trees that are
similar with (though often much bigger then) the one shown in figure
4.1 on the left. When being evaluated, the program tree takes inputs
from leaf nodes, applies functions on them feed-forwardly, finally re-
leases a single output from the tree root. In the standard tree-based
GP presented in [?], Koza requires that all trees and subtrees have the
same datatype to ensure that free crossover and mutation yield valid
trees, called the closure property. The “typeless” constraint of the clo-
sure property does not theoretically reduce the power of the program
tree, as many typeless systems are Turing complete. However, many
application problems, particularly those involves matrices and lists,
are awkward to be represented without types [?].

One has developed a technique called Strongly Typed Genetic Programming (STGP) [?] that allows the
use of more than one datatype in genetic programs while still preserves the consistency of the GP sys-
tem during its evolution. However, as a payment for breaking the closure property, extra constraints
on the evolutionary process are needed in place of the closure property to preserve the consistency
of the evolution. This extra burden heavily reduces the applicability also even the divergency of the
system, thus has not yet been put into widespread use.

4.1.2 Evolutionary Consistency re Program Architecture
– The Architecture Evolvability Conditions

In order to preserve the closure property, values being passed through the genetic program must be of
an identical datatype. With a standard tree structure, this would result in a “single output constraint”
as a tree can have only one root. But if we could make the program architecture itself to be of a many-
to-many type, the closure property could not hurt us anymore on getting out a list. To cope a new
program architecture into the GP system, we still need to be careful not to break the consistency of
the evolution. Necessary conditions a program architecture needs to hold in order to preserve the
evolutionary consistency are summarized as follows, referred as the architecture evolvability conditions.

ARCHITECTURE EVOLVABILITY CONDITIONS

1. The random generation process of an evolvable architecture must be flexible enough so
that the diversity of the random initial population can be preserved.

2. Free genetic operations (crossover and mutation) on programs of an evolvable architec-
ture would yield valid programs of the same architecture, thus ensures the evolutionary
learning can be carried on under this architecture.

19

4.1.3 Multiple-outputs Structures

Array-Typed Tree

One way of getting multiple outputs from the standard program tree is to consistently use a fixed-
size array as the data type of the entire program, like the one shown on the left side of figure 4.2.
Doing in this way, the closure property is preserved because we are still using an identical datatype
throughout the entire tree, although it is not a primitive one. This structure also preserves the ar-
chitecture evolvability conditions, as we have not alter the program architecture at all – it is still a
standard tree.

The problem with this approach is on its suitability of serving as a reasonable multiple-class clas-
sifier. Firstly, it reduces the flexibility on functions the program could take, as it requires all functions
to be defined on vectors, say, dot product instead of simple multiplication. Secondly, program with
such a structure would apply exactly a same sequence of functions to each element in its passing-on
vector. This means, a program of this kind, has exactly the same functionality as a sequence of ba-
sic program trees that are the same for all their function nodes, though only differ on the terminals.
These two problems, especially the second one, makes programs of such a structure only be able to
output a “trivially-calculated” sequence of values, thus functionally weak to serve as a multiple-class
classifier.

Look at the example shown in figure 4.2, the array-typed tree on the left hand side takes vectors
and outputs a vector. All of its function nodes thus have to be defined on a vector-basis, this is the
first problem. The computational effect of this program is exactly the same as three “only-differ-on-
terminals” trees on the right of the figure. Three such programs can not be a reasonable three-class
classifier, thus it in turn becomes clear that the array-typed program tree is not a reasonable repre-
sentation either.

=

+

*

6 X

12 +

*

Z 3

Y

Y*(Z+3)

+

*

X

5 Z

12*(6+X)X*(5+Z) , ,()

(X,12,Y)

(5,6,Z) (Z,X,3)

(X,12,Y).{(5,6,Z)+(Z,X,3)}
=(X*(5+Z),12*(6+X),Y*(Z+3))

MATRIX
ADDITION

PRODUCT
DOT

Figure 4.2: Multiple-outputs Structure — Array-Typed Tree

Polytree

A slightly more reasonable multiple-output program structure is the polytree, namely a loop-free
graph with more than one nodes singled out for special treatment, namely, more than one root nodes,
like the one in figure 4.3. Programs of such a structure can do multiple outputs, as to release one out-
put from each of the polytree root would do. It is also easy to see that we could preserve both the
closure property and the architecture evolvability condition under this structure. However, the prob-
lem is still on its suitability of representing the multiple-class classifier.

20

A polytree-structured program is actually the same as a sequence of independent program trees,
one for each output value. A sequence of independent programs is not sound as a multiple-class
classifier, because, according to Darwinian Co-Evolution Theory [?], relevant spices, like cats and rats,
do affect each other on their evolutions. Accordingly, as the multiple outputs we are desiring are
also something relevant (otherwise they would belong to independent tasks hence can be solved
just separately), it is necessary for different outputting branches to be evolved, also computed, while
affecting each other. Given this, the polytree structure should also be ruled out.

−

Figure 4.3: Multiple-outputs Structure — Polytree

Loopy DAG

If one could alter the polytree structure, so that the reusability between branches under different
roots could be brought into the structure, the problem with the polytree would then be solved. This
is exactly how the loopy directed acyclic graph (DAG) comes. “Directed acyclic graph” means the
structure should not contain directed cycle, because it would cause infinite loops when the program
runs. “Loopy” means that we do desire undirected cycles, this makes the structure different from
polytrees, and is exactly how the reusability can be brought in.

−

5 x z

+ ÷ y

× -

((5 + z) × (x ÷ z) , (x ÷ z) − y)

Figure 4.4: Multiple-outputs Structure – Loopy DAG

An example program of the loopy DAG structure is shown in figure 4.4. From the example we can
see that, with the loopy DAG structure, we are able to get a list of related though differently calcu-
lated outputs from the program, thus programs of such a structure is able to reasonably represent
multiple-class classifiers. However, when trying to cope this structure into the GP system, problems
arise: 4.4.

Firstly, programs of a loopy DAG structure are hard to generate. Because to generate an initial ran-
dom loopy DAG, one need to consider both the reuse of nodes, and the acyclic property. Namely
we do want undirected cycles, though definitely not the directed ones. Given these requirements,

21

careful considerations and (possibly also) constraints need to be made on the generating process of
the random program, thus may affect the flexibility and even the divergency of the learning system.
Secondly, although we could preserve the closure property with loopy DAG, tree-based crossover
and mutation on programs with such a structure would still yield meaningless descendant, namely
it is not an architecture that satisfies the architecture evolvability condition, as shown below:

UNEVOLVABLE ARCHITECTURES

If one use the traditional program tree
generation process to generate loopy
DAG, directed cycles may appear in
the randomly generated program, thus
cause infinite loops and corrupt the sys-
tem, as shown on the right.

DIRECTED
CYCLES!

EVEN CAUSE

CARELESS
REUSE MAY

If one use the standard crossover opera-
tor on two loopy DAGs, it would cause
problems, as shown in the figure on the
right. The example is an unfortunate
case that crossover points are on two
nastily-reused nodes, namely, both of
the crossover nodes have multiple par-
ents. As the crossover is decided between
only one pair of their parents, the other
parents are feeling unhappy with the
dragging-off of their children.

HOW CAN I DO CROSSOVER WITH YOU ...

DON’T KNOW EITHER...

Suffered enough from the payment of
not to obey the architecture evolvabil-
ity constraint? Now let us see a calm
positive example. Figure on the right
shows that, no problem would happen
on the standard program tree structure,
which nicely preserves the closure prop-
erty, as well as the structural tractability
constraint.

WITHOUT WORRIES

WE ARE STANDARD PROGRAM TREES!
STRUCTURES LIKE US CAN CROSSOVER EASILY

In the following section, we are going to present the idea of using a virtual structure Modi to sim-
ulate the loopy DAG, hence achieve an effect of getting multiple related outputs for better serving
as a multi-class classifier. As the Modi structure is in truth just the standard tree, the evolutionary
inconsistency problem that the real loopy DAG has is freely avoided.

22

4.2 The Modi Program Tree Structure

4.2.1 Modi Program Structure

The Modi program structure has two main parts: (a) a program tree, and (b) an associated output
vector for holding outputs, as shown in Figure 4.5.

(b)

%

���������������
������
���

������������

����������
������

����������
���������� 	�		�	

�

�

−

%
0

3
−

*

X

Z3.95.3 1.6

4.7 W

Y

+
0

1

2
if>0

0

0

0

0

cls0

cls1

cls2

cls3

(a)

X

Figure 4.5: An example Modi program structure. (a) Modi program tree; (b) Output vector.

Similarly to the standard program tree structure, the Modi tree also has a root node, internal nodes
and leaf nodes. Feature terminals (slashed squares) and random constants (clear squares) form the
leaf nodes. Operations in the function set form the root and internal nodes (circles).

Unlike the standard program tree structure, which outputs just one value (often a floating point
number) through the root, our Modi program structure takes the output vector as the output space,
hence produces multiple values, each of which corresponds to a single class in the multi-class classi-
fication problem.

As one can see from the figure, two parts of the Modi structure, namely the output vector and the
Modi program tree, are not directly structurally connected. However, there are value passing between
the output vector and some of the tree nodes when the program is evaluated, known as functional
connections. Functional connections between program tree and the output vector are through some
special function nodes called Modi nodes (grey circles). Specifically, each Modi node has two roles:

(1) It updates an element in the output vector that the node is pre-associated with, by adding its node
value to the value of the vector element;

(2) It passes the value of its right child node to its parent, so that the program tree can be continuously
preserved.

Note that the output vector is considered virtual (that is why it is dashed in the figure), meaning
that it does not physically “exist” (i.e.take up memory) other than the moment the program is being
evaluated. Which means, during GP’s evolutionary learning , output vectors of all programs “disap-
pear”, only Modi tree parts are active and take part into the learning. Only in the program evaluation
time, the output vectis realized and receives updating from the program tree.

23

4.2.2 Evaluation of the Modi Program

Figure 4.6 shows what happens while the example program is evaluated. Before the evaluation starts,
the virtual output vector is realized and initialized with zeros, shown as the dashed vector becomes
solid. During the evaluation, each non-Modi node passes its value to its parent, exactly the same as
in the standard program tree. Modi nodes do differently. Each of the Modi node firstly uses its node
value to update the output vector, then passes on the value of its right child to its parent node. The
consequence of the program evaluation is that, the output vector gets properly updated based on
the input by Modi nodes in the tree. The “size of the output vector” many floating point numbers
are then produced, each of which corresponds to a class. Finally, a voting strategy is applied to those
outputs. The winner class (the one with the maximum value) is considered to be the class of the input
pattern.

%

{=0+0.34+9.2}
9.54

{=0+(−4.1)}
−4.1

13.6
{=0+13.6}

−3.7
{=0+(−3.7)}

����������
������

������������ ������������

������������

	�		�	
�

�

−

%
0

3
−

*

X

3.95.3 1.6

4.7 W

cls3 YZ

+
0

1

2
if>0

0+

0+

0+

0+

ca
t

pi
g

do
g

ra
t

cls0

cls1

cls2

X

Figure 4.6: Evaluation of the example Modi program structure.

Consider a four-class classification task with possible classes known as {rat,cat,dog,pig}. Given
an object to be classified, whatsthat, which is represented by an input vector contains six extracted
feature values [V,U,W,X,Y,Z]=[0.6,5.7,8.4,2.8,13.6,0.2]. Taking the learnt genetic pro-
gram shown in figure 4.5 as the classifier, we feed the input vector whatsthat into it, calculating for-
wardly, and updating the output vector along the way. This would result in the output vector to be
finally filled as [9.54,-4.1,13.6,-3.7]. Given this result, whatsthat should be classified as of
the third class dog, because the third output 13.6 is the highest winner. A more tedious version of
figure 4.6, which shows all the detailed value passing of this example, is presented at the end of this
section, in figure 4.8 on page 27.

4.2.3 The loopy DAG Simulation Effect of Modi

Figure 4.7 is just a tidy-up redrawing of Figure 4.6 with the structural-used-only fine grey line re-
moved. The figure clearly shows that the dynamic running effect of the Modi program actually sim-
ulates a loopy DAG, although the real structure of Modi is just a normal tree plus a vector. Compared
with the multi-layer feed forward neural network, which is also a kind of DAG, the Modi simulated
DAG also has multi-layers, where leaf nodes forms the input space, internal nodes extract higher
level features, and output nodes are associated with class labels. Furthermore, it allows imbalance
structure, over-bipartite connections, and non-full connections between neighboring layers, which
makes the representation much more flexible.

24

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

0+0+

1 3
−

20
% if>0

3.9

Z X X 4.7Y

5.3 *%

1.6 W

out0 out1 out2 out3

+
0

−

0+ 0+

Figure 4.7: Modi simulated graph classifier.

