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Abstract

We develop a nonlinear delay-differential equation for the human
cardiovascular control system, and use it to explore blood pressure and
heart rate variability under short-term baroreflex control. The model
incorporates an intrinsically stable heart rate in the absence of nervous
control, and allows us to compare the baroreflex influence on heart rate
and peripheral resistance. Analytical simplifications of the model allow
a general investigation of the rôles played by gain and delay, and the
effects of ageing.

1 Introduction

Control of blood pressure is critical to human health. Hypertension (high
blood pressure) is associated with increased risk of myocardial infarction,
stroke, kidney failure and congestive heart failure. Elevated sympathetic
tone (the mean level of activity of the sympathetic nervous system) is in
turn linked with hypertension [16], and there is much interest in non-invasive
diagnostic tools for assessing sympathetic tone and the baroreflex mecha-
nisms that generate it. Any such assessment of baroreflex health, using
natural variations in heart rate and blood pressure data, requires a deep
understanding of the way that the controlled cardiovascular system behaves
in the short term.

∗Mathematical Institute, 24–29 St. Giles’, University of Oxford, OX1 3LB, England
†Division of Applied Mathematics, Korea Advanced Institute of Science and Tech-

nology, Taejon, South Korea, present address: School of Mathematical and Computing
Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

1



Recently, the clinical physiology of cardiac control has become better
understood and quantified, particularly under open-loop conditions (where
parts of the control system are studied in isolation), leading to a number
of mathematical models of this short-term pressure control system. The
challenge for these models is to explain and understand the rôles played by
different components of the system. Nonlinear feedback loops with different
delays complicate the response of the system to changes. The bio-rhythms
associated with baroreflex control remain the subject of intensive study and
debate as to their specific origin. Understanding the way that natural vari-
ability in blood pressure and heart rate depend on the health of the various
parts of the control system is central to non-invasive clinical techniques,
particularly those that seek to assess sympathetic tone.

We discuss the bio-rhythms associated with short-term variability in the
human cardiovascular system in the next section. Then we present the ele-
ments of physiology needed to inform a mathematical model of the cardiac
control system. Selected existing mathematical models are then briefly re-
viewed. Then, a simple new model for blood pressure and heart rate is
presented, incorporating both neural and mechanical feedback mechanisms.

This model can be reduced to a single delay recruitment type equation.
This simplification of the model is significant, in that it allows a deeper, more
analytical and more general mathematical analysis than is usually possible
in cardiovascular models. The three feedback loops operating in the model
have inherently complicated consequences for solution behaviour, but our
model reduction allows us to simplify these effects while retaining the key
features of nonlinearity and time delay.

Steady and periodic solutions are studied with analytical tools, in a
detailed exploration of how the behaviour of the system depends on sym-
pathetic feedback mediated by the baroreflex mechanism. In particular, the
rôles of delay times and feedback amplitudes are explored and discussed,
together with the consequences of ageing.

1.1 Rhythms observed in human cardiac systems

The earliest and most well-known rhythmic variation associated with blood
pressure is respiratory sinus arrhythmia (RSA), in which heart rate increases
during inspiration. Two important parts of the automatic central nervous
system for controlling the heart are the sympathetic and the parasympathic
(or vagal) nervous systems. Roughly speaking, the sympathetic system is
responsible for preparing us to fight or run, and the vagal system acts re-
ciprocally, as well as controlling the viscera. The vagal nervous system is
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known to participate in RSA, both through a central coupling with respi-
ration controls and through the baroreflex [26, 2]. The period of this cyclic
oscillation in blood pressure and heart rate matches respiration, at about
3–6 seconds. Since we are here particularly interested in sympathetic tone
rather than vagal influences, we do not model RSA in this paper, but regard
it as a source of perturbation of blood pressure.

Slower oscillations of blood pressure, with a period of about 10 seconds,
are termed Mayer waves. There has been some debate about their cause
[26]. An oscillator of the requisite frequency in the central nervous system
has been suggested [10, 27, 14], but the most commonly ascribed cause
is sympathetic (delayed) feedback control of blood pressure through the
baroreflex control system [11, 5, 6, 23, 34, 36].

There remains some disagreement over whether Mayer waves are due to
(and most sensitive to) the gain in the baroreceptors [1], or the delay in their
feedback [6, 34]. There has also been evidence presented that the sympa-
thetic control of peripheral resistance is more important than sympathetic
feedback to the heart muscle or heart rate changes [23, 26, 31].

