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Abstract
This report describes research conducted in the research of Genetic Program-
ming (GP), particularly in terms of evolving imperative programs that approach
the expressive capabilities of human-generated code. The development of a for-
mal structure based on statement chaining has proven effective, and allowed
genetic programs to be output in C++. The introduction of additional genetic
operators has shown promising results for greater evolutionary ef�ciency. A
major focus of this work was to develop generic looping and control structures
in a way that encourages more effective evolution. In particular, the identi�ed
issue of in�nite loops has been mitigated by de�ning a `safety limit' for the loop-
ing mechanisms such as the While loops, and using in�nite loop statistics in the
�tness function. An additional measure taken to reduce the likelihood of in�nite
loops occurring was the development of child constraints, though this yielded
mixed results in terms of evolutionary performance. For loops were also engi-
neered to make their loop index available dynamically within the entire scope of
the loop body.
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Chapter 1

Introduction and Motivation

Genetic Programming (GP) is a process of evolving computer programs to perform a speci�c
task, and applying an evolutionary process with natural selection to further develop the
`surviving' programs so that they accomplish the task to a greater degree of competency.
The motivation behind GP is to allow computer programs to be automatically-generated
without requiring programmers to specify each program instruction. In effect, this tells the
computer what to do, rather than how to do it [20, 22].

In GP the computer randomly generates a signi�cantly-sized population of genetic pro-
grams and evaluates their �tnesses according to a �tness function. The �tness of a genetic
program describes how well the program performs the assigned task. In subsequent gen-
erations, a new population is formed from programs in the previous generation selected
to undergo Elitism (i.e. cloning of the '�ttest' programs), mutation or crossover (breeding)
with a partner program [20]. Elitism, Crossover and Mutation are all referred to as genetic
operators. Each generation undergoes the same genetic operations to produce subsequent
generations of programs, with a view to the average �tness improving over time.

Koza [20] de�nes genetic programs as tree structures with leaf nodes selected from a set of
`terminals', and non-leaf nodes selected from a set of `functions'. The terminals are used as
basic inputs into the genetic programs. Functions use these terminals or the outputs of other
functions and produce an output itself. Thus the program executes in a bottom-up fashion
and produces an overall result at the output of the root node.

The greatest potential of GP is allowing computers to perform complex tasks towards a level
of ability that rivals (or even excels) that of humans [2, 21]. These complex tasks would oth-
erwise require an extremely large amount of design effort to solve by humans programming
manually, and it is often likely that a more effective and/or ef�cient solution exists.

1.1 Motivation
Until recently, genetic programs have used mathematical expressions and operators for clas-
si�cation problems, or user-de�ned functions and terminals for programs that actively per-
form a task (such as controlling an agent's behaviour). The program constructs used in
human-generated programs (e.g. loops, If-then-else blocks, etc.) have largely been in-
corporated into genetic programs only as user-de�ned functions and/or terminals speci�c
to the problem being solved, not as generic structures. These constructs are typically tied to
the particular problem being solved, and therefore lack genericity.
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To illustrate this, the Arti�cial Ant problem introduced by Koza [19] and widely-studied [22,
5, 9] uses an IfFoodAhead function, which acts as a standard If-then-else construct
but evaluates a speci�c condition speci�c to the problem. The problem with this is that if a
second condition was needed, unnecessary duplication would arise from creating a second
instance of the If-then-else construct to evaluate the specialised condition.

A related problem is that the evolved programs were originally evaluated in an iterated fash-
ion by the program environment, hence a tight degree of control was maintained as to how
often the program would iterate. Unfortunately, this control prevents the programs from
having a more �exible �ow of control with respect to looping. Only recently have attempts
been made to use evolved loops instead of relying on the implicit looping in the program
environment [5]. The Arti�cial Ant problem is described in more detail in Chapter 5.

Despite the use of specialised functions de�ned by the user for constructing imperative pro-
grams, the genetic programs evolved in previous work have been structured as expressions,
rather than imperative programs. Such expressions have almost always been represented
as LISP S-expressions for their close representation of the tree structure of genetic programs
and ease at which they may be parsed, as evidenced by a wide variety of previous work
[19, 5, 6]. In contrast, imperative programs are widely developed in declarative program-
ming languages such as C/C++, and have the advantage of being able to present logical
�ow and structure more clearly.

A major success factor of GP is the ability to evolve programs that rival, or even exceed,
those generated by humans for a variety of applications [2, 21]. In order to achieve this, one
could argue that genetic programs should make use of the same ubiquitous language fea-
tures as human-generated code. Such language features would include declaring and using
local variables and using loop and control structures. This research focuses on engineering
genetic programs to make use of these features, particularly loop and control constructs.

Because the major focus is on evolving loop constructs, language features are only covered
within the scope of this research if they contribute to more ef�cient evolution of programs
with loops and other control structures. Such an example of this is the de�nition and use of
index variables in For loops, scoped to within the loop body. This requires a scheme to use
local variables in GP, and is discussed in more detail in Section 3.5.

1.2 Goals
The high-level objective of this research project is to contribute to the evolution of genetic
programs that use the capabilities of higher-level imperative languages such as C/C++. This
would allow genetic programs to exhibit more powerful semantics than much of what has
currently been implemented in GP, and therefore mimic human-generated code to a certain
extent. The primary focus in this research is the implementation of generic loops and control
structures in genetic programs.

As a whole, the project seeks to answer the following questions:

• How can control structures such as loops and If blocks be implemented and evolved
effectively in genetic programs?

• How can in�nite loops be avoided in loop constructs, particularly While loops?
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• Can particular structures achieve better performance (in terms of effectiveness and
ef�ciency of the evolved programs) than without them?

• What additional measures could be taken to accelerate the evolutionary process with
these constructs implemented?

1.3 Contributions
In this research a new, formal structure of genetic programs is de�ned to more closely repre-
sent structure of imperative programs. This involves introducing a convention of `chaining'
nodes of return type Void, referred to as `statement-chaining'. Statement chaining is used
as a replacement of the Prog2 and Prog3 nodes used in [19] and [5].

Additional genetic operators have been de�ned to improve evolution ef�ciency of programs
using statement-chaining. These are, in particular, Insertion, Deletion, Replacement and
Crossover2. All of these additional operators are designed to minimise disruption to the
rest of a subtree below the target node(s). The concept of child constraints is also intro-
duced to support more ef�cient evolution through the ability to reduce a particular type of
redundancy in loops and control structures.

Dynamic variables have also been introduced to support local variables in GP, with a par-
ticular focus on loop indices. This allows programs to evolve nested loops, with any loop
index from the outermost loop to the innermost loop able to be used as a terminal within
the body of the innermost loop. Dynamic variables also have the potential to be used for
creating arbitrary variables for within the remainder of the scope of the current code block,
similar to variable scope in a C++ function.

The For loop has been generalised to allow increments greater than 1, and to make index
variables available for the entire scope within the loop body. A While loop has also been
developed to follow similar semantics to C++. `Safety limits' are used to detect and recover
from in�nite loops, with the count of in�nite loops being made available to the �tness func-
tion. This allows the evolution to favour programs with a minimum number of in�nite
loops, and evolution is therefore able to proceed faster. The safety limits operate on a local
(loop-based) level and global (program-based) level - the latter avoiding excessive nesting
of loops that leads to slower program evaluations.

1.4 Report Structure
Chapter 2 provides a background of Genetic Programming and describes previous work rel-
evant to this research. This describes the fundamental genetic operators and overall mech-
anism of GP in detail. The previous work is brie�y summarised and evaluated in terms of
how well they meet the goals of this research.

In Chapters 3 and 4 the contributions of this research are described and discussed in detail.
A signi�cant part of this discussion includes the design decisions made during the course
of this research. Chapter 3 contains details of the contributions made, excluding the loops
themselves. These contributions support the high-level goal and provide a level of func-
tionality for the loops. The loops and their supporting mechanisms, speci�cally handling of
in�nite loops, are discussed in Chapter 4.
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The test cases used and their experiments performed are described in Chapters 5 and 6. In
each chapter, the corresponding test case is described in detail. This is followed by descrip-
tions of the design of each experiment. Both chapters conclude with the presentation of
experimental results and analysis of the �ndings.

Finally, Chapter 7 summarises the contributions made and their indivual effects on the per-
formance of evolving solutions to particular problems. Ideas for future research are also
discussed, relating to this �eld and where it may be heading.
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Chapter 2

Background

2.1 Overview of Genetic Programming
Genetic Programming was conceived as a generalisation of Genetic Algorithms (GAs), which
was inspired by natural biological evolution and survival of the �ttest [22, 21, 20]. The gen-
eral idea is to automatically evolve computer programs to solve a particular task, therefore
the programmer is only required to specify what to do rather than how to do it. The key
difference between GA and GP is that GA uses a bit-string representation for its entities (e.g.
algorithms), and GP almost always uses tree structures to represent expressions or programs
[21]. While genetic programs can be represented as linear forms and directed acyclic graphs
[21], this research will focus on the tree-based representation.

For GP, a population of programs is randomly-generated and their `�tness' is measured by
way of a �tness function. It is the �tness function that is speci�ed by the programmer. This
tells the computer what the program should be doing and is used to benchmark programs
against each other, and any `correct' solution if applicable to the particular problem being
solved. The initial population generated is then used to provide programs for undergoing
genetic operations. The resulting programs are then promoted into the next generation,
and their �tnesses are evaluated. In each subsequent generation, programs are selected for
undergoing genetic operations and promotion to the next generation [21, 19, 20].

In standard Genetic Programming, the standard operators used are Elitism, Crossover and
Mutation. Other variants, such as Hoist and Shrink, have also been developed. These vari-
ants are described in further detail by Langdon [21]. Each operator has a particular allo-
cation of a destination population, in which to promote new programs after the operation.
As a corollary, each program in a non-initial population is formed by exactly one of these
operators. Thus one portion of the population is formed by Elitism, another by Crossover,
and the remainder by Mutation.

Elitism is the simplest `operator', as it simply copies a genetic program unaltered from one
generation to the next. Mutation replaces a randomly-selected subtree with a new subtree
randomly-generated using the Grow method, while Crossover operates on two subtrees
simultaneously, swapping subtrees between the pair [20].

The evolutionary process continues until a termination condition is reached. This may be
after a particular number of generations, or when a solution is found [20]. A solution may
be determined by evaluating the �tness function and making a comparison against a given
threshold.
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2.2 Previous Work
2.2.1 Related Work to Loop Structures
In 2004 Ciesielski and Li [5] demonstrated using basic forms of For loops in Genetic Pro-
grams for controlling an agent in a modi�ed Arti�cial Ant problem and sorting a 7-element
array. This work was extended later that year to using a variant of these for-loops in classi-
�cation problems [6].

In their implementation of For loops, Ciesielski and Li used Strongly-Typed Genetic Pro-
gramming (STGP)[23] to ensure that the generated programs were syntactically correct.
Even though STGP was formalised by Montana, the idea behind STGP was evident in
Kinnear's work of sorting using GP [17]. Other constrained forms of GP, similar to STGP,
have also been developed. These include Constrained GP (CGP) [14] and Adaptable Con-
strained GP (ACGP) [15], Grammatically-based GP [27] and Tree-Adjoining Grammar-based
GP (TAG-based GP) [13].

Kinnear's work on sorting integers used an Automatically De�ned Function (ADF) to im-
plement the loop construct, and an 'index' variable as one of the terminals used for indexing
the innermost loop. If the index was used outside a loop, it would simply adopt the value
0 [17]. This approach has two shortcomings: if a program uses two nested loops, the index
of the outer loop cannot be used inside the innermost loop. If the program uses no loops
whatsoever (unlikely for sorting), the 'index' terminal is still available for selection, despite
being invalid.

In all cases of loops that have been examined in GP, the For loop construct was used and
restricted to increment the index by one until it reached an upper bound. The present form
of this cannot handle incrementing by any other value (including negative numbers), or
multiplying the index by a calculated or terminal value. No evidence has been found of
more general forms of the For loop, or While loops being used in Genetic Programs explic-
itly as functions. Other control structures yet to be implemented are Case statements and
recursion.