By the effect of loppy, the simulated DAG structure also allows the reuse of children nodes. Every
right-most child of the Modi node is reused by the Modi node itself and the parent of the Modi node,
resulting in a two-way reuse. Multi-way reuse is also possible by a sequence of hierarchically con-
nected Modi nodes, as shown at the bottom right conner around the feature terminal node W.

Modi structure gives us only a proper subset simulation of the loopy DAG. Which means, Modi can
simulate some, but not all program structures the real loopy DAG can represent. This is due to the
fact that, in Modi, reuse connections (connections that cause children sharing) are simulated by the
way Modi nodes pass values, thus it cannot appears freely in place, but only around some (i.e.greater
than or equal to one many) Modi nodes, plus at most one non-Modi node. Apart from that, there is
also a limitation on where the Modi node can appear in the simulated loopy DAG. In Figure 4.7, it is
clear that Modi nodes are always grouped in the layer one level down from the output space due to
the fact that only the Modi node is able to (and have to) directly passing value to the output node (i.e.
the output vector cell). Therefore, in general, in the Modi simulated loopy DAG, all child sharing can
only appears between some parent nodes in the second toppest layer plus at most one parent node
from a lower layer. This problem is currently considered as a structural shortcoming. Whether or not
(or more precisely how much) it would hurt on the effectiveness is still under investigating.

Another minor structural limitation of the current version of Modi comparing with the loopy DAG
is that, in Modi simulated loopy DAG, the functionality of the root must be prefixed and consistent
through the evolution. In our example we fix them all to zero plus. They cannot be as flexible as a tree
node, because they are actually output vector cells, which is just storage spaces but not something
that can be evolvability randomly assigned and learnt.

4.2.4 Modi Program Generation
— Modi Nodes Distribution Law and the Modi Rate µ

Comparing with the standard tree, the randomly generating process of Modi tree has one more step
to consider, namely the distribution of Modi nodes. This includes two sub points:

The Whether Problem – How to decide which node should be a Modi. Namely for each of
the function node in the program, how could we tell if it should be a Modi node, or just a
normal one.

The What Problem – How to assign output vector’s cell indices to the Modi nodes we would
have chosen by solving the whether problem.

25

The whether problem

The solution of the whether problem consists of three laws: 1) All leaf nodes are not Modi. They cannot
be because to become a Modi node requires the node to have at least one child; 2) The root node is
always Modi. It has to be if it is not a leaf, so that we can guarantee that no part of the Modi tree is
useless, as we do not make explicit use of the value released from the tree root; 3) For intermediate
nodes (i.e. node apart from leaves and the root), the probability of a node to be set to Modi is defined
by an offline settable constant µ, the Modi Rate. Modi Rate is a manually prefixed setting of the GP
evolutionary learning system. It is in the form of a real number µ ∈ [0, 1], refers to the probability
of an intermediate node to be set as Modi. In another word, µ is the expected percentage of Modi
nodes over all intermediate nodes in programs of the initial population. Higher the Modi Rate, more
function nodes in initial programs would be Modi.

In real experiments, we used an improved Modi rate definition µ ∈ [0, 2]. For µ ≤ 1 we mean
the same as above. For µ > 1, we mean that each intermediate node is considered for two indepen-
dent rounds on if it is a Modi, both with probability µ − 1. This may result in a Dual Modi node that
upload its value into two (may or may not identical) output cells. For example, µ = 1.3 means two
round modi assignment, both with probability 1.3− 1 = 0.3. The expected percentage of Modi nodes
over all intermediate nodes is then 0.3 + 0.3 = 60%, in which 0.3 × 0.3 = 9% out of those 60% are
Dual Modi nodes. Note that Modi rate with µ > 1 is not generally numerically comparable with
µ ≤ 1 due to the special effect of the Dual Modi node, which means that we cannot say, for example,
µ1 = 1.3 > µ2 = 0.61, also not the other way round.

The what problem

The solution of the what problem is just a uniform distribution. Cell indices of the output vector are
assigned uniformly across all Modi nodes. As we do not put any other control on the what distribu-
tion, it is possible for Dual Modi node to upload their value into a same vector cell twice. It is also
possible to produce Modi programs that do nothing on some of the output vector element, with bad
really luck.

Combine the solution of the whether and the what problems together we forms the Modi Node Dis-
tribution Law, as summarized below:

MODI NODE DISTRIBUTION LAW

MNDLaw1 The root node of the program is guaranteed to be a Modi node.

MNDLaw2 Non-root function nodes are considered as Modi Node with probability MR.

MNDLaw3 All terminal nodes, including numerical terminals and feature terminals, are not Modi.

MNDLaw4 Cell indices of the output vector are assigned uniformly across all Modi nodes.

26

%

{=0+0.34+9.2}
9.54

{=0+(−4.1)}
−4.1

13.6
{=0+13.6}

−3.7
{=0+(−3.7)}

8.4

2.8

0.2 2.8

� �� �� �� �

� �� �� �� �� �� �� �� �

� � �� � �� �� �

� � �� � �	 		 	

−

%
0

3
−

*

X

3.95.3 1.6

4.7 W

−4.1 [=3.9−8.0]

YZ

+
0

1

2
if>0

0+

0+

0+

0+

ca
t

pi
g

do
g

ra
t

cls0

cls1

cls2

cls3

13.6
13.6 [=if(2.8>0) 13.6 else 8.4]

−3.7 [=4.7−8.4]

3.95.3

3.9

1.6 0.2

8.0 [=1.6%0.2]

23.52 [=2.8*8.4]

8.0

4.7 8.4

2.8

13.62.8 8.4

8.4

0.34 [=8.0%23.52]

9.2 [=5.3+3.9]

X

Figure 4.8: A toy Modi genetic program when it is being evaluated - full version

This figure shows what happens when we are running the Modi structured program on a pattern input with size six, the precise value passing and the SBCS
part are shown as well:

[V, U, W, X, Y, Z] = [0.6, 5.7,8.4, 2.8, 13.6, 0.2]

27

4.3 Experimental Results and Analysis

In this section, we would like to present the experimental result regarding the effectiveness of using
Modi structured programs in GP on multiple class classification problems, also to compare the re-
sult with the standard GP that uses SRS as the classification strategy. In later discussions, the Modi
embedded GP will be referred as Modi-GP, the standard one will be refereed as Basic-GP, for the con-
venience of discussion.

As described in chapter three the experimental setting and the dataset, our discussion will be made
from two different view, namely based on the observation on the result of all fifteen datasets, and
the result of only the four key datasets. The result will mostly be presented in graphical format, with
important tabular value underneath. Detailed tabular results can be found in Appendix A.

4.3.1 Overall Classification Performance

Observation on Four Key Datasets

Firstly we would like to compare the Modi-GP and the Basic-GP on four key datasets only, with all
other common experimental settings the same. Results with the best Modi-rate (details later) are
shown in Table 4.1. For the shape data set, both approaches did pretty well as the task is relatively
easy. In particular, the Modi approach almost achieved perfect results. For the coin data set, as the
task is harder, the Modi approach achieved 93.89% accuracy, 8.67% higher than the basic GP. For two
digit data sets, the Modi approach performed much better than the basic GP, with improvements of
more than 10%. In particular, for task four, where even human eyes could only recognize a small part
of the digit examples, the GP approach with Modi program structure can recognize majority of them,
achieved 54.45% accuracy. These results suggest that the new Modi approach can perform better than
the basic GP approach for object classification programs, particularly for relatively difficult tasks.

Table 4.1: Results of the new Modi approach over the basic GP.

ClsfAccuracy/ Data Sets
Method Shape Coin Digit15 Digit30

Basic-GP (%) 99.40 85.22 56.85 44.09
Modi-GP (%) 99.77 93.89 68.11 54.46

Improvement (%) 0.37 8.67 11.26 10.37

Observation on All Fifteen Datasets

For further testing the behavior of Modi-GP, we experimented over all 15 datasets described in chap-
ter 3. Results are plotted in figure 4.9, shows an overall comparison between Modi-GP with different
modi rates and the Basic-GP, in terms of the effectiveness on the classification accuracy. The bottom
square labeled curve is for Basic-GP; The top clusters are Modi-GP with different modi rates , as
labeled. From those curves we can see that, Modi-GP generally performs better than Basic-GP, pre-
sented as the cluster is roughly above the Basic-GP curve. Modi rate does affect the performance as
the Modis are clustered but not strictly overlapped. However, the influence is not much comparing
with the improvement over the Basic-GP, shown by the big gap between the cluster and the Basic-GP
curve.

28

�

��

��

��

��

���

��	
� ��	
� �
� �
��� ����� ����� ����� ���� ����� ���� ����� ����� ����� ���� �����

��������	
�
��������������
�����	���������

�
�

�
�
��
��

��
�
�
��
�
�
�
�

�
�
��
�
�

�����
��

��������

��������

��������

��������

��������

�������

��������

��������

��������

��������

��������

��������

��������

��������

Figure 4.9: Classification Accuracy – Full View

A Best-Worst View

Figure 4.10 shows only the best and the worst effect that Modi-GP can achieve by presenting the result
of the most appropriate and the most inappropriate modi rate for each dataset, namely modi rates
that maximize and minimize the classification accuracy of Modi-GP on each of the datasets. The im-
provement the best and the worst rated curve have over Basic-GP is also shown by the bottom tow
curves, called difference curves. The precise data value is also presented, shown in the table beneath
the graphical region.

From the best curve and its corresponding difference curve we can see that, with an appropriate
modi rate chosen, Modi-GP is guaranteed to performance better than Basic-GP. The improvement
Modi-GP has on the classification accuracy tends to become consistent and maximized on tasks that
are hard for Basic-GP. The maximum balancing point is about 10% improvement on the classifica-
tion accuracy. From the worst curve and its corresponding difference curve we can see that, with
a really inappropriate modi rate chosen, Modi-GP still does better on almost all object classification
tasks. However, for problems that Basic-GP is already able to do pretty well, such as 99% accuracy
tasks and the special dig00 (will be further investigated in the later section), with the worst modi
rate of that task, Modi-GP may do slightly worse than Basic-GP, presented as the negative difference
between worst Modi and Basic-GP on datasets squ-4, c-5c, c-10c, and dig00.

������

����

�����

�����

�����

�����

������

��������	
�
��������������
�����	���������

�
�

�
�
��
��

��
�
�
��
�
�
�
�

�
�
��
�
�

ModiGP: best mu 99.94 99.77 99.74 99.91 99.17 93.89 82.00 78.14 73.04 68.11 63.16 54.46 45.58 39.61 32.49

ModiGP: worst mu 99.77 99.12 99.34 98.39 98.23 91.65 76.50 74.73 68.83 63.76 59.99 51.61 42.06 37.00 29.88

BasicGP 99.71 99.40 99.57 99.47 95.74 85.22 78.00 69.63 63.07 56.85 54.76 44.09 36.92 30.95 26.47

Diff: best mu - basic 0.23 0.37 0.17 0.44 3.43 8.67 4.00 8.51 9.97 11.26 8.40 10.37 8.66 8.66 6.02

Diff: worst mu - basic 0.06 -0.28 -0.23 -1.08 2.49 6.43 -1.50 5.10 5.76 6.91 5.23 7.52 5.14 6.05 3.41

squ-3 squ-4 c-5c c-10c cEasy cHard dig00 dig05 dig10 dig15 dig20 dig30 dig40 dig50 dig60

Figure 4.10: Classification Accuracy – Best Worst View (regarding Modirates)

29

4.3.2 Effectiveness of the Modi Rate µ

Figure 4.11 compares the effect of modi rate on all datasets. Each curve in the figure corresponds to
the testing result on a single dataset as labeled on the right, and is plotted against the modi rates in
an increasing order. Lower the curve, more difficult the classification dataset. It looks like that all
curves are roughly of a slur liked shape, except the really funny dig00 one, which shows up to be
affected oppositely as to the others. However, the effect of Modi rate cannot be seen clearly from this
plot.

Before continue, we would like to clarify a point on Modi rate = 0.0. Modi rate 0.0 means no function
node except the root of whatever randomly generated subtrees (program trees in the initial popula-
tion or subtrees generated for mutation) are modi. However, evolved programs are able to obtain
more Modi nodes through mutations and crossover in the evolutionary learning process of GP. And
this is the reason why the performance of Modi-GP with µ = 0.0 (i.e. curve Modi-00) is still accept-
able and even better than the Basic-GP in most of the cases.