These are the most important types of short-term variability in the car-
diovascular system. We do not consider longer-term effects such as blood
chemistry, renal moderation of blood volume, or thermal and hormonal re-
sponses.

2 Physiology

An excellent discussion of modelling the physiology of the human cardio-
vascular control system is presented by Ottesen [29, 30]. We here present
a summary of the physiology, to motivate the model to be developed in
section (4). Our discussion is necessarily much simplified, and the reality
of cardiovascular action and control is much more complicated [18]. The
key elements in the short-term control of the human cardiac system are
illustrated in Fig. (1).

The heart pumps blood around the body (the systemic loop), and through
the lungs (the pulmonary loop). The action is pulsatile, with a typical rest-
ing heart rate of about 70 beats per minute. Blood ejected from the left
ventricle enters the arteries at a relatively high pressure. The arteries are
compliant (can stretch elastically) and pass the blood on to the smaller ar-
terioles and capillaries, where most of the resistance to flow resides. Blood
then enters the compliant veins at a relatively low pressure, and passes back
to the heart. The veins have a relatively small resistance to flow, and the
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Figure 1: A sketch of the short-term baroreflex cardiac control system.
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flow is less pulsatile there.
Starling’s Law of the heart (e.g. [33], p.175) says the strength of a con-

traction increases with increasing myocardial fibre length, so that a longer
filling time gives a stronger contraction.

The relationship between the highest value of blood pressure (systolic,
just as the heart contracts) and the lowest value of blood pressure (diastolic,
just before the next contraction) may be related to the effective resistance
and capacitance of the blood vessel system by a Windkessel model which
describes the exponential decay of arterial pressure with time between heart
beats. This model is essentially a conservation of mass model.

The heart contraction that pumps blood to the arteries is usually initi-
ated in the sino-atrial node, which is located in the heart wall. This node
can initiate a contraction spontaneously, and will do so in the absence of
nervous control, pulsing at about 100 beats per minute. But the action of
the sino-atrial node is controlled by electrical pulses sent along nerves from
the medulla to the heart. There are two major systems of these nerves,
the sympathetic and the parasympathetic systems, which act together in a
double-action control mechanism.

The vagal or parasympathetic nervous system is relatively fast-acting.
Heart rate is reduced within a time less than the time between heart beats,
when extra signals arrive along the vagus nerve via a fast-acting (and rapidly
degradable) chemical called acetylcholine. Conversely, the heart rate in-
creases in response to sympathetic signals, via the much slower chemical
action of norepinephrine. There can be delays of 2–5 seconds before sym-
pathetic changes take effect. Both nervous systems affect the heart — if
vagal activity changes, the heart rate will respond. If sympathetic activity
changes, the heart rate will respond, although more slowly. Usually, both
systems change together, with an increase in vagal activity accompanied by
a decrease in sympathetic activity, for example. Furthermore, there is some
evidence that the vagus can pre-empt sympathetic activity.

These nervous signals also have other short term effects on the heart,
including altering the contractility and as a consequence the stroke volume.
Sympathetic signals also reach the capillaries and arterioles, increasing their
resistance to flow when the signal rate (tone) increases.

Baroreceptors are nerve fibre endings in arterial walls, with key receptors
in the aortic arch and in the carotid sinus artery in the neck. They are
sensitive to the average arterial blood pressure, and to the rate at which
blood pressure increases, firing more often during the time when the pulsatile
pressure is increasing.

When blood pressure rises, for example, the baroreceptors fire more sig-
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nals to the medulla in the brain, which usually responds by sending more
signals along the vagal system, and fewer signals along the sympathetic sys-
tem. The combined effect of this double control system is to reduce heart
rate, which in turn allows the arterial blood pressure to drop, correcting the
perceived change. The baroreceptor response to arterial pressure is nonlin-
ear [21], and is attenuated at very high and very low pressures.

There are strong clinical links between sympathetic activity and Mayer
waves — if sympathetic activity is chemically blocked, Mayer waves are sig-
nificantly reduced or completely eliminated [4, 15, 3, 8]. Indeed, Guyton
and Harris [19] proposed the term vasomotor waves for blood pressure os-
cillations slower than respiration. Vasomotor refers to the smooth muscle
in vascular walls, whose behaviour is controlled by the sympathetic nervous
system, but which is also known to vary spontaneously.