2.2.2 Related Work to Genetic Operators
As mentioned in the introduction, there are many variants of genetic operators that have
been developed. Langdon [21] describes several variations of mutation and crossover de-
signed for standard GP, some of them bearing little resemblance to the standard operators.
Some of these include Hoist, which isolates a subtree of a program as a new program in its
entirety; Shrink, which replaces a subtree with a terminal; and Node Replacement, which
replaces a node with another that requires the same number of children.

Since these are developed for standard GP, some of these (like Node Replacement) would
prove impractical if used in STGP because of the need to enforce closure. Closure is de�ned
by Koza [19, 21] as a property of programs being syntactically-correct after modi�cations,
so that they may be executable. In the case of Node Replacement, it may be much harder to
�nd a suitable replacement to satisfy closure since the types of each child need to be matched
completely. Other forms of mutation by Hoai [13] include Insertion and Deletion, which are
also desiged for standard GP.

It is worth mentioning that these Insertion, Deletion and Node Replacement operators are
signi�cantly different to the operators with the same name developed in this research. The
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operators developed in this research are targeted towards STGP, and designed to be more
�exible and less disruptive. These are described in detail in Section 3.4.

2.2.3 Related Work to Local Variables
Kirshenbaum [18] has developed some scheme to create local variable from within genetic
programs, and ensure that local variable scope is properly maintained. His approach uses a
form of labelling each variable in order to bind variables to programs upon modi�cation by
genetic operators. Each variable was maintained as a stack of recently-assigned values. The
Crossover operator was modi�ed to perform binding between variables by merging nodes
from opposite parents, to ensure that variables were de�ned before their use.

This previous work relates to achieving the high-level goal of this research, however it seems
to be targeted only at creating local variables on-the-�y in commands similar to the Let
command in LISP, without considering the creation of loop indices by loop constructs. The
scheme proves to be reasonably in�exible through its reliance on binding variables by name
and from the nature of the bindings affecting where crossover points may be selected [18].
Nevertheless, the general idea of using dynamically-created local variables, particularly for
loop indices, has prompted a new implementation to be designed as part of this research.

Section 3.5 describes the mechanism designed in this research, to support dynamic local
variables without placing unnecessary constraints on genetic operators.
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Chapter 3

New Developments in Genetic
Program Representation

From the start of this research, the design of the loop and control structures was based on
a representation that closely follows the structure of imperative programs written in lan-
guages such as C++. As part of this research, this representation was developed for im-
perative programs, while still providing the capability to support complex expressions, like
those previously evolved as genetic programs. This provides direction towards ful�lling the
high-level goal of genetic programs adopting the ubiquitous language features of higher-
level languages and achieving a higher level of code quality that mimics human-generated
code to an extent.

In order to implement the loops and control structures described as part of the research
goals, a number of developments were necessary in order to allow an organised implemen-
tation of the constructs with positive results. This chapter discusses these developments in
detail. In particular, the de�nition of types in Strongly Typed Genetic Programming (STGP)
is discussed, along with particular consideration of the conventions used for functions and
terminals of the Void return type. The last section describes the use of local variables that
can be accessed directly by the genetic programs themselves, rather than rely on de�ning-
functions and terminals speci�c to the problem being solved.

3.1 Types De�ned in Strongly Typed Genetic Programming
The work performed as part of this research is based on an implementation of Strongly-
Typed Genetic Programming (STGP) as presented by Montana [23]. STGP was chosen for
its ability to support and distinguish between the various data / return types used in imper-
ative programs. In this research the return types have been de�ned to re�ect their C/C++
equivalents � Void, Bool, Int and Double. Neither the single-precision �oating point type
(Float), nor the long integer type (Long) are used so as to avoid double-up between simi-
lar data types. With the exception of the Void return type, each prede�ned type represents
an explicit value of data passed upwards in the program tree, and functions of this type
have no particular conventions to follow in terms of parameters. The de�nition of nodes are
given in the next section.

It is worth noting that these return types are inherently de�ned as part of the GP paradigm
used for evolving programs with control structures, yet additional types may be declared
for speci�c applications. Examples of such additional types may include enumerated types,
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collection objects such as vectors, and a subset of integers for indexing particular arrays or
collections.
The rest of this chapter contains diagrams of genetic programs that depict aspects of the
contributions made, particularly concerning child constraints and additional genetic opera-
tors. A guide to symbols used in these diagrams, covering node return types and operations
performed on individual nodes, is presented in Figure 3.1.

Figure 3.1: Symbols used in diagrams of genetic programs presented in this chapter. The
left column shows the STGP return types, and the right column shows operations that may
be performed on a particular node.

3.2 The Void Return Type and Chaining
The Void return type has been created for imperative statements that are executed in a sim-
ilar way to C++ functions or statements. Such statements have no explicit return value, but
perform a particular action. Furthermore, these statements are implemented as functions
that are chained together in such a way that the �rst child node is the next Void statement
to evaluate, which is evaluated last after all other children of that function.

To illustrate what constitutes a Void function, it is best to consider what the action of the
node is. A call to an ADF results in an action being performed, though this ADF may or
may not return a value. Consider the C++ operator `+' (overloaded for integers): its action
is to add two integers (possibly the results of sub-expressions) together and return the result.
Because a value is returned, the operator cannot be of type Void. However, consider the
assignment operator `+=', as in `a += (b + c);': In this case the sub-expression (b +
c) returns an integer to the `+=' operator, which then adds that result onto the variable
`a'. The assignment node itself does not return a value, even though its sub-expressions do,
therefore the assignment is of type Void. This becomes clearer if the operator is expressed
as a standalone function in C++:

void operator+=(int &a, int b)
{

a += b;
}

A node representing an equivalent function in C++ is always de�ned as a function in GP
(i.e. not a terminal), regardless of whether the C++ equivalent function uses parameters
or not. This is because Void statements always contain a child corresponding to the next
function to evaluate. The terminals of type Void are the null-operation (NOP), and possi-
bly the break and continue equivalent statements (where applicable). The break and
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continue statements were not implemented in this research, and are therefore discussed
in Section 7.2.7.

It becomes evident that the advantage of chaining Void functions is a more accurate repre-
sentation of the C/C++ equivalent of genetic programs. This allows genetic programs to be
structured in a similar manner to Control Flow Graphs [3, 7], but in tree-based form. The
use of the Null Operation as the main terminal of this type also has an advantage of not re-
quiring two versions of each Void function, which only differ in the inclusion or exclusion
of a Void child node for the next statement to be executed. Hence a signi�cant amount of
redundancy is avoided.

There are also challenges presented as a result of adopting a chained approach. In partic-
ular, chaining causes the program trees to have a deeper structure than the structure used
in the Arti�cial Ant Problem as presented by Koza [19] and Ciesielski and Li [5]. In their
implementations, Void functions did not use a child node for chaining statements, hence
statements without arguments were implemented as terminals. Statements were joined to-
gether by Prog2 and Prog3 functions (collectively referred to as ProgN functions), which
were also of the Void return type and simply evaluated each of their child nodes sequen-
tially. The Prog2 and Prog3 functions had two and three child nodes respectively, each
of return type Void. Thus the representation encouraged a shallower tree structure. The
Arti�cial Ant Problem is described in Section 5.1.

The chaining of the statements and the deeper tree structures also have implications on how
the program structure is affected by the standard Crossover and Mutation operators. In
particular, these operators affect the rest of the chain from the selected node downwards,
and lead to greater disruption of the programs during evolution. This has led to the design
of additional genetic operators that focus their operation on individual nodes, and preserve
as many of the node's subtrees as possible. These operators are described in the following
section.

3.3 Child Constraints
Child constraints allow functions to specify whether a particular child node may be either a
function, terminal, or both (respectively Function, Terminal and Both). The constraints
are usually Both by default, however the body of a loop node and the True branch of an If
statement both have a child constraint allowing functions only (i.e. Function).

This forces loops to have a chain of at least one statement, not counting NOP, and is helpful
in reducing the likelihood of in�nite loops occurring in While loops, for example.

Figure 3.2 shows a sample fragment of a genetic program using the While loop, and demon-
strates a legal and illegal example of how the subtree may be grown. The �rst two chil-
dren (`next' statement and condition, respectively) both have no child constraint set (i.e.
Both). The third child, representing the loop body, has a constraint set to functions only (i.e.
Function). Therefore the NOP terminal may not be used directly as the root of the subtree
originating from this child.
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Figure 3.2: An example of how child constraints are enforced, using the While loop. The
third child has a constraint of Function, whereas the other two allow either functions or
terminals.

3.4 Additional Genetic Operators
In initial tests of genetic programs structured with statement chaining, it was found that the
Crossover and Mutation operators were particularly destructive. In one of the test cases,
there were a number of genetic programs that would require the deletion of one statement
node, or replacement of another, to generate a correct solution. Instead, the Crossover and
Mutation operators affected the entire subtree below the target node and made it much
more dif�cult to evolve a solution. This prompted four additional genetic operators to be
developed.

The additional operators introduced are the Insertion, Deletion, Replacement and Crossover2
operators. Each operator targets a single node in a genetic program, and is designed to pre-
serve as many of the child nodes (and their subtrees) as possible. All operators maintain
type and child constraints, and ensure that the overall depth of the resulting program does
not exceed the depth limit. If a resulting program would exceed this limit, the attempt is
aborted and a new attempt is made. After a certain number of unsuccessful attempts, the
operator reverts to the standard Mutation operator.

Each operator is described in detail in the following sections. In the detailed descriptions
that follow, there are a number of technical terms used. These are de�ned as follows:

• Target Node: The node randomly-selected for the genetic operation to be performed
on. For Crossover, this is often referred to as the `crossover point'.

• Chainable: A function is chainable if its return type is the same as at least one of its
child nodes.

• [Node] Speci�cation: A combination of return type and child constraint placed on
the child of a function (or root node of a program), which the corresponding node
must satisfy. For example, a speci�cation of (Void, Both) allows both functions and
terminals of type Void, but a speci�cation of (Void, Function) only allows functions
of type Void.

• Surplus Child: A subtree whose root is the child of the target node, and whose return
type and child constraint does not satisfy at least one child speci�cation of the new
parent node.
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• Child De�cit: A child de�cit occurs where at least one child speci�cation of a func-
tion cannot be satis�ed by any of the existing child subtrees being repatriated to that
function.

3.4.1 Insertion
This operator selects either a function or terminal as the target node. The inserted function
is chosen so that one of its child nodes' return types matches that of the targeted node. As a
result, the subtree from the targeted node is repatriated to the inserted node, which in turn
is repatriated to the targeted node's original parent. Any surplus children of the inserted
function are generated using the Grow program generation method.

Figure 3.3 demonstrates the effects of the Insertion operator. Note how the rest of the chain
from the target node downwards becomes a child of the inserted node, and that all other
children of the inserted node are randomly-generated.

Figure 3.3: An example of the Insertion operator on a fragment of a genetic program.

The Insertion operator may make several attempts at �nding a target node and a function to
insert, so that the conditions mentioned are satis�ed. If the number of unsuccessful attempts
made has exceeded a set threshold, the operator reverts to the standard Mutation operator.

3.4.2 Deletion
The Deletion operator performs the opposite of the Insertion operator. This operator selects
a chainable function as the target node. Assuming one such node is found, the �rst child
with the matching return type is saved and repatriated to the target node's parent. The target
node and its remaining child subtrees are deleted. If no suitable target node can be selected
after a predetermined number of attempts, the operator reverts to the standard Mutation
operator. An example of the Deletion operator is shown in Figure 3.4. Note that the rest of
the statement chain below the deleted node is unaffected.
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Figure 3.4: An example of the Deletion operator.

3.4.3 Replacement
This operator selects a function node for replacing with a different function, and is the most
complicated of these new operators. A chainable function node is selected as the target
node. All child subtrees of the target node are saved, and the target node is deleted. In its
place a different chainable function is randomly-selected from the node table.

Once the target node and replacement node have been determined, the saved child subtrees
are repatriated to the replacement node where the return type is satis�ed. Surplus child
subtrees are deleted as there are no child positions left on the replacement node. For a par-
ticular return type, a shortage of saved child subtrees for the replacement node are resolved
by growing new subtrees.

Figure 3.5 shows an example of the Replacement operator. In particular, note that the rest
of the chain is preserved, along with the index terminal below the deleted node. The loop
body beginning with the *= assignment operator is randomly-generated as per mutation.