����

�����

�����

�����

�����

������

��� ��� ��� ��� ��� ��	 ��� ��
 ��� ��� ��� ��� ��� ���

��������	

��
�
�
�
��
�
��
�
�
��
�
�
�
�
�
�
�
��
�
�

����

����

��	�

�����

�����

�����

�����

����	

�����

����	

�����

�����

�����

���	�

�����

Figure 4.11: Modi Rate Analysis – Full View

To further investigate the effect of Modi rates, we would like to do the plotting in a slightly dif-
ferent way, only focus on the four key datasets, with modi rates ranging from 0.0 to 1.0, as dual
Modi has been shown to be bad, namely too big. The plotting is shown in figure 4.12, which shows
only the improvement of the Modi-GP over the basic-GP. From the figure we can clearly see that, the
Modi rate does affect the performance on the classification accuracy. Its influence is not consistently
proportional across different tasks, provided by that curves in the figure are not parallel with each
other. However, neither too big nor too small Modi rates are the best. No reliable way of choosing
a very appropriate Modi rate for a task has been found, except that to do empirical search through
experiments. If such a search can improve performance significantly, it is a small price to pay. The
experiments suggest that a Modi rate between 0.3–0.6 is a good point to start searching on.

Similar conclusion can be made from Figure 4.9. A good modi rate example is a middle case µ = 0.5,
shown as hollow circle labeled curve, which is at the top position of among cluster. A bad modi rate
example, a “too small” case with µ = 0.0, shown as hollow triangle labeled curve, with is clearly at
the bottom position among the cluster.

The “half modi nodes is good” conclusion refers to the fact that in the initial population, programs
with neigher too many modi nodes nor too few modi nodes is convenient for GP to start evolving on.

30

�����

����

����

�����

�����

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� ���

��������	Im
p

ro
ve

m
en

t
o

n
 C

la
ss

if
ic

at
io

n
 A

cc
u

ra
cy

 (
%

)

����

����

�������

�������

Figure 4.12: Modi Rate Analysis – The Improvement

The result makes sense. Because the interpretation of the modi rate is just the expected percentage
of reuses and the expected times of output vector updating in the initial programs, too low reuse and
output vector updating definitely reduce the power of the program, whereas too high case makes the
reusing and updating effect dummy.

4.3.3 Efficiency Analysis

Basically, Modi-GP is more time consuming than Basic-GP in terms of the training time, especially
for hard problems, in which double amount of time is used, as shown in Figure 4.13. In principle,
there are two possible reason for the slow training time: 1) the running of a single evolution is slower;
2) Modi-GP converges slower on the dataset, namely it needs more evolutions to reach a satisfiable
training state (say, perfect classification accuracy). Modi-GP falls into the first case, for the second
one, it is actually the other way round.

Modi-GP is relatively slower for single evolution because, the most time consuming part in each
evolution is to evaluate the fitness of each of the program in the population. However the program
tree evaluating of modi tree is in general slower than the SDtree. Because all nodes need to pass on a
value, though modi nodes have an extra task to do, which is to update the output vector.

For the second point, we happily observed that, Modi-GP actually converges much faster then Basic-
GP on multi-class classification. This fact is reflected in figure 4.14, in which Modi-GP always guar-
anteed to take fewer generations then the Basic-GP, or the same if both approaches are not able to
fully converge inside the maximum number of generations specified. For simple classification tasks
such as the shapes and clear coins, Modi-GP can terminates on just a couple of evolutions. This
means that the best program in the randomly generated initial population is already very appropri-
ate in capture the classification task. Therefore, to apply the No Free Lunch Theorem [?] inversely, we
wold conclude that Modi-GP is more appropriate then Basic-GP on multi-class classification, which
is consistent with our experimental result.

Although Modi-GP is able to converge faster to the optimal solution, for hard problems such as
fuzzy digits, in which both Modi-GP and Basic-GP are not able to terminate within the fifty genera-
tion limits, real life training time of Modi-GP is higher (about double the time) then Basic-GP, purely
because its single evolution running time is slower.

31

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

����� ����� ���� ��	
� ���� ����� ���

 ���
� ���	
 ���	� ����
 ����
 ����
 ����
 ����

��������	
�
��������������
�����	���������

�
�
�
�

�
�
��
��
�
��
�
�
�
��
�
�
�
�
�
�
�

���

�����
�

�����
�	

�����
��

�����
��

�����
��

�����
��

�����
��

�����
��

�����
��

�����
��

�����	�

�����	��

�����	��

�����	��

Figure 4.13: Learning Time

0.00

10.00

20.00

30.00

40.00

50.00

����� ����� ���� ��	
� ���� ����� ���

 ���
� ���	
 ���	� ����
 ����
 ����
 ����
 ����

��������	
�
��������������
�����	���������

�
�
�
�
�
�
��
��
�
�
�
��
��
�
�
�

��������

�����
�

�����
�	

�����
��

�����
��

�����
��

�����
��

�����
��

�����
��

�����
��

�����
��

�����	�

�����	��

�����	��

�����	��

Figure 4.14: Number of Training Generations

32

4.4 Further Analysis and Discussions

4.4.1 Modi Advantages

Overall, there are three major advantages of the Modi program structure. Firstly, it allows the learnt
program to reasonably output a vector of related values, thus gives us a more coherent representa-
tion of the multiple-class classifier. Secondly, it allows reusability inside the program tree, thus in
somehow compresses the searching space, resulting in a more efficient learning. The third point is
that as the Modi structure is structurally equivalent to the standard tree, no extra constraint is needed
to embed the structure into the tree-based GP learning system.

Apart from the real-value contribution, the idea behind Modi actually gives us a very flexible family
of structures that can all be freely embedded into (hence evolved by) GP. This means, for example,
other than simulating the loopy DAG, Modi structure can also simulate polytrees (although not quite
practically useful). Modi structure can also simulate the architecture of Artificial Neural Networks,
as the architecture of ANN is just a multiple root feed-forward network, therefore, as we have had
the multiple root structure (i.e. Modi), we could be able to get a simulated neural network with a bit
of concern, say, to move the knowledge stored on the edges of the neural network onto the node, or
the other way round, to cope it with the Modi structure.

4.4.2 Modi Desires Bigger Tree Depth

The multiple outputs feature of Modi arises another problem. As there is no free lunch, to get multi-
ple outputs naturally requires bigger-in-size programs. This means the GP learning system has to do
the genetic beam search on trees with bigger depth, thus increases the search space and slow down
the learning. The “children-reuse” feature of Modi does to some extent help to cope with this prob-
lem, though not enough.

To clarify the problem, from the Modi node point of view, in order to “modify” an output vector
with bigger size, we would need a program tree to have more tree nodes (as candidate Modi nodes),
consequently requires bigger tree depth. If we did not do so, it would result in that some output
vector cells never be able to have a chance to be updated by even a single Modi node. An extreme
example of this case would be the number of function nodes (candidate Modi nodes) in the program
tree is less than the size of the output vector. The nine digits datasets we experimented have this
problem, as the program tree depth we used is just four to seven ramped-half-half, though the out-
put space is of size ten.

From the loopy DAG simulation point of view, in order to to make a loopy DAG of r “roots” to
calculate out the same amount of information as a sequence of binary trees, one would requires the
loopy DAG to be in the same depth, though around r times wider than each of the single binary tree
in the sequence. Modi is actually a structure that wraps the loopy DAG into a standard tree. There-
fore in order to achieve an equal computational ability as the loopy DAG that it is simulating (i.e. a
much fatter one), the tree structure that really holding the Modi structure should have a much bigger
depth. An analogue would be to make a thin man to have the same weight as a fat man we would
prefer the thin man to be much taller.

Arithematically, a Modi tree of depth d that is simulating a loopy DAG with r many outputs, would
have computational ability around [≤ 1

r
] times the computational ability of a single output tree with

an equal depth d. To the other hand, if we want the Modi tree to have the same computational abil-
ity as a standard tree of the same depth for each of its r output, we would better to set it to depth
[≈ r×d]. There is something reasonable though we are not doing. We should use a bigger tree depth

33

for the Modi tree and a smaller one for the standard tree, though in the experiment we set them to be
the same.

From the experimental observation, we happily noticed that, for small multi-class classification prob-
lems (say four class classification), if we force the Modi program tree depth to be small (say depth = 7
instead of depth = r × d = 4 × 5 = 20, GP can automatically evolve out neat and highly-reused
programs that can solve the problem reasonably beautifully. However, for complicate multi-class
classification (say ten class), big depth is still necessary. The following is an analysis of the Modi tree
depth needed for a r class classification.

Suppose we want to use GP to evolve out a program classifier on r class classification, we would
like the evolved program to have r outputs, namely r many functional roots. If we use Modi struc-
tured programs, that would mean the size of the output vector should be set to r. Without losing
of generality, we can also assume our program tree is a full tree with depth d, and all functions are
binary, namely, our tree is a binary full tree of depth d. Given these, the number of non-leaf and non-
root nodes we can have is

∑d−1
i=2 2i−1. Suppose the Modi rate is µ, then the expected number of Modi

nodes in the tree is M = µ×∑d−1
i=2 2i−1 + 1 (+1 derived from that the root node has to be a Modi). As

we uniformally assigns the class label out, the probability of all output vector cell (r many) will have
at least one Modi node in charge of it (hence gets updated based on the input pattern value, thus
properly classified) is: ℘ = 1 − P(at least one of the r cell has no Modi node in charge of it) = 1 − (r−1)M

rM .
It is quite a low probability comparing with our intuitively feeling. Lets put some real numbers in:
suppose d = 7, µ = 0.3, and r = 10, which is the real setting of our experiments on the digits dataset,
given these and the formulae above, we can easily work out M ' 19, and ℘ ' 0.865, not very high.
Same setting but the number of classes r = 4, then ℘ ' 0.996, much better; Ten class problem, with
program depth d = 10, then ℘ ' 0.999.

Probabilistically speaking we can never make ℘ = 1, which means we cannot theoretically avoid
the case that some vector cells always be valued to zero regardless to the input pattern the evolved
program takes. If we have more than one such “always zero cells” then the SBCS will not able to dis-
criminate between the class those cells are in charge of. However, this is just a theoretical analysis on
the initial (randomly generated) population. The problem can normally be greatly improved during
the evolutionary learning process of GP.

Theoretically, the learning speed versus learnt output space delimma is a natural problem that all
learning algorithm have to suffer from (similiar with Okhams Razor). Therefore the problem is not
considered as a drawback of the Modi structure. In consideration of the learning speed, in our experi-
ments, we did not try bigger program depth on the digit problems. This will be taken as a primitive
future work on Modi.

4.4.3 A Note on the Digit Dataset

As addressed in the previous section, one problem with the digit datasets is that the size of its output
space (i.e. ten) does not cope with the current setting of Modi tree depth (i.e. four-to-seven ramped-
half-half). Another quite similiar problem with them is on its relatively too small input space. As
described in chapter three (the datasets), the object feature we used to represent each of the digit is
raw pixel values, which means for each of the 7×7 digit object, the input feature vector size is 49. The
genetic program tree depth we set is maximum 7 and minimum 4. Therefore even the best evolved
program is a full tree of depth 7, there would only be about 2(7− 1)÷ 2 = 32 many input space of the
program, which is definitely not enough for handling 49 many features (32 is already the best ideal
case, in real experiments the input space of the finally evolved program is much smaller, as the tree
depth can rarely be 7-full). For clearer digits sets, in which not all the 49 features are essential to tell

34

between different digit object, the problem may not be that obvious, however for really fuzzy sets
like dig60, it would be a big problem. We are currently considering if the unreasonable restriction
on the program size could be the reason that Modi cannot make big improvement on dig60, it will
be future investigated, by means of more experiments.

Another note is on the dataset digit00, which contains only clear digits thus has the following
two features: 1) the dataset contains only ten distinct examples (as we could have only ten clear dig-
itss), all other data examples are just repetations of them. 2) as a consequence of the first feature, the
training dataset and the testing dataset contains exactly the same data examples, thus is totally free
from the overfitting problem.

The point with this dataset is, it should be an easy one, though neither Modi nor the standard GP
approach is able to perform well on it. It is also the case that the effect of Modi rate shows to be
opposite on this dataset comparing with the others. It is quite a superised observation. Currently
we could not come out with a explanation that is plausible enough so that everone would be happy
with. Will Smart (BSc hons) pointed out that it might because the dataset was too strongly redundant
(due to the repetation) on each of the pattern so that the genetic programming system got to put too
much concentration on trying to fit those really wee details which could in truth lead the learning
nowhere. In another word, the redundancy in the dataset makes the system get lost. This problem is
still under investigation, and will be future justified by means of, again, more experiments.

35

4.5 Chapter Summary

In this chapter, we described a virtual program tree structure that simulates the effect of loopy di-
rected acyclic graphs to make multiple related outputs, yet its actual structure is just the standard
tree, thus is naturally evolvable by the tree-based GP. By means of this structure, some problems
whose solution is hard to be represented by the traditional typeless program tree, can then be easily
embedded into, and learnt by, the tree-based GP.