3 Existing Models

A number of approaches have been taken to modelling and understanding
the short-term control of blood pressure. Challenges include the nonlinearity
of the baroreflex and medulla responses, the various time delays, and the
number of different feedback loops. Another consideration for modelling is
whether to explicitly include the pulsatile nature of blood flow, or simply to
consider an average pressure.

An early modelling approach was Grodins’ [17] system of algebraic equa-
tions for the steady controlled heart, which is rearranged to give a sixth
degree polynomial for mean arterial pressure. A closed mechanical heart
system is controlled directly by the central nervous system and by the ac-
tion of endocrines. Starling’s Law and a Windkessel model are used, and
the parameters are fitted to available experimental results. The effects of
changing peripheral resistance, blood volume, heart rate and ventricular
contraction strength are explored.

A number of modellers have used ordinary differential equations with
delays, which is an attractive approach as it allows the model to be quite
faithful to the physiology, and it offers some hope of analysing how oscilla-
tions in blood pressure depend on the various parameters, and relating this
back to the physiology. Some of these differential (and difference) equation
models are reviewed briefly here.

A seminal beat-to-beat difference model due to de Boer et al. [11] con-
siders the discrete beating action of the heart. Each heart beat is considered
as a discrete event, and the sympathetic feedback from the baroreceptors is
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distributed in a delayed manner over the following 2–6 heart beats. Sym-
pathetic response to pressure is taken to be an arctan function, to give the
characteristic sigmoidal response curve seen in clinical studies. The model
incorporates baroreflex feedback to heart rate and peripheral resistance,
Starling’s Law, a Windkessel model of the systemic loop, and respiration
effects on blood pressure, and is solved numerically. Oscillations similar to
Mayer waves are observed. The model results showed that there are dif-
ficulties interpreting power spectra for estimating baroreflex gain, as it is
frequency dependent.

Another difference equation model [32] considers central nervous control
of heart rate with delay, using a one-third power or a hyperbolic tangent
in two different approaches to approximating the sigmoidal baroreceptor
response curve. The heart model is electric or nervous, allowing for re-
covery time after a contraction. The Windkessel heart model is not used,
and the mechanical coupling of outflow through the arteries to inflow from
veins is not explicitly included. The resulting four coupled difference equa-
tions are solved numerically with white noise forcing, and power spectra
presented. Healthy and pathological spectra are observed, and bifurcation
to low-dimensional chaos. A healthy chaotic spectrum computed from the
numerical solution shows a peak near 0.1 Hz, suggestive of Mayer waves.

The work of Madwed et al [24] is more descriptive than mathematical,
and uses feedback control modelling. An equation-free model is set up,
using low-pass filters in series with feedback delay. Detailed quantitative
physiological information is provided that is useful for any mathematical
model. The processes and timescales of baroreceptor feedback on HR and
BP are discussed in detail. In particular, the delay between stimulation of
arterial baroreceptors and the onset of afferent nerve activity is noted to be
about 100-300 ms. This is the time required for the signals to travel from
baroreceptors to the medulla, then to be processed by the medulla. It is also
typical of the total times for vagal responses to be seen — the delay time
between a change in arterial pressure and an observable vagally-mediated
response at the heart.

Sympathetic nervous responses are much slower, and are more widely dis-
tributed in time. Typically there is a 2.5 s delay before β-sympathetic nerves
begin to affect heart rate, and a further 7.5 s before that effect is complete
(in the absence of any other changes). There is a 5 s delay before peripheral
vasoconstriction begins, in response to stimulation of α-sympathetic nerves,
and a further 15 s delay before vasoconstriction is complete.

A number of differential-delay equation models have been developed in
recent years. Ursino et al [37] consider the rôle of the venous capacity, in a
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detailed nonpulsatile two-compartment heart model using compliances and
resistances for the systemic and pulmonary circulations, and with barorecep-
tor control of peripheral resistance, venous volume, and heart rate. They
use exponentials to form the sigmoidal baroreceptor response curve, and
solve numerically the resulting fourteen coupled ordinary differential equa-
tions with delays. Their model agrees well with experiment, and indicates
that sympathetic control of venous capacity can smoothly compensate for a
sudden loss of blood.