Figure 3.5: An illustration of the Replacement operator.
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3.4.4 Crossover 2
The Crossover2 operator selects two programs as per standard crossover. Compatible target
nodes are selected in each program, and the Replacement operator is effectively performed
on each of them. A major distinction from the Replacement operator is that the replacement
node for one program is the target node of the other. There is no random selection of chain-
able functions from the node table, nor are either of the target nodes deleted. Because no
functions are deleted, all child subtrees are preserved. Any surplus subtrees are migrated
with the target node to the other program to resolve the child de�cit.

Once the target node and replacement node have been determined, the saved child subtrees
are repatriated to the replacement node where the return type is satis�ed. Surplus child
subtrees are deleted as there are no child positions left on the replacement node. For a par-
ticular return type, a shortage of saved child subtrees for the replacement node are resolved
by growing new subtrees.

Crossover2 is demonstrated in Figure 3.6. Note that this works in a different manner to
standard Crossover. In particular, the rest of the statement chains below the target nodes
in each program are unaffected � thus remaining in the same program. Standard Crossover
would have migrated these with the target node to the other program. Also, note that the
res reference terminal is migrated with the target node to the other program, since there
is no compatible node speci�cation in the incoming function, i.e. the ForNumItr function
does not have an integer reference as one of its child return types. The index terminal is not
migrated (as it would under standard Crossover), as it can be repatriated to the incoming
ForNumItr function. As a result, no child subtrees are deleted and replaced by randomly-
generated subtrees.

3.5 Dynamic Local Variables
In order to evolve loops with an index variable, a mechanism was devised for allowing local
variables to be dynamically created, manipulated, and read within local scope of a genetic
program. This mechanism allows local variables to be declared implicitly in the For loop
and made available to the loop body in the genetic program as a read-only variable, so that
the value can only be changed by the internal looping mechanism. The scope of the index
variable is de�ned in a similar fashion to what is possible in C++.

The use of terminals has prompted additional return data types to be developed as refer-
ences to the existing Bool, Int and Double data types. These reference types are BoolPtr,
IntPtr and DoublePtr respectively. They may prove a useful starting point for imple-
menting pointers in GP, although this is beyond the scope of this research. The actual vari-
ables are each associated with a �read-only� �ag, which indicates whether the variable is
able to be modi�ed in the genetic program by assignment statements such as +=, -=, and =.

This mechanism for supporting local variables was designed beyond merely creating loop
index variables in For loops, and can be used to dynamically create local variables in gen-
eral. The variable creation scope is based on the model used in C++ (as opposed to ANSI C)
to enable variables to be created anywhere within the program � not at the top of functions
before any non-declaration statements. This makes the implementation much simpler than
enforcing the ANSI C restriction, as a node that creates a variable de�nes the scope for the
entire subtree of one or more children.
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Figure 3.6: An example of the Crossover2 operator.

In particular, suppose there is a Void function DeclareInt, which creates a local integer
variable. The variable's scope would last for the rest of the statement chain, which corre-
sponds to the rest of the statement block in the C++ equivalent. This scope would involve
the entire subtree from the `Next' child of DeclareInt, providing further justi�cation for
the chained statement structure introduced in Section 3.2. Under the previous model, which
consisted of Prog2 and Prog3 nodes, there isn't a `Next' child. As a result, it would be
much more complicated to propagate the variable scope information to the rest of the nodes
within a particular variable's scope.

3.5.1 Design and Representation
Local variables are aggregated in `pools' according to their data type, and referenced by a
numerical index. A terminal of each data type uses the implicit index to retrieve the cor-
responding variable from the pool for evaluation. Each data type has two pools which
expand or contract as variables go in or out of scope, typically operating in a similar fashion
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to stacks. One pool (R) is for all variables, whose values may be read within the genetic pro-
grams. The other (RW) is a subset, containing only those variables that may be overwritten.
At this stage, only the Int data type has support for dynamic variables, although this can
be easily adapted to the Bool and Double data types.

For each data type, there are two terminals that together access the R and RW pools. For the
Int data type, these terminals respectively return an explicit integer value (GetIntVal)
and an integer reference (GetIntRef).

The GetIntVal terminal may be used in any integer expression in the same manner as
an explicit integer value randomly-selected on the node's instantiation. This terminal ran-
domly selects an index into the R pool on the creation of each new instance and stores it
locally with that instance. Upon evaluation, the index is used to retrieve the corresponding
variable from the pool. Since the pool size varies to re�ect changing program scope at differ-
ent parts of the program, the pool size is actively tracked from the root node to a particular
position in the program. This is to ensure the index is within the allowable range.

The GetIntRef terminal is used for statements that modify a variable's value, such as as-
signment statements. It is stressed that these are static references to variables, not pointers to
a de�ned memory. Future research may investigate the feasibility of using this mechanism
to represent actual pointers. The index itself is returned, so that the evaluating function may
use it to look up the actual variable and modify its contents.

3.5.2 Surviving Genetic Operators
It may seem relatively straight-forward representing variables for individual genetc pro-
grams, but performing structure-altering genetic operations such as Crossover would have
a likely potential to disrupt the indexing of variables that wouldn't exist afterwards. It is
highly possible that after a modi�cation, an index would either be out-of-range (and there-
fore invalid), or referencing a different variable altogether. If there are no variables in a pool,
then every node that indexes a variable would be invalid. This section discusses the design
decisions made to address these issues.

If a problem being solved by GP makes use of dynamic variables, then the corresponding
pool is required to have at least one variable present at every node being evaluated. This
guarantees that every terminal indexing into the pool is valid, and is enabled by index-
scaling (described later). This strategy has an advantage of not requiring program analysis
to remove the invalid nodes, but introduces a requirement of the GP environment that may
be redundant for the problem being solved.

The decision was made on the basis of the disadvantage being relatively minor, compared to
the alternative of expanding the scope of this research to include program analysis for main-
taining the correctness of programs. Program analysis is a large �eld of computing aimed
primarily toward error-correction and optimisation [1, 8], therefore the use of program anal-
ysis for optimising genetic programs and maintaining correctness would be suitable as a
separate topic for future research. This implementation of dynamic variables is motivated
by the need to allow proper use of loop indices in For loops, therefore the scope is kept to a
basic level.

A particular reason why program analysis is not used in this research is that it makes the task
of maintaining program correctness much more complicated. Suppose a genetic operation,
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e.g. Crossover, has produced a program that contains a reference to an integer variable, with
no local variables declared within its scope. Even though indexing is used to bind variables,
the absence of variables in the scope means that any index dereferenced will be invalid.
Therefore it would make the most sense to remove the variable reference. The trouble is that
this node will require replacement by another node.

This would be more complex if the node in question is a variable reference, as these denote
read-write variables used directly by a statement such as +=, and cannot be replaced by
any other terminal since all reference data types interact with the dynamic variable pools.
Therefore the parent node would need to be removed. Deletion would be unsuitable, as
there is a possibility of con�ict with child constraints. This would require Replacement to
be used instead, assuming that there is another suitable node available. If neither approach
would work, the parent's parent would need to be replaced.

3.5.3 Index Scaling

Index scaling is the technique used to bind variables after a genetic operation. There are two
possibilities of how the dynamic variable pools and their respective index spaces would
change after the change � expansion and compression. Expansion does not jeopardise the
correctness of the resulting program, therefore no change is required.

With compression, there are likely to be indices left out of range of the resulting index space,
therefore index-scaling is needed to shift the indices of an affected subtree downwards, so
that the highest index of the subtree is within the legal index range. Any index shift is
clipped so that the resulting index remains above or equal to zero (the �rst variable in the
pool). As a result, all indices fall within the legal index range, thereby maintaining the
correctness of the program.

Figure 3.7 shows how index scaling works, with an example of compression and expansion
of index spaces. The red line depicts the `cutoff' separating the indices of variables created
prior to the target node of a genetic operation, and the indices of variables created in the
subtree below the target node. The cutoff point in a program is the edge between a target
node and its parent. Diamonds represent instances of terminals that access a particular
variable. The cell in which a particular diamond is located corresponds to the index of the
variable, stored in that particular terminal. Grey diamonds indicate variable accesses that
are made in the path from the root of the entire program to just above the cutoff point, and
coloured diamonds correspond to variable accesses made in the entire subtree below the
cutoff point.

The colours of the diamonds indicate the transformation applied to a particular index refer-
ence made below the cutoff point, and merit further explanation. Blue diamonds correspond
to variables created before the cutoff point, therefore the indices do not change. Orange and
red diamonds fall within indices of variables created below the cutoff point, and are subject
to scaling. For orange diamonds, the scaling is consistent and corresponds directly to the
number of indices by which the index space shrinks (if it does shrink). Red diamonds can-
not be scaled by the same amount as the indices would go out of range, therefore all such
indices are set to zero.
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Figure 3.7: A sample demonstration of index scaling, showing compression (left) and ex-
pansion (right).

3.6 Chapter Summary
In this chapter a number of major contributions have been introduced and de�ned. Most
of these are aimed toward the high-level goal of allowing genetic programs to adopt stan-
dard language features used commonly by human programmers. They are also intended to
contribute to a more effective evolution of loop and control structures.

Particular developments made include the speci�cation of statement chaining using Strongly-
Typed Genetic Programming, de�nition of new genetic operators designed to minimise pro-
gram disruption, introduction to child constraints and an outline of using dynamic vari-
ables. All these contributions, except the genetic operators, are directly used in the develop-
ment of loops in the next chapter.
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Chapter 4

Loops

In previous work, almost all implementations of loops have been simple For loops, which
increment an internal index within a �xed integer range. For example, Ciesielski and Li [5]
have implemented two versions of the For loop. The �rst version accepts a number of itera-
tions and a loop body to evaluate. The second type accepts a start value and an end value in
addition to the body, and iterates through the body once for each number between the start
and end inclusive. In this project the While and Do-While loops have been developed to
complement the existing For loops. Modi�cations have also been made to the For loops to
encourage more effective evolution. This chapter will describe the implementation of these
loops and discuss the strategies used to deal with in�nite loops.

4.1 The While and Do-While loops
The While loop is one which executes the loop body as long as the Boolean condition is true,
given that the condition is evaluated at the start of the loop. The Do-While loop is similar,
except that the condition is evaluated at the end of the loop � thus the loop is guaranteed
to execute at least once. In this discussion, both While loops and Do-While loops will be
collectively referred to as While loops.

Unlike the For loops presented by Ciesielski and Li [5], these loops do not use integers to
keep track of the number of iterations, therefore in�nite loops are likely to occur as a result
of evolving Boolean conditions. In light of this, the While loops are modi�ed to provide an
upper safety limit on the number of iterations. The use of safety limits is described in more
detail in the context of dealing with in�nite loops, in Section 4.3.

The de�nitions of the While and Do-While loops are given in Table 4.1. Full node speci�-
cations of the children are given. Child constraints are denoted by [B] for Both and [F] for
Function.

4.2 The For loop
In languages such as C/C++, the For loop is a speci�c implementation of the While loop.
The three components of this loop are:
This form of the loop does not explicitly require semantics of a counting or index variable
to be initialised to a particular value, nor does it require the index to be incremented (or
decremented) until the value reaches a particular number. Despite this genericity in such
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Return Type Node Name Children
Void While Void next [B], Bool cond [B], Void body [F]

Evaluates the loop body `body' and condition `cond' while `cond is true.
The condition is evaluated before the body, therefore the body may not
necessarily be evaluated at all.

Void DoWhile Void next [B], Bool cond [B], Void body [F]
Evaluates the loop body `body' and condition `cond' while `cond is true.
The condition is evaluated after the body, therefore the body is
guaranteed to be evaluated at least once.

Table 4.1: De�nitions of the While and Do-While loops.

languages, many other languages such as Basic use For loops for counting via index vari-
ables. Although a generic For loop as implemented in C/C++ may be implemented in Ge-
netic Programming, the nature of statement chaining and the availability of a While loop
makes such a generic implementation redundant. In light of this, the For loops in GP shall
focus on integer counting.

Since the generic For loop is declared redundant, the most generic form of the loop is based
on the second form presented in [5], but with the increment (delta) size able to be set to a
different value than 1. The order of the start and end values determines whether the delta
is added to or subtracted from the index. The �rst form of the For loop presented in [5] has
also been reproduced in these experiments.