Multiple class classification is a typical problem that naturally desires a multiple output solution,
thus is used to test the effectiveness of the new structure. From experimenting over fifteen datasets
with varying difficulty and different features, we observed that the new approach guarantees to out-
perform the basic approach on all tasks.

Experimental results also show that different Modi rates would lead to different results. Neither
too small nor too large Modi rate is good. Although it does not seem to exist a generally Modi rate
that is the best for all tasks, rates ranging between 0.3 to 0.6 are good starting points to try on.

For future works, we will further investigate the Modi approach for digit tasks with a larger pro-
gram size to see if the performance can be improved. We are also considering refining the modi node
distribution law to gain a fairer assignment of Modi nodes so that it could guarantee to cover the entire
output vector. We would also like to investigate ways of extending the idea behind Modi to learn the
architecture of more general structures, such as neural networks and belief nets. More future works
are listed in the conclusion chapter, i.e. chapter six.

36

Chapter 5

Program Simplification with Prime
— the Pres Algorithm

Genetic program trees may pick up redundancies during the evolution, as they are automatically
constructed without being told that subtrees like x-x+x-x can actually be replaced by a null. This
makes us start to consider if it could be nice to eliminate those kinds of redundancies during the
evolution, so that the search space of GP can be reduced hence speed up the learning. However, this
idea would make sense only if we could do it relatively fast, so that the time saved with reducing the
search space will not be over-covered by the time paid for performing the simplification.

In this chapter, we are going to present a redundancy elimination algorithm that can simplify ge-
netic programs in a very efficient way – theoretically linear time with respect to the number of nodes
in the program tree to be simplified. The core of the algorithm involves prime numbers, thus is
named Pres, refers to Prime REfined Simplification.

The rest of this chapter is organized as follows:

SECTION 5.1 will discuss the pros and cons of doing genetic program simplification while learning,
by addressing both the problem of carrying redundancies in the evolutionary learning, and the
risk may face us if we eliminate redundancies along the way.

SECTION 5.2 will present our linear time redundancy elimination algorithm – the Pres Algorithm.
This section is furtherly split into five subsections, describing five aspects of the algorithm.

SECTION 5.3 will present and analyse the experimental result of applying Pres algorithm to sim-
plify programs in the population, periodically during the GP evolution, on some typical multi-
class object classification problems.

SECTION 5.4 will make further analysis on the experimental result, along with some more detailed
observation on the behavior of the PRES simplification algorithm, thus derives some really
interesting future works.

SECTION 5.5 will be the chapter summary.

37

5.1 The Pros and Cons of Program Simplification

A program, in a GP sense, is often a tree structure describing a complex prefixed expression, which
consists of constants, variables, and various operations including (in our case) plus, minus, times, di-
vide, and if. Such expressions will be learnt by the GP system along the way of increasing the fitness
of the expression on some tasks. On the other hand, there is no attempt of the learning system to tell
that redundancies such as in x+y-y is something undesirable.

We were thinking of in some way to tell the system that the redundancy was bad hence made the
system be able to eliminate it by itself. However we failed to come out with a teaching approach that
was reasonable enough to try. Thus the only way left for eliminating redundancies is to separately
deliberately do the program simplification. This solution is less natural and is in doubt if it is nice to
do so, as addressed below.

Why do - Redundancy in programs

Randomly generated genetic programs may pick up redundancies, due to the existence of only a
restricted number of choices from the variable space, along with the basic nature of arithmetic opera-
tions. Types of redundancies in our case, as our program expressions are built on constants, variables,
and operations +, −, ×, ÷, and if < 0, are summarized as follows:

• Subexpressions consist of only ground terms (i.e. terms with no variable) can be computed out
straightaway. For example:
13 + 14 27
if < 0 (−1) then (a) else (b) a

• Negative operations (−, ÷) being applied on different occurrences of an identical expression
can be eliminated to unity. For example:
a − a = 0
(a + b) ÷ (a + b) 1
if(a) then (b) else (b) b

• Some arithmetic rules are able to make the expression much shorter. For example:
a × b − b × a 0 commutative rule
a × b + a × c a × (b + c) distributive rule
(a − b) ÷ (b − a) −1

To carry such redundancies in the program uselessly increases the search space, consequently slows
down the learning. Spaces taken up by redundant blocks may also hinder the appearance of useful
blocks, hence affect the convergency of the learning system. This is why we are considering to sim-
plify the program, as it may be able to speed up the learning, also make more spaces to accept new
resources.

Why not to - Break up good blocks

We do have a strong reason of eliminating the redundancy out. However, whether of not it is good
to do the elimination during the learning is in doubt. The point is that the redundancy elimination
process may break down overall redundant though themselves useful sub-blocks.

For instance, sin(a)-sin(a) is definitely something redundant that can just be reduced to 0. How-
ever, if we did so, then we would lose the function sin(a), which might by itself a very useful block.
Which means, if one of the sin(a) can get crossed over later to escape from subtracting towards it-
self, it may help to increase the fitness of the program quite a lot.

38

5.2 The Pres Algorithm

There are reasonable theoretical arguments both for and against doing simplification while learning.
In order to provide further support on the debate, the best way is to try the idea out and analyse on
the result. So now in this section we would like to present our simplification algorithm – the Pres
algorithm first. Results and analysis will come slightly after, in the section following.

Pres stands for Prime refined simplification, is an expression simplification algorithm that can elimi-
nate many kinds of redundancy, all together in theoretically linear time with respect to the number
of nodes in the program tree to be simplified. As its name derives, the key idea of Pres is the use
of prime numbers to speed things up. Other hole-fixing ideas of Pres include the double decker bus
structure, past-free tidy-up rewriting, the operator family law, and quartuple hashing, which will all be
addressed in details below.

The entire PRES algorithm is thus separated into five sub-algorithms, referred to as PRES-1 to PRES-5.
In the rest of this section, we will firstly look at the simplest one-level simplification problem in sec-
tion 5.2.1 and 5.2.2 regarding PRES-1 and PRES-2, namely the case that all candidates redundancy are
primitive terms. We will then go to the deeper-level simplification problem in section 5.2.3 regarding
PRES-3, in which case the candidate redundancy could be a compound term, say an entire subtree.
At the end, we will present how to get the finally simplified program in section 5.2.4 regarding PRES-
4, and to show how one could extend the PRES algorithm to handle the simplification on currently
undefined operators in section 5.2.5, regarding PRES-5.

5.2.1 Pres-1 — One-level Simplification on Neat Expressions
(Find the Greatest Common Sub-Multiset)

Consider the simplification problem shown in equations 5.1 and 5.2. Because positive operations
such as + and × are commutative, simplification problems as so can thus be considered as eliminat-
ing the Greatest Common Sub-multiset (GCS) of the multiset1 representation of the numerator and the
denominator (for the ×÷ case), as the GCS is exactly the cause of redundancy.

w × x × z × z × y

x × y × z × x
︸ ︷︷ ︸

redundant expression

=
w × z

x
︸ ︷︷ ︸

simplified

(5.1)

(
w + x + z + z + y

)
−
(
x + y + z + x

)

︸ ︷︷ ︸

redundant expression

=
(
w + z

)
− x

︸ ︷︷ ︸

simplified

(5.2)

“Set” means sans ordering. Without ordering the problem fails to preserve the optimal substruc-
ture, thus traditional algorithms like Greedy Algorithm [?] and Dynamic Programming [?] are not
applicable in this case. A direct solution of finding the GCS between two multisets would be to go
through one of the multiset, for each element in that set we tell if it is a member of the GCS by look-
ing through the opposed multiset for an identical element. But this is polynomial time, O(m × n) on
multisets with length m and n.

A smarter way of finding the GCS is to sort the two multisets first (suppose we do have a com-
parable key to sort on), then a linear time matching up will give us the GCS of two sorted multi-
sets. Doing in this way, the time complexity is then up to the time of sorting. Divide and Conquer

1Multiset is a set-like object in which order is ignored, but multiplicity is explicitly significant. — Mathworld

39

sorting algorithms [?] can give us an O
(
nlog(n)

)
sorting, thus the overall GCS finding would be

O
(
nlog(n) + mlog(m) + n + m

)
. Better, though still not linear.

With counting sort [?] we may be able to do even better, with Θ
(
max(n, k) + max(m, k) + n + m

)

to find the GCS. It could be a nice linear time complexity if k the range of the sorting key is linear,
which can be made true in our case. Unfortunately there is another issue that would pull the count-
ing sort approach away from linear on the general simplification problem. Namely the fact that it
cannot do deeper level simplification also in linear time. This issue will be addressed more in section
5.2.3 on page 46.

The Pres Algorithm does absolutely better. It gives us a consistent linear time solution on the GCS
problem with the help of prime numbers: Θ

(
min(m,n)

)
for GCS finding and Θ

(
m + n

)
for GCS

elimination. Figure 5.1 illustrates how it works. The left hand side is a formal texture description,
the right hand side gives an example corresponds to the simplification problem of equation 5.1. The
same procedure would apply to equation 5.2, as they are actually reduced into a same GCS elimina-
tion problem.

40

PRES-1: PRIME TO LINEAR TIME GCS

• Preliminaries:

– Pre associate each variable with a
unique prime number, so that when one
picking up a variable (say) x, a prime
number (say) 5 is also picked up, for
free.

– Group variables separated by the neg-
ative operator (÷,−) together to form
two multisets, whose elements are vari-
ables joint by the positive operator
(×,+),

– When constructing a set, calculate the
product of the primes along the way.

Now if we have a set of elements on hand,
we would also have a set of prime numbers,
and a number that is the multiplication of
those primes, i.e. the prime product PP.

• GCS Finding:

Go through the shorter set B, attempt to di-
vide the prime product of the opposed set A

by each of the prime number in B:

– If dividable, then consider the divisor
to be in the GCS, and continue with the
quotient.

– Otherwise just skip that element.

In this way we can find the GCS of set A and
B with size m and n in Θ

(
min(m,n)

)
time.

• GCS Eliminating:

If we want not only to find the GCS, but also
to eliminate all common elements (i.e. do
the simplification), we would need to do the
GCS Finding on both sets, and get rid of the
common element along the way. Thus will
take us Θ

(
m + n

)
time.

w w
·3 x x

·5

y y
·7 z z

·11

A =
{

w
·3, x

·5, z
·11, z

·11, y
·7

}

B =
{

x
·5, y

·7, z
·11, x

·5

}

PPA = 3 × 5 × 11 × 11 × 7 = 12705

PPB = 5 × 7 × 11 × 5 = 1925

Go through B on PPA :

 12705 ÷ 5 = 2541 GCS = {x}
 2541 ÷ 7 = 363 GCS = {x, y}
 363 ÷ 11 = 33 GCS = {x, y, z}
 33 ÷ 7 = × GCS = {x, y, z}

Go through A on PPB :

 1925 ÷ 3 × A =
{
w, x, y, z, z

}

 1925 ÷ 5 = 385 A =
{
w, y, z, z

}

 385 ÷ 11 = 35 A =
{
w, y, z

}

 35 ÷ 11 × A =
{
w, y, z

}

 35 ÷ 7 = 5 A =
{
w, z

}

Figure 5.1: PRES-1, The “prime number” solution for one-level simplification on neat expressions

41

5.2.2 Pres-2 — One-level Simplification on Messy Expressions
(Tidy-Up Rewriting with Double Decker Bus)

In the previous section, we have shown how the Pres algorithm simplifies the neatly grouped-up
expressions like equations 5.1 and 5.2 in linear time. However in tree based GP, expressions rarely
come out as nice as that, often much messy, like the very left side of equation 5.3 below.

(

÷
(

×
(
÷ (÷ w x) (÷ y x)

) (
÷ (× z z) (÷ z y)

))

x

)

︸ ︷︷ ︸

a simplifiable branch

=
w × x × z × z × y

x × y × z × x
︸ ︷︷ ︸

tidy up rewriting

=
w × z

x
︸ ︷︷ ︸

simplified

(5.3)

Therefore, in order to bring PRES-1 and the real genetic program together, a tidy-up rewriting on the
raw tree-parsed expression is necessary. This can be done in linear time, by bottom-up constructing
a double layered table that represents (say) the numerator and denominator so far up to each of the
node.

The Basic Idea: Bottom-up Tidy-up

An example construction corresponds to equation 5.3 is shown in figure 5.2. For each of the non-
leaf node we would have a two-layer storage table associate with it, which tends to represent the
entire subtree down up to this node. Each of such table has two layers: a positive layer corresponds
to the numerator/dividend (or minuend for subtraction), and a negative layer corresponds to the
denominator/divisor (or subtrahend). The bottom-up construction of those per-node tables is as the
following:

• If the operator of a node is a positive one like add and times, the positive layer of its table
would be the concatenation of positive layers of its children, and its negative layer would be
the concatenation of negative layers of its children.