This model was extended subsequently [38] to allow for cardiac pulsatil-
ity, and more accurate baroreceptor modelling. Sigmoidal feedback with
different lag times from baroreceptors to peripheral resistance, heart rate
and venous capacity was included. There is a rate-dependent component
in the baroreceptor response to pressure change. The model was presented
as thirteen coupled nonlinear differential-delay equations, and was solved
numerically using a control-theory approach (that is, by first linearising
the equations). Open-loop (no pressure feedback to the baroreceptors) ex-
periments were closely matched by the model simulations. The effects of
including pulsatility were found to depend on mean arterial pressure levels.
If these levels were low, pulsatility led to a reduced baroreflex. If they were
high, pulsatility had the opposite effect. Stable pressures were observed for
time delays of 2–5 seconds, with self-sustaining Mayer waves observed for
time delays of more than 8–11 seconds. It was noted that the onset and
disappearance of these oscillations depended on the location of the steady-
state (working point) about which the system was linearised, and on pressure
pulse amplitude, in a complicated way.

This model was further modified [36] to include eighteen coupled non-
linear delay-differential equations, solved with a fully nonlinear numerical
package. Good agreement with experimental results is obtained. Venous
unstressed volume control is found to play the major rôle in early responses
to haemorrhage.

A simpler model is presented by Ottesen [29], with no pulmonary cir-
culation, and a single-compartment heart model, leading to two coupled
differential equations for mean arterial and venous pressures. The barore-
ceptor response curves are kept general, and are taken to control heart rate
only. Existence and uniqueness of an equilibrium are established, and its
stability analysed under rather general conditions. Three coupled linear
first-order delay-differential equations describing stability are obtained and
studied. Oscillations consistent with Mayer waves are seen, and are sensitive
to parameter values (delay, peripheral resistance, etc). The model response
to a sudden change in peripheral resistance is consistent with experiment.
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A hybrid model, using an integrate-and-fire model of the sinus node
to generate a discrete heart rate, but continuous variables otherwise, has
been presented by Seidel and Herzel [34]. Baroreceptor response curves are
sigmoidal, with sympathetic delays up to 5 s considered, and baroreceptor
feedback is to the heart rate, peripheral resistance and cardiac contractility.
The integrate-and-fire model allows more detailed and accurate modelling
of the varying sensitivity of the sinus node to central control. Four differ-
ential equations, for a single-compartment Windkessel model of the heart
driving just the systemic circulation, are solved numerically. Steady solu-
tions bifurcate to periodic solutions, as time delays are increased. Under
normal conditions, damped oscillations at Mayer wave frequencies are seen.
Period-doubling bifurcations to chaos, and toroidal oscillations, are noted to
occur provided the phase sensitivity of the sinus node is included. Return
maps for sinus node response to single stimuli are generated, due to the
integrate-and-fire feature. These compare well with experiment.

A more recent model [1] is able to produce Mayer waves without using
any delays, simply by increasing the baroreceptor feedback gain. The model
has a two-chamber heart, with both pulmonary and systemic circulations.
Hill functions are used to give the sigmoidal baroreceptor response curves,
and (instantaneous) feedback to heart rate, peripheral resistance, venous
unstressed volume and venous compliance are each considered separately.
Steady state solutions are obtained for the resulting three coupled nonlinear
first-order differential equations, and the stability of the steady states is in-
vestigated. Hopf bifurcations to oscillatory solutions consistent with Mayer
waves are obtained, but only in the cases of feedback to unstressed venous
volume or venous compliance, and only with very large gains. Since the un-
stressed venous volume term appears with a relatively large time-constant
in their differential equation for arterial volume/pressure, this is suggestive
that changes in unstressed venous volume have effectively a delayed effect
on arterial pressure.

Further modifications have been made [25] to Ursino’s model [36], by
adding pulmonary baroreceptors, respiratory influences, and a simplified
baroreceptor feedback model. Delay differential equations are presented,
using the language of control theory, and parameter values are assigned
based on a careful analysis of the physiology. Numerical solutions are then
used to explore response to acute haemorrhage — increased RSA is seen. A
sensitivity analysis is also undertaken — the system is most sensitive to vagal
gain and delay, less sensitive to the arterial baroreflex, and least sensitive to
the pulmonary baroreflex. The system is inherently rather stable.
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4 A simple model

Our aim is to choose a model that is simple enough to allow substantial
mathematical analysis, supported only peripherally by numerical computa-
tions, yet complex enough to be faithful to as much of the physiology as
possible. We use nonlinear delay differential equations, for averaged car-
diac variables. We explore the implications of this model for the sensitivity
of Mayer waves to sympathetic delay and gain, to sympathetic control of
peripheral resistance and of heart rate, and to the effects of ageing.