The generic nature of the For loop in C/C++ allows more complicated types of looping.
This includes including multiplying or dividing the counter by a constant (e.g. 2) to suit
exponential / logarithmic patterns. Another variant of the For loop in Java, also known
as the ForEach loop in Visual Basic, uses iterators in a collection to determine the amount
of looping. The former could be easily implemented by creating another implementation
of For loop for multiplying the loop index by a constant, for example, however it would
be more effective to specify a single For loop that can be evolved to perform addition,
subtraction, multiplication or right-shifts on the index variable, in order to avoid duplication
of effort. This, as well as the ForEach loop is a candidate for future research.

In this research, two different forms of the For loop were developed. The �rst is based
on the basic version developed by Ciesielski and Li [5] and also presented by Montana as
DoTimes [23], however there are a few differences.

Firstly, the version developed in this research contains an extra child for statement chaining,
though this may seem trivial. The second change was to make its index variable available
as a dynamic variable to the loop body, and only within the loop body. This scope extends
to within the body of nested loops, and allows the loop to remain independent from any
particular problem environment. This is much more signi�cant, as previously loop indices
were only made available by tailoring the loop implementation to the speci�c problem being
solved.

For example, Kinnear copied the loop index into a single global variable, so that only the
index of the innermost loop could be used when program execution was inside that loop
[17]. It also becomes apparent from Ciesielski and Li's work in sorting integers [5], that
use of the loop index to access array elements was hard-coded into an ADF that combined
the For loop and `test-then-swap' function. In both instances, the implementation would
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Return Type Node Name Children
Void ForNumItr Void next [B], Int numItr [B], Void body [F]

Evaluates the loop body `body' and `numItr' while the index is less
than `numItr'.

Void ForRange Void next [B], Int lowBnd [B], Int highBnd [B],
Int inc [B], Void body [F]

Initialises the index to `lowBnd', and evaluates the loop body `body',
upper bound `highBnd' and increment `inc' while the index is less than
`highBnd'. The index is incremented by the most recent value of `inc'
evaluated.

Table 4.2: De�nitions of the two versions of For loop developed in this research.

have most likely been specialised to the problem being solved in order to make the index
available as a variable.
The �nal change from previous implementations is the evaluation of the loop condition. In
previous work [5, 17], the upper limit for the termination criteria is assumed to be constant
over all iterations, therefore it is evaluated only once. Suppose the upper bound is given
as the result of some algebraic function fn(...). Then previous implementations would
translate to C++ as:

for(int index = 0, int upper = fn(/* args... */); index < upper;
index++)

{
// Loop body

}

whereas the implementation developed in this research translates to C++ as:

for(int index = 0; index < fn(/* args... */); index++)
{

// Loop body
}

Although it is not necessarily a good idea to change the upper limit during the loop execu-
tion, it is allowed in languages such as C/C++, it doesn't necessarily cause in�nite loops,
and it provides an alternative to modifying the loop index within the loop body. A dis-
advantage, however, is that it introduces the possibility of in�nite loops, thus requiring
enforcement of safety limits (Section 4.3).

The second version of the For loop developed increments the index through an integer
range speci�ed by a lower and upper bound, and provides a greater level of genericity
through accepting arbitrary increments of the index variable. The closest to this implemen-
tation in previous work are the loops used by Ciesielski and Li [5, 6], and Kinnear [17]. In
both cases the increment was �xed at one, and the evaluation of the upper bound was only
performed once.

Table 4.2 de�nes both versions of the For loops developed for this research, including de-
tails of child constraints.

23



4.3 Dealing with In�nite Loops
In�nite loops are detected by using `safety limits' on the number of iterations allowed by any
particular loop, and recti�ed by breaking out of the loop. Thus, iterations are counted and
compared against the safety limit statically-de�ned. If this count exceeds the safety limit,
the looping mechanism will determine that the loop is in�nite and break automatically.

In this scenario, the loop will be marked as being in�nite so that the number of distinct
in�nite loops may be counted and used as part of the �tness function. Hence programs
with fewer in�nite loops would be more likely to be selected. It is worth mentioning that,
if a program is generated with nested loops and the inner loop is found to be in�nite, the
marking and counting of this loop will ensure that the loop is counted only once overall �
not once for each iteration of the outer loop.

Initial experiments with loops showed that even though safety limits reduced the overall
evaluation time, the deep nesting of loops caused a major slowdown in performance. As
a counter-measure, a global safety limit was de�ned, so that each iteration of every loop
would contribute to the global iteration count. If the global count exceeds the global safety
limit, all levels of nested loops are broken out of, and the program is �agged as being glob-
ally in�nite. This �ag is also available to the evaluation of a program's �tness to encourage
evolution of more ef�cient programs. Since there are now two types of safety limit, the for-
mer, which applies to loops individually, will be hereafter referred to as local safety limits.
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Chapter 5

Test Case 1: The Arti�cial Ant

This chapter describes the experiments performed to test the contributions made during the
course of this research, using a variation of the Arti�cial Ant problem as the test case. Section
5.1 describes the test case in detail, and also outlines differences from the original Santa
Fe implementation initially posed by Koza [19]. The experiment design of each individual
experiment is then discussed in the following section. Finally, Section 5.3 presents the results
and discusses the �ndings.

The implementations of the test cases presented in this chapter and the next chapter were
performed on the RMITGP package originally developed at the Royal Melbourne Institute of
Technology (RMIT). This package was chosen primarily for its support of STGP. The core GP
engine was modi�ed in order to implement most of the developments discussed in Chapter
3. A minor modi�cation was also made to allow genetic programs to be output in C++
syntax, particularly for implementations designed to use statement chaining.

5.1 Overview of the Test Case
The Arti�cial Ant Problem was originally posed by Koza [19], and has since been adapted by
Ciesielski and Li for their work on basic For loops [5]. This problem simulates an arti�cial
ant on a grid, with the objective to navigate around the grid and eat all the food by moving
into the corresponding cell containing each food item. The ant is limited to three basic
actions - to move forward, turn left and turn right. The ant can also perceive whether the
cell immediately in front of it contains food or not. This perception is used to in�uence a
decision via branching in the program.

In much of the work in GP that uses the Arti�cial Ant problem as a test case, the food is laid
out in what is known as the Santa Fe trail [19, 22]. This trail has no regular pattern contained
within it, and food is distributed non-uniformly throughout the trail, i.e. there are numerous
discontinuities of varying length within the trail. Ciesielski and Li [5] recognised that this
layout was not conducive to using multiple loops, and therefore devised a more regular
layout. This layout is shown in Figure 5.1. It is worth mentioning that in previous work,
the ant trail is laid out on a toroidal grid, so that the ant wraps around to the opposite edge
when it moves outside a given edge. In these experiments, however, the ant is assumed to
remain on a square grid so that no wrap-around is possible.
The �tness function is de�ned as the number of cells with food still remaining after the ant
has made its run [5, 22, 19]. Hence, a lower �tness value indicates �tter programs. A solution
is identi�ed when the �tness evaluates as zero.
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Figure 5.1: Visualisation of the Ant Trail problem, using the layout devised by Ciesielski and
Li [5] and showing the ant in its starting position.

5.2 Experiment Design
In this section, each experiment for this test case is described in detail. The organisation of
these experiments is designed to show a general progression of contributions included in
the implementation. The �rst two serve as benchmarks, whereas the rest demonstrates the
cumulative effects of each new contribution included.

These contributions are all based on using STGP and some kind of loop construct within
the genetic programs. The progression of contributions included in the implementation
is indicated by a series of `levels'. The levels of implementation used in this test case are
de�ned as follows:

• Level 1: STGP, Statement Chaining

• Level 2: Level 1 plus Additional Operators

• Level 3: Level 2 plus Child Constraints

The following sections describe each experiment in turn. These experiments correspond to
the following implementations respectively: Koza, Ciesielski and Li, Level 1 with For loops,
Level 2 with For loops, Level 3 with For loops, Level 3 with While loops, and Level 3 with
both For and While loops.

Note that in each experiment, the evolution terminates after 1000 generations or when a
solution is found. Each experiment uses the layout devised by Ciesielski and Li [5], shown
in Figure 5.1.
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Node Name Children
Move N/A

Moves the ant forward one cell, eating any food present.
Assumes the ant is not at the edge of the grid, facing outwards.
TurnLeft N/A

Turns the ant 90o to its left.
TurnRight N/A

Turns the ant 90o to its right.
IfFoodAhead trueBranch, falseBranch
Evaluates `trueBranch' if the cell immediately in front
contains food, otherwise evaluates `falseBranch'.

Prog2 branch1, branch2
Evaluates `branch1', then `branch2' sequentially.

Prog3 branch1, branch2, branch3
Evaluates `branch1', `branch2' then `branch3' sequentially.

Table 5.1: Functions and terminals of the Arti�cial Ant problem, as originally de�ned by
Koza.

5.2.1 Experiment A: Koza Implementation
The default implementation posed by Koza [19, 22] generates programs without loops and
runs them repeatedly in a static loop. Among the nodes used are Prog2 and Prog3 func-
tions, which allow evaluation of multiple statements by evaluating their child subtrees se-
quentially. There is no generic implementation of the If construct. Instead, there is a spe-
ci�c IfFoodAhead function which evaluates whether the cell in front of the ant contains
food, and evaluates the `true' or `false' subtree depending on the result. As a result, the full
capabilities of STGP are not taken advantage of.

A full list of the functions and terminals used in this experiment are given in Table 5.1. Since
this uses standard GP instead of STGP, no type information is given.

Many of the GP parameters of this experiment are based on those used by Ciesielski and Li
[5] for a greater degree of consistency between experiments. In this experiment the popula-
tion size was set to 200 programs. Each successive generation comprised of programs pro-
moted by Elitism (2%), and created by Mutation (28%) and Crossover (70%). The maximum
depth was set to 8. Programs in the initial population were generated using the Ramped
Half-and-Half method.

This experiment aims to serve as a baseline against which all other experiments are eval-
uated. This allows a particular implementation to be evaluated according to how well it
performs in relation to the Koza implementation, considering that human intervention was
involved in specifying the looping in the GP environment. Therefore, implementations that
perform better than this one would be considered to be doing exceedingly well.

5.2.2 Experiment B: Ciesielski & Li Implementation
This experiment also serves as a baseline to measure the remaining implementations against,
except it becomes more important for implementations based on the contributions made in
this research to perform better. The only differences from the Koza implementation are
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Return Type Node Name Children
Void Move N/A

Moves the ant into the cell in front, assuming the ant is not at
the edge of the grid and facing that edge.

Void TurnLeft N/A
Turns the ant so that it is facing the cell that was on its left.

Void TurnRight N/A
Turns the ant so that it is facing the cell that was on its right.

Int RandIntVal N/A
Returns an explicit integer value determined on the node's creation.

Void IfFoodAhead Void trueBranch, Void falseBranch
The If construct. If `cond' is true, then `trueBranch' is evaluated;
otherwise `falseBranch' is evaluated.

Void ForNumItr Int numItr, Void body
Basic For loop, where the loop body is evaluated `numItr' times.

Void Prog2 Void branch1, Void branch2
Evaluates `branch1', then `branch2' sequentially.

Void Prog3 Void branch1, Void branch2, Void branch3
Evaluates `branch1', `branch2' then `branch3' sequentially.

Table 5.2: Functions and terminals of the Arti�cial Ant problem, based on Ciesielski and Li's
implementation [5].

the use of STGP for implementing the basic For loop, and the replacement of the implicit
looping with the basic For loop as a function within the genetic programs.

Since this version of the For loop uses an integer to specify the number of iterations, a
terminal returning an integer type is also included to maintain closure as required by STGP
[23]. This returns an integer constant, which is randomly-selected when the node is created
and initialised. In Ciesielski and Li's implementation, the range of values selected is de�ned
to enforce a maximum number of iterations [5]. In this experiment, the range from which
an integer constant is selected is given by the interval [1, 20], since the maximum number of
iterations would correspond to the length of a side of the grid.

The functions and terminals used in this experiment are rede�ned to be compatible with
STGP, and listed in Table 5.2. The STGP return types used adopt the naming convention of
the types de�ned in Section 3.1. All GP parameters are consistent with those in Experiment
A, i.e. population size = 200, Elitism rate = 2%, Crossover rate = 70%, Mutation rate = 28%,
maximum program depth = 8.