• Otherwise if the operator of the node is a negative one like minus and divide, we concatenate
the positive layer of its left child and the negative layer of its right child to form the positive
layer of the node, the other way round for the negative layer.

W
X

Y
X

Z,Z Z
Y

W,X,Z,Z,Y
X,Y,Z

Z,Z,Y
Z

W,X,Z,Z,Y
X,Y,Z,X

W,X
X,Y

%

W X Y X

% %

%

Z Z Z Y

*

%

* X

%

Figure 5.2: “Past-free” Bottom-Up Tidy-Up

By following this procedure from bottom-up, we would get each non-leaf node a double layered ta-
ble, which could by itself preserve all necessary information of the subtree down from its owning
node, though neatly grouped. Thus the two layer table of the root node would form a Tidy-up Rewrit-
ing of the entire tree, which could be in turn thrown to PRES-1 without worries.

42

The entire bottom-up construction process has a past-free property. Namely the parsing of the double
layered table at each of the node depends only on its direct children, not anyone else from the earlier
past, like its grandchildren or deeper descendant. With this property, also that we can do the layer
(list) concatenation in constant time, the entire Tidy-up Rewriting would be linear with respect to the
number of nodes in the tree.

A More Advanced Approach: With Double Decker Bus

Above is the basic idea, though what the PRES Algorithm really does is something slightly smarter:
It does the tidy-up rewriting on the prime number associated with each of the variable, rather than
the variable itself, as shown in figure 5.3. This enables us to compute the prime product along the way
to fully satisfy the preliminaries of applying PRES-1, as described on top of the figure 5.1.

5
3
5

11
7

5

3 5 57 711 11 11

3,5
5,7

11,11,7
11

3,5,11,11,7
5,7,11

3,5,11,11,7
5,7,11,5

/
11,117

X

12705
385

XW Y

%

Z Z Z Y

* %

* X

%

%

12705
1925

121

15

3
5

35
%

11
71

7
5

%

847
11

Figure 5.3: Bottom-Up Tidy-Up

Apart from that, the Pres algorithm used a more advanced double layered table with two additional
“wheels”, like the one shown in figure 5.4. The front wheel stores the operator family of this table,
namely if it is a table whose positive layer is for plus and negative layer is for minus, or a table
whose positive layer is for times and negative layer is for divide, or something else. The back wheel
stores the constant calculated along the way, source from numerical terminal nodes, which are not
associated with prime numbers as the way we did for feature terminals. This structure looks rather
like a double decker bus, so let us call it a DDB, the positive layer the PosDeck, and the negative layer
the NegDeck.

prime | prime | prime | prime | prime | prime | NegDeck

prime | prime | prime | prime | prime | prime | PosDeck

Constant

primeproduct

int

primeproduct

float
OpFamily

Figure 5.4: Double Decked Bus (DDB)

Figure 5.5 summarizes the structure of DDB (on the left), and the past-free bottom-up algorithm used
to construct it (on the right). These ideas together would give us a tidy-up writing along with the
control over numerical terminals, thus makes it possible to do one-level linear time simplification on
real program tree branches.

43

PRES-2: TIDY-UP REWRITING

Double Decker Bus (DDB):

DDB is a per-node double layered storage
structure looks exactly like in figure 5.4. It has
four main components, two decks and two
wheels:

• Front wheel:
(int) OpFamily:
It stores the operator family of the DDB,
namely if it is a one whose posdeck is
for + and negdeck is for −, or a one
whose posdeck is for × and negdeck is
for ÷.

• Back wheel:
(float) Constant:
It stores the numerical constant calcu-
lated along the way, source from de-
scendent numerical terminal nodes.

• Top Deck:
(Layer) PositiveDeck:

– (list) posprimes:

A set of prime numbers, tends to
represent all positive descendents
in the subtree down up to this
node.

– (unsigned longlong)

primeproduct

The product of the prime number
set. Its value would uniquely
correspond to the posprimes set,
as that is why we use primes.

• Bottom Deck:
(Layer) NegativeDeck:

– (list) negprimes:

A set of prime numbers, tends to
represent all negative descendents
in the subtree down up to this
node.

– (unsigned longlong)

primeproduct

The product of the prime number
set. Its value would uniquely
correspond to the negprimes set.

DDB Construction:

Per-node DDBs are built bottom-up, from leaf
nodes to the root. Specifically, for each of the non-
leaf node, we do the following:

1. Copy the OpFamily.
This step is trivial up to here, as we are cur-
rently assuming that the entire tree must be
of a same operator family. Namely for exam-
ple, a mixture of × and ÷ is allowed in our
toy tree, though not (so far) for a mixture of ×
and +.

2. Compute the constant of the node.
To do this, simply apply the function of the
node to constants of its children will do.
To guarantee the safety of this operation, we
would do the following with leaf children:

• If it is a numerical leaf then the constant
value it should pass on would just be its
node value.

• Else if it is a feature leaf denoting a vari-
able, then the constant value it should
pass on would be 1 for operator family
of × and ÷, and 0 for operator family of
+ and −.

3. Update the PosDeck and NegDeck by:

• If the function of a node is a positive one
(+,×), then concatenates matching decks
of its children to form the deck of itself.
Multiplying matching primeproducts of
its children to form the primeproduct of
itself.

• If the function of a node is a negative one
(−,÷), then concatenates opposite decks
of its children to form the deck of itself.
Multiplying opposite primeproducts of
its children to form the primeproduct of
itself.

The above three steps all take constant time, and
would be applied to each of the non-leaf node ex-
actly once. Thus the DDB construction of the entire
tree would be linear time with respect to the num-
ber of nodes in the tree.

Figure 5.5: Pres2, “Past-free” Tidy-up Rewriting with DDB

44

5.2.3 Pres-3 — Deeper Level Simplification
(Quartuple Hashing and the Operator Family Law)

In previous sections, the simplification problem we were looking at was restricted to a single level,
namely we assumed that all nodes in the program tree is of an identical operator family, so that all
candidates redundancy are primitives. But this is very often not the case. Consider the simplification
problem shown below in formula 5.4, one redundancy occurs on the compounded term (x + y), as
the numerator has a term (x + y), which can be eliminated with the term (y + x) of the denominator.

(

÷
(

×
(
× (+ x y) (− z 3)

) (
÷ y (+ y x)

)) (

×
(
÷ (+ z x) w

)
y
)
)

︸ ︷︷ ︸

a simplifiable branch

=
w × (x + y) × (z − 3) × y

y × (z + x) × (y + x)
︸ ︷︷ ︸

tidy up rewriting

=
w × (z − 3)

z + x
︸ ︷︷ ︸

simplified

(5.4)

This makes the PRES Algorithm get stuck. Because the the algorithm requires a prime number to be
associated with each of the candidate redundancy. This can be done easily for atom nodes by the
pre-association, though not for compound terms like the (x + y). This is because compound terms
are dynamically formed along the way, thus the pre association is not possible at all. Happily the
problem is solved with the idea of dynamic prime number association along the way of the bottom-up
construction of DDB. This involves two supporting ideas:

1. The use of Quartuple Hashing, to safely determine what prime number to use for a dynamic
association along the way, in constant time.

2. The Operator Family Law, to tell when to do the prime number association.

Quartuple Hashing

Let us look at the problem of what first and the problem of when shortly after. The what problem
sounds easy, as to have an ordered list of prime numbers and assign primes out one after another
appears to do, i.e. use a primetable like a one shown in figure 5.6. But the problem is we need to avoid
two different prime numbers to be associated with compound terms like (x + y) and (y + x), or two
occurrence of (x + y), as they are actually the same and should be simplified if appear oppositely.

 2 3 5 7 11 3559 3571

 Node* Node* Node* null null null

 0 1 2 3 4 498 499

Node*[] vals

prime[] keys

Figure 5.6: Prime Number Storage Table - The Primetable

The way of avoiding this problem is that, if we decide to associate a prime number with a subtree (a
compound term), we should firstly check whether or not a same compound term has already been

45

associated with a prime number, if it is the case then we would associate the new subtree with a same
prime number, only if it is not the case would we pick up a new prime number.

This checking procedure would be time consuming if we did it by going through the entire primetable
for a looking-up every time we wanted a new dynamic prime number association. Happily with the
help of hashing on subtrees we can still stay on the constant time, given that the hashing structure
and hashing function(s) are reasonably chosen so that the collision is reduced to an acceptable level.

Here is the detail of how we used the hashing: As what we want to do is that given a subtree,
deterministically find out the prime number associated with it, if any, in constant time. Thus we
should hash from the key of subtrees to their associated prime numbers. This could be constant time
only if we can do the key-equality-check in constant time, which is not the case if we use raw subtrees
as the key.

The primeproduct in the DDB helps on this point. Recall that the DDB of each of the node is
able to fully represent the subtree down from it, and the head of a deck (i.e. the primeproduct)
is able to fully represent the carriage part (i.e. the prime list), thus the head of the two decks to-
gether with the two wheels would be able to fully represent the DDB, thus the entire subtree down
from each node. Namely a quartuple:

(
PosPrimeproduct, NegPrimeproduct, OpFamily,

Constant
)

would do. In this way we reduces the linear-sized hash key (raw subtree) into a
constant-sized one (with size four), hence ensures the looking-up of the hashing to be constant time.

The hash table that Pres actually uses is a one shown in figure 5.7 on page 47 (color view recom-
mended). It looks awesome though actually no more than a two-level hashing structure both with
bucket. The PosHashtable hashes on the PosPrimeproduct and the OpFamily. The NegHashtable hashes
on the NegPrimeproduct and the Constant. As the Constant key is in the form of floating-point number,
user controllable tolerance on the equality of this key is introduced. Values stored in such a hashtable
are pointers to the prime-associated subtree roots, which could in turn give us their associated prime
numbers. Note that we prefer to use bucket, because we want our hashtable to tell “no there is no
such an element in” also in constant time.

Up to this point, the answer of “why the counting sort solution we discussed before (in section 5.2.1
on page 40) does not sound on its linearity on deeper level simplification” becomes obvious. As with
it we could have no linear-sized key for our hashing, thus have to hash on subtrees which would
drive the entire algorithm into polynomial.

46

Po
sB

uc
ke

t (size = 47 * 3)

Pos Hashtable

N
eg H

ashtable
(size =

 13)

N
eg H

ashtable

...
 ..

.
...

 ..
.

*% if+−

N
eg

Buc
ke

t

A PosBucket Entry:
primeproduct poskey;

A NegBucket Entry:

float constant;
primeproduct negkey;

Node* value_node;

NegHashtable* htable;

prime

prime

prime

Figure 5.7: The Hashtable

47

The Operator Family Law

We have solved the what problem by using hashing. This means if we want to associate a prime
number with a subtree, we can feel free to do so, in constant time. Now it is the time for us to look
at the problem of when to do the prime number association would be the most reasonable, namely it
could maximize the efficiency though without affecting the ability of simplification.

In order to optimize the simplification efficiency, we want to do as few subtree wrapping (i.e. dy-
namic prime number association) as possible. We notice that with operators +, −, ×, and ÷, to wrap
a subtree into a prime number is necessary only if the subtree root and the parent of it are of a dif-
ferent operator family, like the wrap example shown in figure 5.8. But in the case that its sibling
is eliminatable toward it and its parent is a negative operator, we can just eliminate those subtrees
straightaway, like the arithmetic example shown in 5.8. This is summarized as the Operator Family
Law, as shown in figure 5.8.

Note that with PRES-3, we would in some circumstance need to apply the linear time PRES-1 on
non-root nodes. This seemed to make the whole process non-linear, though is not in actual fact. The
point is, after we applied PRES-1 on the DDB of a node, we would then never need to do PRES-1 again
on that subtree, thus overall we would still stay on the linear case. An analogue of this fact could
be, instead of summing over ten values at once, we do five summations each of size two, which in
general just require a same amount of computation.

PRES-3: OPERATOR FAMILY LAW

This is a plug-in of PRES-2, namely the bottom-up DDB construction for tidy-up rewriting.
Together with this PRES-3 the PRES algorithm can then be used for deeper level simplification
though still preserves its excellent linear time complexity. Specifically, when doing the bottom-up
DDB construction, for each of the non-leaf node we do the following:

• Merge:
For child who has the same operator family as itself, merge
the child according to the way described in PRES-2.

• Otherwise we apply PRES-1 on the non-mergable child to
simplify the DDB of it, for a preparation of either an arith-
metic, or a wrapping, as described below.

• Arithmetic:
Else if it is a negative operator, and its two children are
eliminatable, then eliminate them straightaway. (eliminat-
able would mean identical subtrees, or fit in with various
arithmetic rules, like (a−b)÷(b−a) = 1, a×b×c−b×c = a−1,
(a + b)(a − b) = a2 − b2, and so on, according to the built-in
arithmetic rule.