5.2.3 Experiment C: Level 1 Implementation with For Loops
This is the �rst experiment that uses statement chaining. The purpose is to allow the dif-
ference in performance between using statement chaining and using ProgN functions to be
evaluated. In this implementation the NOP terminal is introduced, and all existing nodes of
return type Void have been converted to functions by adding a child for the next statement
in the chain (as described in Section 3.2). The IfFoodAhead function has been split into a
generic If construct and a Boolean terminal, IsFoodAhead.

Table 5.3 lists all terminals and functions used in this implementation.
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Return Type Node Name Children
Void NOP N/A

Null operation. This is the only terminal of type Void.
Bool IsFoodAhead N/A

Returns true if the cell in front of the ant contains food.
Int RandIntVal N/A

Returns an explicit integer value determined on the node's creation.
Values are selected from the range [1, 20].

Void IfCond Void next, Bool cond, Void truePart, Void falsePart
The If construct. If `cond' is true, then `truePart' is evaluated;
otherwise `falsePart' is evaluated.

Void ForNumItr Void next, Int numItr, Void body
Basic For loop, where the loop body is evaluated `numItr' times.

Void Move Void next
Moves the ant into the cell in front, assuming the ant is not at
the edge of the grid and facing that edge.

Void TurnLeft Void next
Turns the ant so that it is facing the cell that was on its left.

Void TurnRight Void next
Turns the ant so that it is facing the cell that was on its right.

Table 5.3: Functions and terminals of the Arti�cial Ant problem, using statement chaining.
Refer to Section 3.2 for details of the `next' child in functions of type Void.

All GP parameters in this experiment remain the same as in Experiments A and B, except
for a slight modi�cation to the �tness function. This modi�cation involves adding a penalty
variable D to the existing �tness function, based on whether the genetic program is empty
(i.e. consisting of only a NOP terminal) or not. If the program is empty this variable has a
value of 1, otherwise the value is set to zero. Thus, the updated �tness function becomes:

�tness = F +D

where F is the number of items of food left on the grid after the ant has �nished its simulated
run. This �tness function is also used in experiments D and E.

5.2.4 Experiment D: Level 2 Implementation with For Loops
In this experiment, additional genetic operators are introduced so that the effects of using
such operators may be evaluated. The implementation is exactly the same as in Experiment
C, except that the GP parameters have been adjusted to include the additional operators.

Since previous experiments used Elitism, Crossover and Mutation rates of 2%, 70% and 28%
respectively, the additional operators are classi�ed according to whether they are mutation-
based or crossover-based and assigned a proportion of the original mutation and crossover
rates respectively. Operations that are mutation-based do some form of random modi�ca-
tion on a single program, without input from another program. Crossover-based operations
use part of a second program as input into a modi�cation performed on an individual. In
this GP environment used, crossover-based operations mutually perform the operation on
a pair of programs simultaneously.

Based on these de�nitions of mutation-based and crossover-based operators, most of the ad-
ditional operators are classi�ed as mutation-based operators. The mutation-based operators
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Operator Allocation Rate (%)
Elitism 2.0

Mutation 5.0
Insertion 7.0
Deletion 9.0

Replacement 7.0
Crossover 35.0

Crossover2 35.0

Table 5.4: Allocation of the genetic operators used in Experiment D.

Return Type Node Name Children
Void IfCond Void next [B], Bool cond [B], Void trueBranch [F],

Void falseBranch [B]
The If construct. Child constraints ensure that the true branch
is non-empty.

Void ForNumItr Void next [B], Int numItr [B], Void body [F]
Basic For loop, where child constraints ensure the loop
body is non-empty.

Table 5.5: Functions of the Arti�cial Ant problem with child constraints applied. Child
constraints are denoted by [B] and [F] for the Both and Function constraints respectively.

include Insertion, Deletion and Replacement. Crossover2, rather obviously, is a crossover-
based operator.

Table 5.4 shows the rates of each genetic operator used, based on division of the original
Crossover rate among all crossover-based operators, and division of the original Mutation
rate among all mutation-based operators. Deletion was chosen to have a larger proportion
of the population at the expense of Mutation, as an effort to reduce bloat in the genetic
programs.

5.2.5 Experiment E: Level 3 Implementation with For Loops
This experiment aims to evaluate the effects of introducing child constraints, particularly
for the For loop and If construct. The addition of child constraints aimed to serve two
purposes � to simplify genetic programs by avoiding empty (and therefore redundant) loops
and conditionals, and to improve the effectiveness of evolution so that solutions are found
after fewer generations.

The functions with child constraints are shown in Table 5.5. All other functions and termi-
nals are as de�ned in Experient C, with child constraints set to Both by default.

The GP parameters are the same as for Experiment D. To summarise, the genetic operators
are distributed among the population with 2% Elitism, 5% Mutation, 7% Insertion, 9% Dele-
tion, 7% Replacement, and 35% each for Crossover and Crossover2. Program depth remains
limited to 8 levels deep, and the population size is �xed at 200 programs.
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5.2.6 Experiment F: Level 3 Implementation with While Loops
In this experiment the use of the basic For loop is replaced with the While and Do-While
loops (collectively referred to as While loops), and the GP environment is con�gured to deal
with in�nite loops. This involves modifying the �tness function to favour programs with
fewer in�nite loops, and not found to be globally in�nite. Recall that the original �tness
function used since Experiment C is:

�tness = F +D

where F is the number of items of food left on the grid after the ant has �nished its simulated
run, and D is the penalty of the program being empty. The new �tness used is given by:

�tness = F + 2I + 100G+D

where I is the number of loops in the program marked as in�nite, and G is the penalty of
the program being found to be globally in�nite (1 if globally in�nite, 0 otherwise).

Functions and terminals are similar to those used in Experiment E, except that theForNumItr
function and RandIntVal terminal have been removed. Apart from the introduction of the
While loop, additional Boolean terminals have been de�ned. All new nodes introduced in
this experiment are presented in Table 5.6.

Return Type Node Name Children
Bool IsFoodLeft N/A

Returns True if there is uneaten food remaining
on the grid.

Bool CanMove N/A
Returns True if there is a cell in front of the ant,
i.e. the ant is not at the edge of the grid and facing.
outwards.

Void WhileLoop Void next [B], Bool cond [B], Void body [F]
The While loop as presented in Section 4.1.

Void DoWhileLoop Void next [B], Bool cond [B], Void body [F]
The Do-While loop as presented in Section 4.1.

Bool LogAnd Bool cond1 [B], Bool cond2 [B]
Returns the logical AND of `cond1' and `cond2'.

Bool LogOr Bool cond1 [B], Bool cond2 [B]
Returns the logical OR of `cond1' and `cond2'.

Bool LogNot Bool cond [B]
Returns the logical inverse of `cond'.

Table 5.6: Additions to the set of functions and terminals used in Experiment F of the Arti�-
cial Ant problem. Child constraints are denoted by [B] and [F] for the Both and Function
constraints respectively.

5.2.7 Experiment G: Level 1 Implementation with For and While Loops
The �nal experiment in this test case combines experiments E and F, thereby using both For
loops and While loops. Since this experiment is based on a Level 3 implementation, it also
makes use of child constraints, statement chaining and additional operators. The �tness
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function is the same as that de�ned in Experiment F, in order to favour programs with
minimal in�nite looping. Table 5.7 presents the complete list of functions and terminals
used in this experiment.

5.3 Results
This section presents the results of the experiments conducted and discusses the �ndings.
Each experiment involved 20 test runs in order to evaluate a general trend. Table 5.8 gives
a summary of the results of these experiments. This includes the mean �tness of the best
program at Generation 1000, the success rate (i.e. proportion of test runs that yielded a
solution), and the distribution of the number of generations evolved before a solution was
found. The best program �tness of each experiment over 1000 generations, averaged across
all 20 runs, is shown in Figure 5.2.
The following sections discuss comparisons between particular experiments in order to eval-
uate the effects of progressive changes made.

5.3.1 Existing Implementations versus Statement Chaining
From the results presented, it can be seen that the original Koza implementation is one of
the most ef�cient con�gurations for solving this problem. However, this does not use loops
as part of the genetic programs, rather it relies on human intervention to specify the looping
in the program environment. This leads to the Koza implementation having an (unfair)
advantage over implementations that evolved loops, but also defeats the purpose of genetic
programming to minimise human speci�cation of evolved programs. Nevertheless, it serves
as an ideal benchmark to test the remaining implementations against.

The Ciesielski and Li implementation also serves as another benchmark for evaluating the
utility gained by each successive contribution made as part of this research. It was inter-
esting to note that this implementation was the least effective of all approaches, since the
average best program �tness over all runs was the least �t when compared to all remain-
ing implementations. This gives an indication that using statement chaining alone is an
improvement on using ProgN statements and therefore creating bushy trees. A sample pro-
gram evolved using Ciesielski and Li's method is as follows:

(ForNumItr 10
(Prog2
(ForNumItr 4
(IfFoodAhead
(ForNumItr 5
(ForNumItr 12
(IfFoodAhead move turnRight)))

(Prog3
(Prog3
(Prog3 turnRight move move)
(Prog3 move turnRight turnRight)
turnRight)

move
(Prog3 move move
(IfFoodAhead turnLeft turnRight)))))

32



Return Type Node Name Children
Void NOP N/A

Null operation. This is the only terminal of type Void.
Bool IsFoodAhead N/A

Returns True if the cell in front of the ant contains food.
Bool IsFoodLeft N/A

Returns True if there is uneaten food remaining
on the grid.

Bool CanMove N/A
Returns True if there is a cell in front of the ant,
i.e. the ant is not at the edge of the grid and facing.
outwards.

Int RandIntVal N/A
Returns an explicit integer value determined on the node's creation.
Values are selected from the range [1, 20].

Void IfCond Void next [B], Bool cond [B], Void trueBranch [F],
Void falseBranch [B]

The If construct. If `cond' is true, then `truePart' is evaluated;
otherwise `falsePart' is evaluated.

Void ForNumItr Void next [B], Int numItr [B], Void body [F]
Basic For loop, where the loop body is evaluated `numItr' times.

Void WhileLoop Void next [B], Bool cond [B], Void body [F]
The While loop as presented in Section 4.1.

Void DoWhileLoop Void next [B], Bool cond [B], Void body [F]
The Do-While loop as presented in Section 4.1.

Void Move Void next [B]
Moves the ant into the cell in front, assuming the ant is not at
the edge of the grid and facing that edge.

Void TurnLeft Void next [B]
Turns the ant so that it is facing the cell that was on its left.

Void TurnRight Void next [B]
Turns the ant so that it is facing the cell that was on its right.

Bool LogAnd Bool cond1 [B], Bool cond2 [B]
Returns the logical AND of `cond1' and `cond2'.

Bool LogOr Bool cond1 [B], Bool cond2 [B]
Returns the logical OR of `cond1' and `cond2'.

Bool LogNot Bool cond [B]
Returns the logical inverse of `cond'.

Table 5.7: Functions and terminals used in Experiment G of the Arti�cial Ant problem.
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Figure 5.2: Average best program �tness over 1000 generations for the Arti�cial Ant prob-
lem. Refer to Table 5.8 for a brief explanation for the labels of the experiments.
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Experiment Mean Fitness, Success #Gen of solutions
Gen. 1000 Rate (%) Mean S.D. (n-1)

A: Koza 2.1 60 279 321.9
B: Ciesielski & Li 14.8 35 111 116.9
C: STGP, Lvl 1 7.1 25 244 321.4
D: STGP, Lvl 2 8.3 30 265 216.1
E: STGP, Lvl 3 (For) 4.8 30 115 101.1
F: STGP, Lvl 3 (While) 7.2 45 150 239.3
G: STGP, Lvl 3 (For + While) 1.1 75 197 216.8

Table 5.8: Results of the Arti�cial Ant problem.

(Prog3
move
(IfFoodAhead
(IfFoodAhead turnRight (ForNumItr 1 move))
(ForNumItr 1 move))

turnLeft))}

In contrast, a sample program evolved using the statement chaining method developed in
this research is presented here:

turnRight();
for(int index1 = 0; index1 < 20; index1++)
{

for(int index2 = 0; index2 < 14; index2++)
{

for(int index3 = 0; index3 < 1; index3++)
{

for(int index4 = 0; index4 < 3; index4++)
{

if(IsFoodAhead)
{

turnLeft();
} else
{

for(int index5 = 0; index5 < 12; index5++)
{
}

}
}
turnRight();
if(IsFoodAhead)
{
} else
{
}

}
move();

}
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move();
move();
turnLeft();
for(int index2 = 0; index2 < 1; index2++)
{
}

}
if(IsFoodAhead)
{
} else
{

turnLeft();
for(int index1 = 0; index1 < 1; index1++)
{

if(IsFoodAhead)
{

turnLeft();
} else
{

for(int index2 = 0; index2 < 14; index2++)
{
}

}
}
turnRight();
move();

}

5.3.2 Introducing Child Constraints
From the C++ example previously shown, it can be seen that there are many inef�cien-
cies caused by empty loops and If constructs. This was the motivation behind introduc-
ing child constraints. After introducing child constraints, it was found that solutions were
evolved more effectively. This is evident by the best programs on average (after 1000 gen-
erations) being signi�cantly �tter with child constraints, than programs generated without
using child constraints. From Table 5.8, the average number of generations required to �nd
a solution using child constraints was lower than without child constraints. Furthermore,
the distribution among test runs was more consistent.

An example of a program evolved using child constraints is as follows:

turnRight();
for(int index1 = 0; index1 < 15; index1++)
{

for(int index2 = 0; index2 < 18; index2++)
{

for(int index3 = 0; index3 < 15; index3++)
{

if(IsFoodAhead)
{
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move();
move();

} else
{
}

}
turnRight();

}
move();
turnRight();
turnRight();

}
for(int index1 = 0; index1 < 15; index1++)
{

for(int index2 = 0; index2 < 15; index2++)
{

if(IsFoodAhead)
{

move();
} else
{
}

}
turnRight();

}
move();
move();
turnRight();

5.3.3 Introducing Additional Operators

After comparing the results of experiments C and D, it can be seen that the use of additional
genetic operators seemed to have little effect on the performance of evolution. While perfor-
mance seemed to be worse than using only the standard genetic operators, it is likely that
this is due to random variation. Little can be concluded about the distribution of generations
required to �nd a solution, as the success rate was low.

It is likely that the allocation of each genetic operator was poor. This was designed to mimic
the allocations of the standard operators in Experiment C, based on classi�cation as either
mutation-based or crossover-based operators. Despite this intention the low allocation of
mutation-based operators did not give the Insertion, Deletion and Replacement operators
enough in�uence on the successive populations. In hindsight, each of the rates of Insertion,
Deletion and Replacement should have been signi�cantly higher than the average of 7% of
the population. As it stands, the effects of these additional operators need to be evaluated
further to determine an optimum allocation of these operators. This is presented as an idea
for future work in Section 7.2.
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5.3.4 For loops versus While loops
It was noticed that the While caused a slowdown in program evaluation because of the
presence of in�nite loops, even though safety limits were set. At the start of this research a
possibility was explored for using program analysis techniques to detect in�nite loops and
automatically correct them. This would require a scheme for engineering the loop body to
eventually cause the condition to break out of the loop.

For this test case, such an implementation would be extremely dif�cult to implement, as the
problem is de�ned in terms of user-speci�ed functions speci�c to the Arti�cial Ant problem.
It is therefore impossible to guarantee that executing such functions (e.g. TurnLeft) will
cause the internal state to change so that the loop condition (e.g. ( !(IsFoodAhead())
)) will eventually evaluate false, without requiring these functions to be analysed internally.
Such measures to improve the chances of in�nite loops being avoided, using program anal-
ysis techniques, would be an ideal topic for extended research (see Section 7.2).

5.4 Chapter Summary
In this chapter the Arti�cial Ant problem was de�ned, and particular variations from the
original Koza implementation were discussed. A schedule of the experiments within this
test case was presented along with particular GP parameter settings.

Results of the experiments were also presented, together with a discussion of each particular
contribution progressively introduced. The overall �ndings showed that statement chaining
and child constraints were particularly bene�cial to this test case, when compared with
existing implementations as benchmarks. The use of both the For and While loops resulted
in the largest success, with evolutionary performance being signi�cantly better than the
original Koza implementation using implicit looping.
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Chapter 6

Test case 2: Factorial Calculation

In this chapter, details of experiments conducted using the Factorial test case are presented.
Section 6.1 gives an overview of the test case. In Section 6.2, the design of each experiment
is described in turn. Finally, Section 6.3 presents the results and discusses the �ndings.
This discussion also compares related �ndings from the Arti�cial Ant test case presented in
Chapter 5.

6.1 Overview of the Test Case
Factorial Calculation is a regression problem where GP is used to evolve a function that cal-
culates a factorial of a given integer. Each program is evaluated using the input range [0, 5] in
order to capture the factorial relationship as succinctly as possible, while providing enough
distinction from an exponential relationship. For reference, the de�nition of a factorial of x
is:

x! =
x∏

i=1

i

In this test case, two inherent variables, res and temp, are used for storing the result and a
temporary value respectively. These are both reset to zero at the start of evaluation for each
program. It is expected that the temp variable will become redundant once the loop index is
made available as a dynamic variable (Experiment K). The input value is set by the program
environment prior to evaluation of a particular factorial.

The �tness is evaluated by evaluating each genetic program on all values in the input range,
and calculating the total sum of the squared proportional error over each output result.
Hence �tter programs have a lower �tness value, and the problem is considered to be solved
when the �tness reaches zero. The �tness can be expressed by the equation:

�tness =
5∑

i=0

(
100(i!− f(i))

i!
)2

where f(i) is the result returned after evaluating the genetic program.

Since the For loops re-evaluate the termination case at each iteration, it is possible for in�-
nite loops to occur. This is because the res and temp variables' values may increase inside
the loop, and the re-evaluation would update the stopping criteria accordingly. Thus the
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loop range would be ever-expanding, with the index variable being unable to `catch up'.
This prompted at least a local safety limit to be set. The �tness function was updated ac-
cordingly to now become:

�tness = 1000I + 100000G+
5∑

i=0

(
100(i!− f(i))

i!
)2

where I is the number of in�nite loops detected, and G is the `globally in�nite' indicator,
which adopts the value 1 if the program is found to be globally in�nite (0 otherwise).

A limited range of input values was chosen for evaluation so that the basic factorial rela-
tionship could be distinguished from other functions (such as a polynomial) and applied to
larger numbers. It would also avoid larger factorials reducing the contribution of smaller
factorials to overall �tness. Initial tests showed that using a larger input range caused the
evolution to focus on minimising the extremely large differences for the higher factorials,
thus causing programs to be evolved so that �tting the function to the lower data points
was overlooked.

6.2 Experiment Design
This section describes each experiment of this test case in detail. The organisation of these
experiments is designed to show a general progression of contributions included in the im-
plementation, in a similar fashion to the Arti�cial Ant test case (Chapter 5). Since no prior
implementation of this test case has been found, these experiments will only consider the
effects of each contribution progressively included in the implementation.

These contributions are all based on using STGP and some kind of loop construct within
the genetic programs. The progression of contributions included in the implementation is
indicated by a series of `levels' based on those de�ned in Section 5.2. The levels of imple-
mentation used in this test case are de�ned as follows:

• Level 1: STGP, Statement Chaining

• Level 2: Level 1 plus Additional Operators

• Level 3: Level 2 plus Child Constraints

• Level 4: Level 3 plus Dynamic Variables

The following sections describe each experiment in turn. These experiments correspond to
the following implementations respectively: Level 1 with For loops, Level 2 with For loops,
Level 3 with For loops, Level 4 with For loops and no `temp' variable, Level 4 with For
loops and one `temp' variable, and Level 4 with While loops and two `temp' variables.

Note that in each experiment, the evolution terminates after 1000 generations or when a
solution is found. The initial population of each experiment is generated using a ramped
method, with 5% of the programs being generated via the Full program method. Each ex-
periment involves 20 evolutionary runs and the average (mean) results are used in analysis.
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6.2.1 Experiment H: Level 1 Implementation with For Loops
This experiment serves as a baseline implementation, against which later experiments are
measured. As a consequence, the implementation only makes use of statement chaining.
The population consists of 600 programs, with Elitism rate = 5%, Mutation rate = 45% and
Crossover rate = 50%. The maximum depth was set to 6. In�nite loops were resolved by
setting the local safety limit to 32 iterations, though no global safety limits were de�ned.
Functions and terminals used in this experiment are presented in Table 6.1.

Return Type Node Name Children
Void NOP N/A

Null operation. This is the only terminal of type Void.
Int GetInput N/A

Returns the value of the input.
Int GetTemp N/A

Returns the value of the `temp' variable.
Int GetRes N/A

Returns the value of the `res' variable.
Int ZeroIntVal N/A

Returns the number zero (0).
Int OneIntVal N/A

Returns the number one (1).
Void SetTemp Void next, Int val

Sets the temporary variable to the integer `val'.
Void AddTemp Void next, Int val

Adds the integer `val' to the temporary variable.
Void SetRes Void next, Int val

Sets the result to the integer `val'.
Void MultRes Void next, Int val

Multiplies the result by the integer `val'.
Void ForNumItr Void next, Int numItr, Void body

Multiplies the result by the integer `val'.

Table 6.1: Functions and terminals of the Factorial problem, using statement chaining. Refer
to Section 3.2 for details of the `next' child in functions of type Void.

6.2.2 Experiment I: Level 2 Implementation with For Loops
In this experiment, the effects of introducing the additional operators (Insertion, Deletion,
Replacement and Crossover2) are investigated. Unlike the Arti�cial Ant problem, the allo-
cation of these operators is more evenly split. Table 6.2 shows the allocation of each genetic
operator for this experiment. All other parameters are the same as in Experiment H.

6.2.3 Experiment J: Level 3 Implementation with For Loops
The focus of this experiment is to evaluate the effects of adding child constraints. Child
constraints were applied to the For loop in the same fashion as Experiment E (Section 5.2.5).
In particular, child constraints of Both were used by default, except for the body of loops
which used a child constraint of Function. All other GP parameters were consistent with
those in Experiment I.
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Operator Allocation Rate (%)
Elitism 1.67

Mutation 15.00
Insertion 16.67
Deletion 16.67

Replacement 16.67
Crossover 16.67

Crossover2 16.67

Table 6.2: Allocation of the genetic operators used in Experiment I.

6.2.4 Experiment K: Level 4 Implementation with For Loops, No `temp' Variable
From this experiment onwards, dynamic variables are able to be used within the genetic
programs evolved. This has prompted a new set of functions and terminals to be de�ned
to allow genericity, therefore many of the previous functions and terminals have become
redundant. The functions and terminals used in this experiment are listed in Table 6.3. A
signi�cant point to note is that none of the functions or terminals is speci�c to the Factorial
test case in particular, i.e. the functions and terminals are completely generic and indepen-
dent of the implementation.

For this experiment, both versions of the For loop make their loop indices available as
read-only dynamic variables to the rest of the genetic program within the loop body. This
ensures that the loop index cannot be altered by the genetic program itself, but only by the
loop internally. The res variable is assigned as the default read-write variable at reference
index 0. By de�nition from Section 3.5, this variable is also assigned as the default variable
in the read-only pool. Since no temp variable is de�ned, the rest of the reference indices
are used by the loop indices of For loops. The removal of the temp variable is intended to
encourage evolution of factorial functions that use a loop index.

Since the addition operator (+) is used, initial tests have showed that it introduces a greater
deal of complexity into the genetic programs, thus causing a slow-down of the evolutionary
process. To alleviate this, the population size was reduced to 200 programs. All remaining
GP parameters are the same as in Experiments I and J.

The allocation of genetic operators is as de�ned in Table 6.2. Any error of allocation aris-
ing from truncation to integers is absorbed by the Elitism rate. Since the population size
is 200, the errors from truncation result in the absolute allocation of programs being as fol-
lows: 5 from Elitism, 30 from Mutation, and 33 each from Insertion, Deletion, Replacement,
Crossover and Crossover2.

6.2.5 Experiment L: Level 4 Implementation with For Loops, One `temp'
Variable

This experiment differs from Experiment K only by the inclusion of a read-write temp vari-
able, assigned to index 1 of the read-write integer pool (and hence index 1 of the read-only
pool). The implementation is otherwise identical to that of Experiment K. This shows how
dynamic variables can lead to a more generic implementation that can be con�gured ef-
�ciently. Contrast this with the previous implementations up to Level 3 � each different
variable required its own set of functions and terminals to read and modify its value, lead-
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Return Type Node Name Children
Void NOP N/A

Null operation. This is the only terminal of type Void.
Int GetIntVal N/A

Returns the value of a dynamic integer variable, either read-only or
read-write.
This terminal is displayed as the name of the variable in GP output.