• Wrap:
Otherwise we wrap the subtree into a prime number, up-
date the primetable and the hashtable if necessary, then con-
tinually construct the DDB up with this newly associated
prime number.

M
er

ge
!!!

W

+

ZZ

−

%

X

Arit
hm

eti
c!!

!

−

%

−

XX W W

W
ra

p!!!

W

+

ZZ

−

%

X

Figure 5.8: Operator Family Rule

48

5.2.4 Pres-4 — Get Back the Simplified Program
(from the Root-DDB)

So far we have shown how to construct the DDB along the way. After we reached the root of the
entire tree, we would apply PRES-1 once, for a linear time overall simplification, to gain a simplified
DDB. We will then need to reconstruct the simplified program from the simplified DDB.

In PRES the reconstruction is done in a “divide and combine” way. It divides prime numbers in
the root DDB into pairs, then from them combining the tree up by making up appropriate function
nodes. The reconstruction process may also go down if the prime number itself is a wrapping-up
of some subtrees, in which case a retrieval from the hashtable would be performed, in theoretically
constant time.

In implementation the reconstruction is done by five functions recursively call each other. The entire
procedure goes through each of the reconstructed node at most three times, thus the overall recon-
struction process is still linear with respect to the number of nodes in the simplified tree.

5.2.5 Pres-5 — Dealing with Other Operators
(if etcetera)

Up to here, we only talked about PRES simplification on basic arithmetic operators +, −, ×, and ÷.
Similar procedures can be applied to other simplifiable operators such as the {∧, √ } pair and the
if function. A good point is that to do this there is no big change needed on the basic structure of
the PRES algorithm. Certainly, customization is still necessary for building simplification rules in.
The basic procedure needed to extend the PRES algorithm to handle a new operator or a new pair of
operators is as follows:

1. Assign a novel operator family to them.

2. Define the positiveness and the negativeness of the newly assigned operator family if necessary
(e.g. for operator pairs), or blank the negative part (e.g. for singleton function).

3. Extend the OPERATOR FAMILY LAW by considering the following:

(a) Merge: Define how the DDB merging would go with the new operator, as it might be a bit
tricky for (say) the {∧, √ } pair.

(b) Arithmetic: Define in which case the canceling-out between siblings would come into
play, also other arithmetic rules if needed.

(c) Wrap: Define the wrapping-up condition, as it may not always be the case that we would
wrap up subtrees whenever encountered a different operator family. Sometimes we may
want to wrap up things even within a same operator family, like what we are currently
doing with the if function.

Currently, the only extension we have built into PRES is for the if function. It is currently treated as
a singleton function, namely all children are stored in the posdeck of the DDB, the negdeck would al-
ways have no passenger, and one would always do the subtree wrapping along the way even within
a same operator family. This is a limitation as it treats the following expressions differently although
they are actually the same.

if (a > 0) then
(
if (b > 0) then c else d

)
else d

if (b > 0) then
(
if (a > 0) then c else d

)
else d

49

This can be easily improved by storing the condition part of the if function to be in the positive
deck, storing the cases part to be in the negative deck, then defining the OPERATOR FAMILY LAW

carefully on them. However, because of the time issue this idea has not yet been realized and will be
addressed more in the future work.

5.2.6 Summary

A combination of PRES-1 in figure 5.1, PRES-2 in figure 5.5, PRES-3 in figure 5.8, PRES-4 and PRES-5
on page 49 forms the entire PRES — a linear time expression simplification algorithm. The core idea
of Pres is the use of prime number and the product of prime numbers, which gives us both a linear
time GCS solution, and a quartuple representation of the entire program tree.

The advantage of Pres Algorithm over other simplification algorithm is its theoretical linear time
complexity, and its quartuple subtree representation, which makes the use of arithmetic rules in sim-
plification becomes possible. PRES will take more advantage if the frequency of the operator family
switching along the tree path is low, namely better if we can keep the DDB longer. We also believe
that the Pres Algorithm can be applied to more widespread use other than just the genetic program
simplification, as it is a very basic level algorithm.

50

5.3 Experimental Results

We applied the PRES algorithm to simplify all programs in the population, periodically during the
evolutionary learning of GP, with simplification frequencies both of every two evolutions and every
five evolutions. Tasks we used were fifteen multi-class object classification problems of increasing
difficulty, with the Static Range Selection (SRS) as the classification strategy. Basically the experimen-
tal setting is the same as what we have described in chapter 3. Detailed results are listed in table 5.1,
along with the result of not to do the simplification. All results are averages over fifty runs.

Table 5.1: GP with PRES simplification, on SRS multiclass classification

AvgNum of Generations Terminating Time (sec) Classification Accuracy (%)
Dataset NumCls Simplification Frequency

every 2 every 5 never every 2 every 5 never every 2 every 5 never

Shape 3 7.60 7.80 7.36 3.57 3.52 4.18 99.78 99.72 99.75
4 22.56 23.28 20.94 11.10 12.29 14.68 98.95 99.14 99.41

5c 3 43.92 43.60 45.20 7.27 7.00 10.55 99.61 99.43 99.58
10c 2 17.32 16.40 16.56 4.93 4.65 6.27 99.57 99.59 99.49

Coin easy 5 36.12 38.28 37.56 10.61 10.34 17.14 95.74 96.41 95.38
hard 5 49.00 49.00 49.00 13.66 12.12 16.98 84.57 86.09 85.18

00 10 48.58 48.84 48.70 32.54 28.72 43.19 78.00 77.00 78.20
05 10 49.00 49.00 49.00 27.53 25.42 40.43 71.19 70.61 69.61
10 10 49.00 49.00 49.00 27.63 23.55 35.55 63.93 63.98 63.02
15 10 49.00 49.00 49.00 24.92 21.92 31.93 57.72 58.64 56.92

Digit 20 10 49.00 49.00 49.00 22.84 21.89 30.41 54.20 54.40 54.18
30 10 49.00 49.00 49.00 22.21 20.28 28.37 44.51 45.06 43.95
40 10 49.00 49.00 49.00 20.32 19.44 28.22 36.71 37.75 36.68
50 10 49.00 49.00 49.00 19.63 18.70 27.23 31.29 32.56 31.20
60 10 49.00 49.00 49.00 18.80 19.67 27.71 26.74 26.47 26.30

5.3.1 The Effectiveness

A) Effectiveness in terms of the Classification Accuracy

Figure 5.9 compares the effect of doing online PRES simplification with varying frequencies in terms
of the classification accuracy. Three curves regarding no simplification and simplification for every
two and five evolutions are about to overlap, reflecting the fact that online simplification would not
affect the accuracy of the learning much.

Rather than “have not made the thing worth”, we are quite supervised that to do simplification
has even slightly improved the classification accuracy up to about 2%. It is not clear from the fig-
ure, though can be seen by looking at the value presented in table 5.1. Thus we made some detailed
observation by tracing on the learning process, and observed that the wee improvement on the clas-
sification accuracy is from the fact that, in the later stage of the evolution, when the GP system seems
not to be able to make further improvement in several evolutions, doing a simplification, which has
a side effect of restructuring the entire expression, may result in a further improvement on the best
population fitness, although often quite small. Further discussion on this point will be made shortly
afterwards, in section 5.4.1.

51

����

�����

�����

�����

�����

�����

�����

	����

����

�����

������

���� ���� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

Testing Datasets With Increasing Difficulty

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

���������

���������

� �!�"#$�%����� �

Figure 5.9: Effectiveness in terms of the classification accuracy.

B) Effectiveness in terms of Termination Generations

This is a convergency effectiveness measure about the possibility (ability) for the learning to achieve
a certain level of accuracy. It would somehow also take part in the efficiency measure, which will be
addressed in the next section.

Figure 5.10 compares the effect in terms of the number of generations used for terminating the learn-
ing, in our case it would be either a perfect fitness on the testing dataset, or reached the predefined
limit of fifty generations (fourth-nine evolutions). From the figure we can see that the online simpli-
fication has little effect on this point either. Thus overall, together with the result on the classification
accuracy shown before, the risk we were worrying about for doing online simplification, namely the
potential of breaking good building blocks consequently reducing the ability of the learning, have
not in any aspect happen to appear, which is quite a happy observation.

�

�

��

��

��

��

��

��

��

��

��

��	
� ��	
� �
�� �
��� ���� ���� ����� ����� ����� ����� ����� ����� ����� ����� �����

Testing Datasets With Increasing Difficulty

N
u

m
b

er
 o

f
G

en
er

at
io

n
s ���������

���������

������� �!������

Figure 5.10: Effectiveness in terms of the terminating generation.

52

5.3.2 The Efficiency

A) Efficiency in terms of Time

Recall that our primitive goal of doing online simplification is to reduce the search space hence speed
up the learning. Thus under the freedom from reducing the learning ability, the efficiency in terms
of the learning time would be of our primary consideration.

Figure 5.11 compares results in terms of the CPU time (in second) used for the learning. By the
fact that the number of generations used for completing the learning are about the same for all three
cases, (from the overlapping of curves in figure 5.10), figure 5.11 would also reflect the averaging
per-generation search time, although somehow proportionally scaled.

From the figure, it is obvious that the training time gets substantially shortened by doing PRES simpli-
fication during the learning. A remarkable point is that, to do simplification for every two evolution
makes the entire learning slower than to do the simplification for every five evolution. This reflects
the fact that separately deliberately doing online simplification would pay extra time for itself, which
points out to us the importance of carefully choosing a reasonable simplification frequency.

����

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�	
�� �	
�� ���� ����� ���� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

Testing Datasets With Increasing Difficulty

T
er

m
in

at
in

g
 T

im
e

(s
ec

)

��������

��������

������ !�"�������

Figure 5.11: Efficiency in terms of the per-learning CPU time.

B) Efficiency in terms of Physical Computational Resources

The PRES algorithm is nice on its linear time complexity. However, it is much more memory consum-
ing than many other polynomial simplification approaches, say, the straightforward string matching.
However in these days, as memory is not of a serious concern anymore, the payment of hardware in
consideration of saving the time is almost always worthwhile.

53

5.4 Further Analysis and Discussion

5.4.1 The Side Effect of the Pres Simplification — Program Restructuring

Recall that a sorting algorithm is stable if it maintains the original order of items with identical keys
[?]. Such a definition can be extended to simplification algorithms:

An expression simplification algorithm is stable if it never rearranges unsimplifiable
subexpressions

The PRES algorithm, also many other expression simplification algorithms such as the basic string
matching approach, is doing unstable simplification. When applying such an algorithm to a redun-
dant expression, a side effect of restructuring will be brought in along with the elimination of the
redundancy. For example, consider the redundant expression shown in figure 5.12, a stable simplifi-
cation would result in an expression like in figure 5.13, though what the unstable Pres algorithm gives
us is as one shown in figure 5.14. They are actually the same in terms of the computational effect,
though differ in subtrees.

(% (* (if<0 (+ F3 F7) (* (- -0.528897 0.702463) -0.281440)
(if<0 0.548846 F3 F5)) (* (- F6 F3) (if<0 0.447347 0.796984
-0.839771))) (+ (if<0 (- -0.570596 F3) (+ (* -0.666692
0.752424) -0.267440) (+ F3 F4)) (if<0 (- -0.314318 -0.705341)
(- F0 0.951338) (% F0 0.954518))))

︸ ︷︷ ︸

Figure 5.12: A Redundant Program

(% (* (if<0 (+ F3 F7) 0.346554 F5)
(* (- F6 F3) -0.839771)) (+ (if<0
(- -0.570596 F3) -0.769075 (+ F3
F4)) (% F0 0.954518)))

︸ ︷︷ ︸

Figure 5.13: The stable simplification

(% (* (* (- F6 F3) -0.839771) (if<0
(+ F7 F3) 0.346554 F5)) (+ (if<0
(- -0.570596 F3) -0.769075 (+ F4
F3)) (* F0 1.047649)))

︸ ︷︷ ︸

Figure 5.14: An unstable simplification (PRES)

Different from sorting algorithms, for simplification algorithms especially in a GP learning sense,
we should just prefer an unstable solution. Which means, to get a side effect of expression restructur-
ing along with the simplification is something we should be happy with. This is in consideration
of building-blocks of the genetic beam search. With a stable simplification, we would end up with
purely a reduction on the building blocks inside the program population. However, with an unstable
simplification, which gives us just the same fitness, we may be able to also get new useful blocks, for
free.

For a simple example, restructuring from
(
-(+ab)c

)
to
(
+(-ac)b

)
will introduce a somehow new

block (a-c), which could by itself be very useful if it gets recombined with, say, (a+c), in the case
that we are learning to simulate the polynomial a2 − c2.

The beauty of unstable simplification thus becomes obvious, as it gives us somehow new building
blocks, though totally without taking the risk of reducing the population fitness, which is something
we would have to face if we restructure the population by, say, large-scale crossover on an already
highly fitted population.

54

5.4.2 The Potential of Simplification as a Genetic Operator (Future work)

The restructuring side effect of unstable simplification, which could give us new building blocks for
free, inspires of the potential for extending the idea of online unstable simplification to a novel ge-
netic operator.

Recall that a genetic operator is a process used in GP (also in GA the genetic algorithm) to maintain
the genetic diversity [?], meaning that there should be many different versions of otherwise similar
organisms to ensure the survival of the entire species. Current widely-accepted genetic operators are
all biologically inspired, such as crossover and mutation, though the arithmetic-based unstable sim-
plification, as it could somewhat lead to a similar effect, does have the potential of being extended to
a genetic operator.

To see how, let us compare the unstable simplification with traditional genetic operators like crossover
and mutation to see the gap. The similarity between them is just that they can all achieve a restructur-
ing effect on the population. Differences between them are much richer, from the following aspects:

• The unstable simplification would take the advantage of not in any sense taking the risk of
reducing the current fitness, thus it could be freely applied to the entire population. However,
it has the drawback that its restructuring is only over each single program, thus its maximum
restructuring ability is relatively small and restricted. Apart from that, another undesirable
property is that the effect of restructuring by unstable simplification is always deterministic, as
the instability of the unstable simplification is by itself deterministic, which is a common factor
from its arithmetic basis. This is undesirable, because with learning by genetic beam search, we
do need a certain level of uncertainty.

• The real traditional biologically inspired genetic operators is the other way round. Their re-
structuring scale is relatively wide, as for crossover that could be around one third of the entire
population, up to the crossover ratio preferred. For mutation, the restructuring effect could
even go to infinite, in principle. But the point is, with them we would have to take the risk
of breaking down the existing achievement on the population fitness, which is something we
really do not want to do especially on an already highly-fitted population.

Given these, the advantage of unstable simplification over the traditional genetic operator might be
positive in the later stage of the learning. Just imagine, when the current population of programs
has been learnt around to its maximum ability, namely when the GP system seems not to be able to
make further improvement in a few number of evolutions, however we do believe the result should
be able to be improved, it may because the current set of building blocks supported by the popula-
tion is limited not to be able to represent the better solution, if we ask for new blocks from mutation,
then we would take the risk of breaking the existing achievement. In this case if we do the unstable
simplification we could just avoid this problem.

Currently, the determinism of the unstable simplification is a fatal bottleneck that blocks the effec-
tiveness of using simplification as a genetic operator. Thus to realize the idea we would at least need
to somehow introduce a certain level of uncertainty into the simplification, like some Monte Carlo2

[?, ?] or Las Vegas [?] way of doing simplification. They can all be interesting future works.

2A bonus point with Monte Carlo Simplification is that it would have an abbreviation of MCS . . .

55

5.4.3 The Practical Achievement of the “Theoretically Linear Time”

The Θ(n) time Pres Algorithm has not shown a strong advantage on genetic program simplification
over some other O(n2) versions, because Pres would take more advantage only if the “operator fam-
ily switching frequency” along the tree branch is low, in which case we would end up with a really
long Double Decker Bus thus could apply the very efficient PRES-1 on a long set.

Otherwise, with a high switching frequency of the operator family, Pres will mainly work on looking
up in the hashtable and wrapping subtrees etcetera, which brings a big constant coefficient in front of
the linear time complexity. It is also the case that, with a high operator-family switching frequency,
the probability of the appearance of the redundancy will be substantially reduced, in which case
some of the O(n2) algorithms will take a big advantage of, even reduce themselves to a Ω(n) with
constant coefficient much smaller than of the PRES algorithm.

Unfortunately, according to our observation, in genetic programs, the operator family actually switches
quite frequently along the branch. This makes us start to think of the applicability, or more precisely
the level of applicability of the PRES algorithm on genetic operator simplification. From our detailed
observation we observed the following properties of genetic programs:

• The switching frequency of operator families along the branch is often high.

• The probability of redundancies to appear on a compound term is inversely proportional to
the size of the compound term. Namely, the longer the candidate redundancy, the lower the
probability that it was a real redundancy.

The first fact heavily reduces the advantage of the PRES algorithm, as it would bring a big constant
coefficient before the linear time complexity. However, together with considering the second fact,
we start to think if it would be nice to consider only the primitive redundancy and completely not
to worry about deeper level redundancies. If we did so, then the switching between operator family
will not hurt us, thus the considerably reduced the potential constant coefficient that would go with
the linearity.

The building-block theory of GP also provides a side-support for that subtree simplification (in contrast
to the atom simplification) may not be sound, as it states that small-sized subtree (i.e. subtrees of
about 5-10 nodes long) are the most possible valuable building blocks that the genetic beam search
may prefer. Given this, not to do deeper level simplification (i.e. only simplify on atom nodes), may
somehow reduce the probability of breaking good building blocks, which was a worry in the very
first place.

To summarize, although the PRES algorithm is theoretically guaranteed to be in a linear time com-
plexity, in real practice we may achieve even better results with some polynomial time simplifica-
tion algorithms (need experimental supports). Another point, due to the fact that there is not many
deeper level redundancies, we may also be able to get better results by only using PRES-1 and PRES-2
for lower-level simplification, namely, to totally “forget” about the potential existence of deeper-level
redundancies (Lets call it Naive Simplification). This point, together with the “unstable simplification
to genetic operator”, are both taken as non-trivial future works.

56

5.5 Chapter Summary

In this chapter, we presented our linear time genetic program simplification solution – the PRES Al-
gorithm, which consists of five sub-algorithms PRES-1 to PRES-5 regarding an “increasing” on the
utility.

The algorithm was experimented on multiple-class classification tasks with increasing difficulty.
Generally speaking, the experimental result does consistent with our primitive expectance on the
online program simplification. Namely by doing the online simplification with PRES, the searching
space of GP is reduced, hence the per-evolution learning time is shortened. The general effectiveness
of the GP learning have not been reduced both in terms of the classification accuracy, and in terms of
the ability of the convergency.

By the restructuring side effect of the unstable PRES algorithm, we were inspired on the potential
of a Monte Carlo or Las Vegas liked simplification algorithm as a novel genetic operator. By further
analyzing and detailed observation, we started to consider the soundness of doing only the level-
one simplification online during the learning process of GP. Both points are richly discussed and be
considered as reasonable and interesting future works.

57

Chapter 6

Conclusions and Future works

This project aims to develop new methods used in the genetic programming learning process, to
extend the power of GP for multiple-class (object) classification tasks, for better effectiveness, effi-
ciency, and the comprehensibility of the learnt program classifier, comparing with conventional GP
approaches.

Two such methods has been developed and tested. They are the Modi program structure, a prac-
tical based design that gives substantial improvements on the classification accuracy; and the Pres
simplification algorithm, which is a design mainly focus on its theoretical achievements. These two
methods are summarized in the following two sections.

6.1 Modi

Modi is a structure that uses the standard tree to simulate loopy DAG. There are three major advan-
tages of using the Modi structure as the architecture of genetic programs. Firstly, it allows the learnt
program to reasonably output a vector of related values, thus provides us with a more coherent rep-
resentation of the multiple-class classifier. Secondly, it allows reuse inside the program tree, thus
somehow compresses the search space consequently results in a more efficient learning. The third
point is that as the Modi structure is structurally equivalent to the standard tree, no extra constraint
is needed to embed the new structure into the GP system, thus the applicability of the GP learning
system totally has not been affected.

Modi has been tested on fifteen datasets with varying difficulty. The result shows that with Modi
structured program, the learning accuracy of the GP system is substantially improved on multiple
class classification, especially on relatively difficult tasks which there is still space for improvement.

The idea behind Modi, (viz. to take the program as a modifying-based procedure rather than an
outputting procedure), is a very general thought that can be used in many other applications. The
work of Modi also to some extent opens a new research direction in the area of genetic programming
re multiple class classification, as past concentrations in this area were mostly on the development
of new multiple class classification strategies. Modi, as a new program structure, is not in any sense
conflicting with those works but can be thought as a side support for them.

Modi is still far from perfect. There is much room for further improvement of the structure. The
idea behind Modi also derives a set of nontrivial research topics. Some of them are summarized
below:

58

(1) Full-powered loopy DAG simulation: As pointed out before, Modi structure is only able to give
us a proper subset simulation of the loopy DAG, not a full set one. This is due to the fact that,
in Modi, reuse connections, namely acyclic loopy connections that cause children sharing, are
simulated by the way Modi nodes pass the value, thus have to appear somehow around the
Modi node but not free in place. Whether or not this theoretical shortcoming is practically
hurt is in doubt. An analogue could be like the tradeoff that the Naive Bayes made on the full
Bayesian. However, still use this analogue, as many researches have been done on full Bayesian,
a full-powered loopy DAG simulation is something non-trivial to be furtherly investigated.

(2) Genetically evolving Neural Networks: Firstly I would like to clarify that, this thought, along
with the following one, are purely thoughts. They may not be practically valuable for future
investigating, but at least the idea is somehow cool and inspirational. The point with this
thought is, as Neural Network is also a kind of loopy DAG, if one could learn the architecture
of loopy DAG with GP, why couldn’t they learn the architecture of Neural Networks, which is
something currently has to be prefixed, with the same procedure.

(3) Genetically evolving Belief Nets: Currently the architecture of belief nets would have to be
prefixed by human experts. This is okay, however there are still researches on predicating
the architecture of belief nets. Therefore the idea behind Modi, namely use GP to learn the
architecture of belief nets (as it is still, loopy DAGs in the worst case), is a possible direction.

(4) Vector-based fitness function: This is completely the idea of Malcolm Lett (BSc) for his assign-
ment, though is shamelessly stolen and put in here (with permits) as a future work for Modi.
The idea is, with the Modi structure, we are able to get a vector of outputs from the learnt pro-
gram. However, the fitness decision that the learning system makes for each of the program
is still based on a single value, namely the classification accuracy. If one could improve the
fitness function (also the training dataset) to consider all output values of the program though
separately, the fitness decision making would be more sound, also hopefully could improve the
effect of the entire learning.

(5) Fairer modi nodes distribution law It would be great if we could guarantee that all cells in
the output vector of the Modi structured program are taken by some Modi nodes. Thus we
would like to investigate if it makes sense to add deliberate heuristic controls on the modi node
distribution problem for fairer assignment. For a naive example, mixture of Gaussian instead of
a simple uniform distribution for the what subproblem.

(6) More Experiments on the Digits We would like to investigate the digit dataset with a larger
program size, to see if the performance can be improved.

(7) Have a classification strategy custom-made for Modi: As Modi can be considered as a side
support for the study on classification strategies, whether or not a more plausible classification
strategy can furtherly improve the performance of Modi-GP on multiple class classification is
something non-trivial to think.

59

6.2 Pres

Pres is an expression simplification algorithm that can eliminate many kinds of redundancy, all to-
gether in theoretically linear time with respect to the number of nodes in the tree-representation of
the expression to be simplified. The key idea behind Pres is the use of prime number, which gives
us both a linear time Greatest Common Sub-multiset finding, and a quartuple representation of the
entire program tree.

The algorithm is experimented on multiple-class classification problems with varying difficulty. Gen-
erally speaking, the experimental result does consistent with our primitive expectation on the online
program simplification, namely it is able to reduce the searching space of GP hence speed up the
learning. However, due the the natural of the types of redundancies in genetic programs, the lin-
ear time advantage of the Pres algorithm have not been strongly shown up. This point is seriously
considered and extended into future works. Along with the works derived from the idea behind the
Pres algorithm, following future works are under consideration:

(1) Monte Carlo Simplification as a Genetic Operator: Unstable simplification causes a program
restructuring side effect. In other words, with unstable simplification, we would be able to get
new building blocks though totally free from taking the risk of breaking the existing achieve-
ment on the fitness. Thus if one could bring some level of uncertainty into the simplification
procedure, it would have the potential of becoming a qualified genetic operator.

(2) Build redundancy elimination into the fitness function: This is actually our initial thought,
though failed to realize because we cannot figure out an appropriate way to build the redun-
dancy elimination into the fitness function. Our thinking was to define the negative operators
to be somehow different from its corresponding positive one, say make a − b = a − b − 10. In
this way, a + b − b would equal to a − 10, which makes the redundant part b − b not as useless
as before. This is just the very basic idea and is definitely not applicably by its own, however,
to think under this track may be able to come out some valuable thoughts.

(3) Naive Simplification Due to the fact that there is not many deeper level redundancies, plus
the theoretical support of the building-block theorem, we may be able to get better results by
only using PRES-1 and PRES-2 for lower-level simplification, namely, to deliberately “forget”
about the potential existence of deeper-level redundancies. If this is a sound thought is up to
experiments.