IntPtr IntVarRef N/A
Returns the reference of a dynamic integer variable from the
read-write pool.
This terminal is displayed as the name of the variable in GP output.

Int ZeroIntVal N/A
Returns the number zero (0).

Int OneIntVal N/A
Returns the number one (1).

Void AssignInt Void next [B], IntPtr varRef [B], Int val [B]
The = assignment operator. Stores the integer `val' in the variable
referenced by `varRef'.

Void AddToInt Void next [B], IntPtr varRef [B], Int val [B]
The += assignment operator. Increments the variable referenced by
`varRef' by the integer `val'.

Void MultByInt Void next [B], IntPtr varRef [B], Int val [B]
The *= assignment operator. Multiplies the variable referenced by
`varRef' by the integer `val'.
The product is stored in the variable referenced by `varRef'.

Void ForNumItr Void next [B], Int numItr [B], Void body [F]
Evaluates the loop body `body' and `numItr' while the index is less
than `numItr'.

Void ForRange Void next [B], Int lowBnd [B], Int highBnd [B],
Int inc [B], Void body [F]

The more generic form of For loop presented in Section 4.2.
Int AddInt Int val1 [B], Int val2 [B]

Returns the sum of `val1' and `val2'.

Table 6.3: Functions and terminals of the Factorial problem, using dynamic variables.
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ing to a greater amount of redundancy. Therefore, if an additional variable was needed to
be de�ned, another set of redundant functions and terminals would need to be created.

Aside from showing the bene�ts of keeping the implementation generic, this experiment
aims to investigate the effects of introducing more functionality than is required. In this
case, the extra functionality is the availability of an extra variable that wasn't present in
Experiment K, as the factorial calculation could be performed using only loop indices.

6.2.6 Experiment M: Level 4 Implementation with While Loops, Two `temp'
Variables

In this �nal experiment, the For loops have been replaced with While loops (including
Do-While loops) in order to compare the effects of one particular kind of loop over another.
Unlike the Arti�cial Ant problem, this experiment is based on a Level 4 implementation in
order to avoid the redundancy of adding new functions to access a second temp variable,
temp2.

A second temp variable was included to keep the implementation similar to Experiment
L, knowing that the While loop could be engineered to emulate a For loop. This means
that one temp variable would be used as the index of a For loop, leaving a spare variable
available in a similar fashion to Experiment L.

The functions and terminals for this test case are given in Table 6.4.

6.3 Results
This section presents the results of the experiments conducted and discusses the �ndings. As
previously mentioned, each experiment involved 20 test runs in order to evaluate a general
trend. Table 6.5 gives a summary of the results of these experiments. This includes the mean
�tness of the best program at Generation 1000, the success rate (i.e. proportion of test runs
that yielded a solution), and the distribution of the number of generations evolved before
a solution was found. The best program �tness of each experiment over 1000 generations,
averaged across all 20 runs, is shown in Figure 6.1.

In this test case, the experiments generally evolved much faster and more effectively than
those in the Arti�cial Ant test case. With the exception of Experiment M, the experiments
generally achieved a higher success rate of evolving solutions than similar experiments in
Test Case 1. This could be attributed to the Factorial calculation being an easier problem.

The rest of this section presents a discussion of the differences between the results obtained.
This is organised according to the progressive changes that were made to the implementa-
tions.

6.3.1 Introducing Additional Operators
Unlike the results of introducing additional operators into Test Case 1, the introduction of
these operators for the Factorial problem was much more successful. This introduction led
to the best performance overall, with all 20 runs �nding a solution in under 200 generations.
Experiment A had one run that could not �nd a solution after 1000 generations.
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Return Type Node Name Children
Void NOP N/A

Null operation. This is the only terminal of type Void.
Int GetIntVal N/A

Returns the value of a dynamic integer variable, either read-only or
read-write.
This terminal is displayed as the name of the variable in GP output.

IntPtr IntVarRef N/A
Returns the reference of a dynamic integer variable from the
read-write pool.
This terminal is displayed as the name of the variable in GP output.

Int ZeroIntVal N/A
Returns the number zero (0).

Int OneIntVal N/A
Returns the number one (1).

Void AssignInt Void next [B], IntPtr varRef [B], Int val [B]
The = assignment operator. Stores the integer `val' in the variable
referenced by `varRef'.

Void AddToInt Void next [B], IntPtr varRef [B], Int val [B]
The += assignment operator. Increments the variable referenced by
`varRef' by the integer `val'.

Void MultByInt Void next [B], IntPtr varRef [B], Int val [B]
The *= assignment operator. Multiplies the variable referenced by
`varRef' by the integer `val'.
The product is stored in the variable referenced by `varRef'.

Void While Void next [B], Bool cond [B], Void body [F]
Evaluates the loop body `body' and condition `cond' while `cond is true.
The condition is evaluated before the body, therefore the body may not
necessarily be evaluated at all.

Void DoWhile Void next [B], Bool cond [B], Void body [F]
Evaluates the loop body `body' and condition `cond' while `cond is true.
The condition is evaluated after the body, therefore the body is
guaranteed to be evaluated at least once.

Bool LTInt Int val1 [B], Int val2 [B]
Returns True if `val1' is less than `val2'.

Bool LTEInt Int val1 [B], Int val2 [B]
Returns True if `val1' is less than or equal to `val2'.

Int AddInt Int val1 [B], Int val2 [B]
Returns the sum of `val1' and `val2'.

Table 6.4: Functions and terminals of the Factorial problem, using While loops exclusively.
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Experiment Mean Fitness, Success Mean #Gen of solutions
Gen. 1000 Rate (%) Mean Std Dev.

H: Lvl 1 113.3 95 69 78.7
I: Lvl 2 0.0 100 65 51.3
J: Lvl 3 534.7 90 83 71.7
K: Lvl 4 (0 temp vars) 305.3 75 140 225.9
L: Lvl 4 (1 temp var.) 291.0 65 268 268.1
M: Lvl 4 (While) 1159.9 0 � �

Table 6.5: Results of the Factorial problem.

Figure 6.1: Average best program �tness over 1000 generations for the Factorial problem.
Refer to Table 6.5 for a brief explanation for the labels of the experiments.
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The comparative success of the introduction of additional operators producing a perfor-
mance increase can be attributed also to a fairer distribution of operations. With the excep-
tion of Elitism, all remaining operators had a near-equal share. This allowed the additional
mutation-based operators (Insertion, Deletion and Replacement) to have more impact than
they did for Test Case 1.

6.3.2 Introducing Child Constraints
As mentioned in Test Case 1, the introduction of child constraints aimed to improve effec-
tiveness of program evolution. This included raising the level of code quality by removing
a particular type of redundancy. To illustrate this, a sample solution from Experiment I is
presented as follows:

SetRes(1);
for(int index1 = 0; index1 < temp; index1++)
{
}
AddTemp(inputVal);
SetTemp(1);
for(int index1 = 0; index1 < inputVal; index1++)
{

MultRes(temp);
AddTemp(1);

}
MultRes(1);

In this example, it can be seen that there are redundancies arising from a lack of child con-
straints. Note that the �rst For loop is empty and therefore does not contribute to the so-
lution. As a result, this unnecessarily makes the overall program deeper than it needs to
be.

After introducing child constraints, the evolved solutions had no evidence of this kind of
redundancy occurring. This can be seen in a sample solution output from Experiment J:

SetRes(1);
for(int index1 = 0; index1 < inputVal; index1++)
{

AddTemp(1);
MultRes(temp);

}
AddTemp(res);
SetTemp(res);
AddTemp(inputVal);

It was surprising, yet impressive, to see a program evolved without any redundancies what-
soever:

SetRes(1);
for(int index1 = 0; index1 < inputVal; index1++)
{

AddTemp(1);
MultRes(temp);

}
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Despite the removal of a particular type of redundancy, the performance of evolution was
actually worse than in Experiment I. This could be the result of random variation, since
the distribution of generations taken to evolve a solution was more widespread. Another
factor could be the relative dif�culty involved in selecting suitable nodes in particular ge-
netic operations. However, this result wasn't consistent with the performance increase in
the Arti�cial Ant problem, therefore this could be either the result of random variation or
the nature of the problem being solved.

6.3.3 Introducing Dynamic Variables
The introduction of dynamic variables allowed the evolved programs to be expressed in
more natural C++. In particular, the use of generic functions based on arithmetic and as-
signment operators removed the need for specialised functions to be de�ned. A sample
program evolved, also without any redundancies, is illustrated as follows:

res += 1;
for(int index = 0; index < inputVal; index++)
{

res *= index + 1;
}

Since generic C++ operators are used, these output programs could be easily inserted into a
wrapper function. A different example from Experiment L is shown embedded in a wrapper
function:

int factorial (int inputVal)
{

int res = 0;

//GP output starts here

res = inputVal;
for(int index = inputVal; index <= res; index += 1 )
{

for(int index2 = 0; index2 < index; index2++)
{

res += 1;
}
res = 1;

}
for(int index = 1; index <= inputVal; index += 1 )
{

res *= index;
}

//End of GP output

return res;
}

It was found that introducing dynamic variables yielded similar results to the previous
implementation in Experiment J. Experiment L, which reinstated the temp variable, also
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seemed to have little overall change in performance. However, both Experiments K and L
had a lower success rate at evolving solutions within 1000 generations. Part of this could be
a result of the generic operators allowing particular assignment operations to be performed
on particular variables, which weren't possible using the function and terminal set of Ex-
periment J. Such functionality included adding to res and multiplying any temp variables
by a number.

6.3.4 Using the While loop
Using While loops exclusively showed how dif�cult it can be to co-ordinate the use of
variables. As is evidenced by the results, no test run was able to �nd a solution. In addition
to this, the performance was the worst out of all implementations in this test case. This result
shows that While loops are not necessarily suited to all types of problem being solved, even
though they are a generalisation of For loops. It therefore requires much more work to
force Genetic Programming to specialise these loops, than to have this specialisation already
de�ned.

6.4 Chapter Summary
In this chapter the Factorial problem was de�ned in terms of being a regression problem. A
schedule of the experiments within this test case was presented along with their respective
GP parameter settings.

Results of the experiments were also presented, together with a discussion of each particular
contribution progressively introduced. The overall �ndings showed that introducing the
additional genetic operators was able to improve evolutionary performance, however the
use of child constraints eroded that advantage somewhat. The introduction of dynamic
variables allowed a greater level of genericity in the functions and terminals, and hence
improved output program representation. Finally, the use of While loops was shown to
be disadvantageous in this test case as a result of the need to evolve loop specialisation to
mimic For loops.
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Chapter 7

Conclusions

In this research a formal structure has been devised for representing genetic programs as im-
perative programs, which now show a greater amount of resemblance to human-generated
programs, especially when output as C++ programs. This was engineered through the con-
cept of statement chaining and use of Strongly-Typed Genetic Programming. Furthermore,
the Arti�cial Ant problem showed that this formal structure can lead to a more ef�cient
evolution of solutions than previous implementations using Prog2 and Prog3 statements.
Thus it becomes evident that the high-level goal was achieved.

Particular enablers of achieving this main goal were language features developed and en-
hanced, including While and Do-While loops, generic If statements and dynamic vari-
ables. The enforcement of child constraints added to a higher level of code quality. Chang-
ing the output representation of genetic programs to C++ also allowed similarities to be seen
with a large range of human-generated programs.

The rest of this chapter discusses speci�c conclusions made in relation to the research ques-
tions posed, and outlines possibilities for future research in a number of related subject areas
within Genetic Programming.

7.1 Speci�c Conclusions
The adoption of statement chaining has allowed an effective representation of control struc-
tures including loops and If blocks to be de�ned. This is due to the tree structure eas-
ily being able to be translated into languages such as C++, an imperative language that is
widely used by human programmers. These control structures can be evolved more ef�-
ciently through the use of child constraints, as evidenced by results of the Arti�cial Ant
problem, and through measures taken to deal with in�nite loops. Furthermore, the use
of STGP has allowed these constructs to be kept generic, and easily transportable between
different GP test cases.

It was acknowledged that it can be extremely dif�cult to avoid in�nite loops completely in
genetic programs, though some measures can be taken to reduce the likelihood of in�nite
loops occurring. The speci�cation of child constraints, particularly for the loop body of a
While loop, eliminates one source of in�nite loop � the empty While loop. This makes no
assumptions about whether the evaluation of the condition results in state changes, which
cause the loop condition to evaluate false and break out of the loop.
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Another measure taken to discourage in�nite loops was the detection of the in�nite loop
and its possible effects on program �tness. The detection of in�nite looping was performed
at a per-loop level and per-program level via the use of safety limits. These forced in�nite
loops to break, and contributed to statistics on in�nite looping that were able to be taken
advantage of by the �tness function. Therefore, the presence of in�nite looping resulted
in poorer program �tness, thus encouraging programs to evolve without in�nite loops.
Though it wasn't formally tested in experiments, this strategy led to faster evolution times,
as expected, particularly with the introduction of the global safety limit.

The relative performance of a test case, based on inclusion and exclusion of a particular
construct, was found to be dependent on the nature of the particular test case itself. For
the Arti�cial Ant problem, implementations that used only For loops achieved reasonably
better evolutionary performance than those using While loops exclusively, holding all other
factors constant. Yet the implementation using both For and While loops had even better
performance than the original Koza implementation. For the Factorial problem, exclusive
use of the For loop was much more effective than using While loops exclusively, which
in turn had the worst performance overall. These results show that the different types of
loops are better-suited to particular environments. The For loop thrived on counting tasks,
such as providing indexing for factorial calculation or counting cells to form a pattern on a
grid for ant navigation. The While loop was better-suited to simple Boolean conditions that
had a small search space, such as percepts of an arti�cial ant, than trying to evolve numeric
comparisons for performing the job of a For loop.

The evolutionary process was accelerated by a number of factors arising from the contri-
butions made in this research. Many of these have already been discussed, particularly
concerning the handling of in�nite loops. Other factors include attaining a greater level
of genericity in genetic programs and minimisation of disruption to programs undergoing
evolution. The Factorial problem, in particular, showed how reforming the test case to use
dynamic variables allowed implementation-speci�c functions to be removed, and resulted
in faster evolutionary convergence. However, it was found that physical running time was
perceptibly slower when the addition operator was introduced. This was because deep ex-
pression trees were then generated for loops earlier in the program, restricted only by the
depth of the entire program. Section 7.2.3 discusses how this could possibly be resolved.

Minimisation of disruption to genetic programs became another factor in accelerating the
evolutionary process. This was achieved by de�ning additional operators designed to pre-
serve as much of the existing genetic programs as possible � Insertion, Deletion, Replace-
ment and Crossover2. While the introduction of these operators to the Arti�cial Ant test
case did not show any conclusive trend, they dramatically improved the performance of
the Factorial test case. Since these operators are new, future research would be needed to
evaluate particular parameter settings that would accelerate evolution much further. This is
discussed in Section 7.2.2.
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7.2 Future Work
During the course of this research there were a number of ideas that presented themselves
for future research. These arose from issues that presented themselves and from ideas
formed from exploring possibilities. They were left out of this research due to being out-
side the scope of the focus on loops and control structures, and due to time constraints.

The following subsections describe these ideas according to their relevant contributions or
existing aspects of GP.

7.2.1 Prevention of In�nite Loops
One of the developments made in this research was the de�nition of `safety limits' to limit
loop iterations and detect in�nite loops. A drawback of this approach is that it works on
`curing' in�nite loops rather than preventing them from occurring in the �rst place. While
child constraints reduced the likelihood of in�nite loops from occurring, particularly with
While loops, it did not guarantee that in�nite loops could not occur.

It was mooted that some form of program analysis be used when genetic programs are
created or manipulated, to ensure that While loops would be made to eventually termi-
nate. This would require either modifying the loop condition to eventually evaluate false,
or modifying the loop internal to eventually make the loop condition false. A restriction
would need to be placed on the condition to ensure that it would not be constant and there-
fore in�nite, and program veri�cation techniques would need to be used to ensure the loop
terminates [28]. As the Arti�cial Ant test case would show, the latter would be much harder
to implement as the variables speci�c to the �tness case are actually stored in the imple-
mentation environment, thus making them inaccessible directly from the GP mechanism.

Future research in this area would require a new representation of functions and terminals
speci�c to the test case being solved. This would allow variables and statements to be ac-
cessed so that program veri�cation could be performed. A possible solution may involve
representing these speci�c functions in a similar manner to Automatically De�ned Func-
tions (ADFs) [21, 22, 20].

Alternatively, analysis of genetic programs could be based on heuristics that use relation-
ships between pairs of nodes. For example, a set of `Possibly Affects' relationships could
include one de�ned between the TurnLeft and IsFoodAhead nodes of the Arti�cial Ant
problem, meaning �TurnLeft possibly affects IsFoodAhead�. However, these would not
be reliable, since after four iterations of a While loop containing a single TurnLeft state-
ment, the cyclic nature of the changing state and lack of a stopping condition would cause
the loop to become in�nite. These issues would need addressing in future work that looks
into in�nite loop prevention.

7.2.2 Additional Operators
The creation of additional genetic operators has shown promising results in the experiments,
but they have been largely untested as a result of emphasis being placed on loops and con-
trol structures. The effects of different ratios between the operators used needs to be exam-
ined further, for example how many programs in the new population should be created via
Insertion and Deletion versus Replacement.
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There is also an opportunity to develop a third type of Crossover, which performs dele-
tion on one program and insertion on the other. The `deleted' node from the �rst program
would be used as the node inserted in the second. Surplus children would be migrated as
per Crossover2 to minimise disruption. It is worth noting that three of the four additional
operators introduced (Insertion, Deletion and Replacement) describe Mutation operations.
As a result, using all operators in an evolution would result in an imbalance between muta-
tion and crossover operations � four mutation operations versus two crossover operations.
The only issue seems to be a divergence from the biological model inspiring GP, but it would
be interesting to investigate the usefulness of a third crossover operator introduced.

7.2.3 Restoring Balance
Despite the bene�ts of introducing the additional operators, it has become apparent that the
single depth constraint imposed on the entire program results in early statements having
deeper levels of nesting in their expressions than the last statements. This has invariably led
to inef�ciencies being introduced in genetic programs, making it very dif�cult to transform
these into solutions.

One possible solution to investigate is splitting depth constraints among different concep-
tual levels. There would be three levels - the program level, construct level and statement
level. The program level would de�ne a depth similar to the existing program depth, but
only include statements of type Void in the statement chain. The construct level would
dictate the maximum length of a statement chain in a particular type of loop body or If
construct. For example, the program environment could set a maximum depth for all For
loops different to the maximum depth of the `True' branch of all If constructs. Finally, the
statement level would determine the maximum depth of any arithmetic expressions.

7.2.4 Intelligent Choice
A related theme in the evolutionary process is the nature of how genetic operations are ad-
ministered. Currently, target nodes for genetic operations are selected completely at random
as long as they satisfy closure (as de�ned by Koza [19, 21]). As a result, it is equally likely
that a particular operator ends up disrupting a program as it is to improve �tness. The GP
mechanism could be engineered to place weightings on potential target nodes according to
potential gain from applying the operation there. Such weightings could be decided at pro-
gram evaluation time, using simple and ef�cient program analysis techniques. The idea of
these weights is to add some form of bias toward making potentially useful choices, but not
eliminating the chance of making seemingly bad choices.

Similarly, weights could be assigned to particular functions and terminals when selecting
new nodes to add to the program for Mutation, Insertion and Replacement. These weights
would be dependent on the context of where the node is being added, which could be de-
termined via heuristics or learning methods.

The overall bene�t of this would be a more effective evolutionary process, by requiring
fewer generations to generate a solution. This could also lead to fewer in�nite loops being
detected, and a more ef�cient evolution of loop and control structures.
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7.2.5 Additional Control Structures
There are two control structures that were formalised in design, but were not implemented
due to time constraints and technical challenges that needed to be overcome.

The �rst was the ForEach loop, which iterates over tems within a collection (e.g. set). This
required a collection return type to be de�ned, and an architecture for storing and accessing
its contents to be developed. Such a development would have at least similar complexity
to the implementation of dynamic variables, and may require the handling of pointers in
GP (as opposed to references). This is because dynamic collections such as vectors would
need elements explicitly added. The easiest implementation would require collections to be
created and populated prior to the genetic program running, thereby avoiding the need for
pointers.

The second construct was the Switch-Case statement. This requires a special STGP return
type, Case, to be de�ned. The Case type is almost the same as Void, but only used for
chaining Case nodes directly below a Switch node. The key difference is that the integer
value evaluated by the Switch node is propagated down the genetic program tree.

7.2.6 Structure Templates and Recursion
Another form of iteration often used in human-generated programs is recursion. Given
that recursion is based on functions that make self-calls to enable iteration, this would be
attainable in a basic sense from developments with ADFs [21, 22, 20].

A major issue to resolve is that recursive functions have the potential for in�nite recursion,
analogous to in�nite loops for While loops. In computer science, it is a best practice for
recursive functions to have a speci�c structure required to avoid in�nite recursion [26]. This
involves using conditional statements to evaluate a base (stopping) case, and the inductive
case. The inductive case is required to induce a pattern that approaches the base case in all
recursive calls.

To successfully evolve recursive functions, genetic programs would need to adopt a �xed
high-level structure to ensure that the genetic functions all evaluate a base case separately
from an inductive case. This can be provided by de�ning `structure templates'. Structure
templates are incomplete genetic program trees, requiring one or more children to be as-
signed subtrees in order to complete the tree structure. Particular nodes in these templates
would be �xed in certain contexts to ensure that no genetic operation could disrupt the tem-
plate. For recursive functions, this would guarantee that a decision would be made between
the base case and inductive case.

7.2.7 Dynamic Node Sets
In order to implement a loop index whose scope was de�ned only within the corresponding
loop's body, a mechanism was devised to support dynamic variables. This mechanism was
also shown to be extensible to local variables in general. The major shortcoming of this is
that if dynamic variables are able to be used in any part of a genetic program, at least one
such variable must be globally de�ned so that every reference uses a valid index. Without
such global variables, it would be possible for a genetic program to be formed with a node
that accesses a variable in a scope where none has been de�ned.
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The ideal solution would be to ensure that if no such variables have been de�ned within
local scope of a particular node position, the genetic program will not allow any node that
accesses that type of variable (as determined by return type and read-only status).

7.2.8 Test Cases
It was originally planned that a third test case would be run to further evaluate the contri-
butions made in this research. This test case involved sorting arrays of integers, based on
work conducted by Kinnear [17] and Ciesielski and Li [5]. All experiments in this test case
were designed to use dynamic variables, so that loop indices would be properly scoped,
even within nested loops.

Initial test runs could not evolve a solution, despite trying two different �tness functions. A
likely cause of this is acknowledged by Ciesielski and Li [5], that sorting is a much harder
task because of the need to co-ordinate loop indices. Some indication of this dif�culty was
evident in the Factorial problem, where While loops could not be evolved to perform the
job of For loops, despite two temporary variables being allocated for the genetic program
to use.

7.3 Summary
This research has presented a number of contributions, which both formalise a representa-
tion of imperative programs in Genetic Programming, and assist in more effective evolution
of loop and control structures. These contributions have satis�ed the overall goal of mimick-
ing human-generated programs to a certain extent, through the use of core language features
such as the loop and control structures and dynamic variables in genetic programs, and the
ability to output these genetic programs as legal C++ code.

Test cases evaluated have shown evolutionary performance improvements and greater ef-
fectiveness from particular contributions introduced. In particular, converting the Arti�cial
Ant problem to use statement chaining improved the performance signi�cantly beyond the
implementation by Ciesielski and Li [5]. Child constraints showed a clear improvement in
effectiveness for the Arti�cial Ant problem, even though it had the opposite effect for the
Factorial problem. Nevertheless, the quality of the programs output improved as a result
of fewer redundancies. Additional genetic operators introduced showed promising results
for the Factorial problem, though these need to be investigated further. Finally, the use of
dynamic variables introduced a greater degree of genericity and led to less redundancy be-
tween functions and terminals de�ned. Based on the contributions made in this research,
loops and control structures can now be evolved in Genetic Programming at a level of per-
formance that rivals that of genetic programs without these constructs.
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