(4) Making more use of the quartuple representation: An advantage that the use of prime numbers
gives us is the quartuple representation of the entire tree. This makes us start to think about if
it could be possible to evolve on the quartuple by using some learning algorithm that is good
on learning values, say, genetic algorithms, or neural networks. This is a very raw thought that
current sound stupid, but I do believe that we must be able to do something with the quartuple
representation.

(5) Better hash function: The current hash function on the quartuple key is just a two-phase mod
function with two prime numbers 47 and 13 as the base. Future studies on the property
of prime numbers to work out a more efficient hash function (and hash structure) would be
necessary. Current thoughts of potential hashing functions include the inverse of function
f(n) = n2 − n + 41 and f(n) = n2 − 79 + 1601 suggested by Prof. Rob Goldblatt (from a
Mathematical sense); and a six-page-long one-to-one (single) formula that maps the first 500
prime numbers into the first 500 natural numbers, provided by my friend QW (from a Physics
sense). From a computer science sense I would like to do a bunch of experiments on a set of
integer numbers to see which one could be the best to serve as the base of the mod function.

60

(6) Better handling of if: As addressed before on page 5.2.5, the current handling on simplifying
the if function can still be improved. This can be done by storing the condition part of the if
function to be in the positive layer, and store the cases part to be in the negative layer, with
some links between them. To do this, one may need to slightly alter the structure of the Pres
algorithm, or the representation of the function node, though should not be too much work.

(7) Arithmetic Overflows: A shortcoming of using prime numbers and the product of prime num-
bers that have not been addressed before is that, the product of the prime number could easily
get very big and exceed the 8-bytes long long thus cause arithmetic overflows. This can be
easily solved by, say, future enlarge the storage space for the prime product when we find it
overflows, though it has not yet been coded into the algorithm, as we currently do not have
this problem with our small set of prime numbers.

61

62

Appendix A

Experimental Result - Tabular

Table A.1: Result of Basic-SRS

Dataset Number of Average Number Terminating TestSet Classification
Classes of Evolution Time (sec) Accuracy (%)

Shape 4squr:se 3 7.44 4.29 99.71
4 21.00 14.51 99.40

4squr:5c 2 45.34 10.84 99.57
Coin 4squr:10c 3 17.72 6.78 99.47

4squr:ce 5 37.38 16.74 95.74
4squr:ch 5 49.00 17.38 85.22

Digit dig00 10 48.70 41.62 78.00
dig05 10 49.00 37.07 69.63
dig10 10 49.00 38.45 63.07
dig15 10 49.00 32.78 56.85
dig20 10 49.00 32.31 54.76
dig30 10 49.00 28.52 44.09
dig40 10 49.00 28.95 36.92
dig50 10 49.00 27.62 30.95
dig60 10 49.00 28.33 26.47

63

Table A.2: GP on Object Classification: Modi on the Shapes [1/1]

Dataset Number of ModiRate Average Number Terminating TestSet Classification
Classes of Generations Time (s) Accuracy (%)

0.0 1.50 1.42 99.79
0.1 0.64 0.96 99.85
0.2 0.20 0.71 99.84
0.3 0.48 0.89 99.78
0.4 0.32 0.80 99.94
0.5 0.44 0.87 99.93

3 0.6 0.40 0.85 99.87
0.7 0.39 0.85 99.88

Win :4 square 0.8 0.36 0.83 99.87
Data:squ 0.9 0.54 0.93 99.80

1.0 0.30 0.78 99.89
BG :clear 1.3 0.28 0.79 99.94

1.6 0.30 0.82 99.86
1.9 0.32 0.82 99.77
0.0 7.20 7.50 99.71
0.1 5.62 6.52 99.69
0.2 5.46 6.31 99.53
0.3 5.34 5.93 99.70

4 0.4 4.90 5.93 99.12
0.5 5.48 6.46 99.65
0.6 5.50 5.59 99.65
0.7 4.42 5.08 99.77
0.8 4.54 5.10 99.54
0.9 5.00 5.45 99.67
1.0 5.30 5.46 99.69
1.3 4.72 5.54 99.38
1.6 4.94 5.69 99.49
1.9 4.84 5.39 99.70

64

Table A.3: GP on Object Classification: Modi on the Coins [1/1]

Dataset Number of ModiRate Average Number Terminating TestSet Classification
Classes of Generations Time (s) Accuracy (%)

0.0 36.00 15.14 99.57
0.1 38.30 18.59 99.41
0.2 37.34 17.59 99.67
0.3 39.30 19.31 99.58
0.4 38.96 18.97 99.55
0.5 41.26 18.78 99.61

3 0.6 42.12 20.06 99.51
Coin 5 cents 0.7 41.12 18.72 99.38

Win :4 squares 0.8 42.76 19.67 99.56
Data:5c not-rotated 0.9 42.12 20.33 99.61

BG :fuzzy 1.0 39.56 18.18 99.57
1.3 38.30 19.26 99.50
1.6 38.88 20.94 99.34
1.9 39.34 19.31 99.74
0.0 3.56 3.14 99.89
0.1 2.72 2.75 99.88
0.2 2.80 2.92 99.91
0.3 2.34 2.32 99.85
0.4 2.50 2.44 99.82

Coin 10cents 0.5 2.50 2.55 99.88
Win :4 square 3 0.6 3.36 4.19 98.39

Data:10c rotated 0.7 2.06 2.18 99.89
BG :fuzzy 0.8 2.48 2.54 99.87

0.9 2.60 2.61 99.90
1.0 2.88 2.75 99.75
1.3 2.64 2.66 99.85
1.6 2.88 2.80 99.83
1.9 2.54 2.57 99.72
0.0 17.16 13.00 98.61
0.1 13.94 11.73 99.17
0.2 17.58 12.89 98.98
0.3 16.04 12.21 98.72
0.4 15.76 12.59 98.99

Coin Easy 0.5 16.76 12.57 98.93
Win :4 squares 5 0.6 16.37 12.21 98.78

Data:5c&10c rotated 0.7 15.66 12.03 98.92
BG:clear 0.8 17.08 11.94 98.72

0.9 16.94 12.33 98.83
1.0 17.70 12.40 98.82
1.3 16.84 12.45 98.87
1.6 14.82 11.15 98.93
1.9 20.48 15.55 98.23
0.0 47.56 35.38 93.43
0.1 44.48 31.72 93.78
0.2 46.72 34.21 93.70
0.3 43.22 30.18 93.53
0.4 43.24 29.85 93.67

Coin Hard 0.5 45.24 31.06 92.93
Win :4 squares 5 0.6 42.38 27.47 93.76

Data:5c&10c rotated 0.7 41.64 27.97 92.55
BG:fuzzy 0.8 43.73 28.77 93.31

0.9 45.98 31.40 92.00
1.0 42.84 27.28 92.71
1.3 46.34 31.31 92.29
1.6 38.54 24.48 93.89
1.9 42.69 28.61 91.65

65

Table A.4: GP on Object Classification: Modi on the Digits [1/3]

Dataset Number of ModiRate Average Number Terminating TestSet Classification
Classes of Generations Time (s) Accuracy (%)

0.0 49.00 80.88 76.50
0.1 48.32 81.34 80.40
0.2 48.78 81.49 80.40
0.3 48.52 76.22 82.00
0.4 48.26 74.48 81.60
0.5 49.00 73.33 79.60

dig00 10 0.6 48.04 75.61 81.20
Fuzziness=00 0.7 48.70 75.52 80.00

0.8 47.98 71.88 78.40
0.9 49.00 72.15 80.60
1.0 48.62 73.12 79.80
1.3 48.16 74.98 81.00
1.6 49.00 78.75 79.40
1.9 48.80 75.13 78.00
0.0 49.00 79.68 74.73
0.1 49.00 86.57 75.93
0.2 49.00 77.42 76.90
0.3 49.00 79.41 77.11
0.4 49.00 80.35 76.05
0.5 49.00 74.56 76.76

10 0.6 49.00 80.68 75.87
0.7 49.00 78.81 77.13

dig05 0.8 49.00 74.23 76.60
Fuzziness=05 0.9 49.00 76.51 78.14

1.0 49.00 81.34 78.12
1.3 49.00 76.36 76.71
1.6 49.00 78.30 75.06
1.9 49.00 75.94 75.46
0.0 49.00 73.37 69.47
0.1 49.00 83.11 70.51
0.2 49.00 76.40 70.62
0.3 49.00 80.77 71.87
0.4 49.00 75.47 72.24
0.5 49.00 78.16 71.88

10 0.6 49.00 80.48 70.43
0.7 49.00 75.65 71.61

dig10 0.8 49.00 75.84 72.00
Fuzziness=10 0.9 49.00 70.31 70.14

1.0 49.00 75.06 72.52
1.3 49.00 76.80 73.04
1.6 49.00 76.22 69.61
1.9 49.00 69.05 68.83

66

Table A.5: GP on Object Classification: Modi on the Digits [2/3]

Dataset Number of ModiRate Average Number Terminating TestSet Classification
Classes of Generations Time (s) Accuracy (%)

0.0 49.00 73.12 63.76
0.1 49.00 82.36 65.76
0.2 49.00 74.02 65.89
0.3 49.00 74.30 65.27
0.4 49.00 74.75 66.83
0.5 49.00 76.09 68.11

10 0.6 49.00 76.13 67.41
0.7 49.00 70.77 66.32

dig15 0.8 49.00 75.35 66.22
Fuzziness=15 0.9 49.00 72.13 65.61

1.0 49.00 72.89 66.98
1.3 49.00 73.24 65.53
1.6 49.00 73.08 65.97
1.9 49.00 75.78 64.04
0.0 49.00 73.02 60.11
0.1 49.00 76.45 60.70
0.2 49.00 73.82 62.45
0.3 49.00 74.41 61.97
0.4 49.00 70.07 61.50
0.5 49.00 71.10 63.16

10 0.6 49.00 72.72 61.97
0.7 49.00 71.20 61.28

dig20 0.8 49.00 71.92 62.17
Fuzziness=20 0.9 49.00 70.40 61.46

1.0 49.00 69.01 62.26
1.3 49.00 69.83 59.99
1.6 49.00 72.61 60.19
1.9 49.00 68.07 60.28
0.0 49.00 71.35 52.04
0.1 49.00 71.41 52.29
0.2 49.00 69.02 52.46
0.3 49.00 71.34 53.36
0.4 49.00 70.60 52.02
0.5 49.00 65.83 54.46

10 0.6 49.00 71.23 52.42
0.7 49.00 67.94 52.40

dig30 0.8 49.00 74.27 52.70
Fuzziness=30 0.9 49.00 72.02 53.45

1.0 49.00 66.76 53.34
1.3 49.00 67.61 51.81
1.6 49.00 66.65 51.83
1.9 49.00 72.72 51.61

67

Table A.6: GP on Object Classification: Modi on the Digits [3/3]

Dataset Number of ModiRate Average Number Terminating TestSet Classification
Classes of Generations Time (s) Accuracy (%)

0.0 49.00 70.95 43.88
0.1 49.00 71.53 44.11
0.2 49.00 70.34 44.46
0.3 49.00 69.77 44.88
0.4 49.00 71.58 44.71
0.5 49.00 68.26 45.58

10 0.6 49.00 71.49 44.27
0.7 49.00 68.06 44.63

dig40 0.8 49.00 67.60 44.64
Fuzziness=40 0.9 49.00 65.70 44.48

1.0 49.00 73.40 43.35
1.3 49.00 67.93 44.12
1.6 49.00 72.18 42.21
1.9 49.00 66.53 42.06
0.0 49.00 69.48 37.82
0.1 49.00 73.35 38.08
0.2 49.00 69.20 37.62
0.3 49.00 68.06 39.61
0.4 49.00 66.73 37.84
0.5 49.00 66.36 38.82

10 0.6 49.00 65.42 38.40
0.7 49.00 66.78 37.41

dig50 0.8 49.00 68.50 38.19
Fuzziness=50 0.9 49.00 62.71 37.58

1.0 49.00 63.12 38.18
1.3 49.00 64.83 38.92
1.6 49.00 67.93 37.56
1.9 49.00 66.65 37.00
0.0 49.00 68.00 31.12
0.1 49.00 66.02 32.11
0.2 49.00 72.21 31.36
0.3 49.00 69.18 31.19
0.4 49.00 63.84 30.52
0.5 49.00 67.04 32.13

10 0.6 49.00 61.88 31.46
0.7 49.00 63.85 31.51

dig60 0.8 49.00 67.91 31.64
Fuzziness=60 0.9 49.00 65.03 32.11

1.0 49.00 63.56 30.09
1.3 49.00 67.63 31.61
1.6 48.12 64.07 32.49
1.9 49.00 61.93 29.88

68