We follow Ottesen [29] and choose a nonpulsatile lumped-parameter
model of the systemic loop, consisting of the left ventricle, which pumps
blood to the arteries, the capillaries (and arterioles), the veins, and back
to the left ventricle (via the right ventricle and the lungs). The pulmonary
system is neglected here. Including it (e.g., as in [1]) would lead to one
extra differential equation for the pulmonary venous pressure. Neglecting
transient behaviour in the pulmonary system allows us to lump the action of
the heart and the pulmonary system together into one cardiac output term.
Besides simplifying the model, this reflects our more central interest in the
systemic behaviour in this paper.

We further assume the system is closed with the blood being incom-
pressibile so that blood volume is conserved, that large arteries and veins
act like compliant vessels (so that volume changes are proportional to pres-
sure changes), and that the capillary system is like a resistance vessel (with
flow rate depending on the pressure drop across the system).

To this closed mechanical system we add the baroreflex control system
(Fig. 1). The baroreflex sensors detect arterial pressure and send signals
to the brainstem or medulla, which in response sends fast-acting (vagal, or
parasympathetic) and slow-acting (sympathetic) signals back to the heart,
altering heart rate, and to the arterioles and capillaries, altering the periph-
eral resistance. We neglect the small delay in the parasympathetic system,
and we approximate the distributed delay of the sympathetic system with
a single delay time.

Our model is essentially an extension of that introduced by Ottesen [29].
We have added an intrinsically controlled heart rate, and baroreflex control
of peripheral resistance. In the absence of feedback from the central nervous
system, the heart is known to continue to beat spontaneously at a rate set by
the firing of the sino-atrial node. Our model explicitly includes this intrinsic
controlled behaviour. We anticipate (and find) that this natural frequency
has a significant effect on the dynamics of the response of the cardiac system
to baroreflex feedback. The importance of peripheral resistance has been
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raised in a number of previous studies [23, 26, 29, 31], so it is useful here to
also consider the relative importance of sympathetic control of peripheral
resistance and sympathetic control of heart rate.

Then equations for the conservation of average (non-pulsatile) blood
volume are:

Caṗa = −(pa − pv)
Rc

+ H∆V (1)

Cvṗv =
(pa − pv)

Rc
− pv

Rv
. (2)

Here, pa is the mean arterial pressure, ṗa is its time rate of change, pv is the
mean venous pressure, Ca is the compliance of the arterial system, Cv is the
compliance of the venous system, Rc is the resistance to flow through the
arterial system, Rv is the resistance to flow through the venous system, H
is heart rate and ∆V is the stroke volume (the volume pumped out in one
heart beat).

Central nervous control in this model affects both the heart rate H and
the peripheral resistance Rc:

Ḣ =
βHTs

1 + γTp
− VHTp + δH(H0 −H) , (3)

and
Rc = R0

c(1 + αTs) , (4)

where βH is the strength of the sympathetic tone Ts and VH is the strength
of the parasympathetic or vagal tone Tp, both of which depend on the mean
arterial pressure pa. The sympathetic feedback Ts is significantly delayed,
by up to ten times the delay in parasympathetic feedback.

The parameter γ is a measure of the direct damping effect of vagal
activity on the sympathetic tone. Ottesen sets γ = 0, reflecting the fact
that even if γ is of order one it has little effect on the steady heart rate
dependence on pa, it simply shifts the sigmoidal plot of steady H vs. pa to
the left a little. We use the nominal value γ = 0.2.

The final term in the heart rate equation causes the heart (in the absence
of central nervous control) to relax to the rate H0 seen in a denervated heart,
about 100 beats per minute. It is a simple representation of the idea that
the oscillations of the sino-atrial pacemaker action potential are those of a
limit cycle oscillator, and as such, it can be expected that both amplitude
and phase (and thus heart rate) respond stably to perturbation.
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Figure 2: The Hill function g(p) = 1/(1+pn) with n = 3, an example of the
nonlinear (sigmoidal) feedback term used to model baroreceptor control of
heart rate.

The dependence of peripheral resistance Rc on sympathetic tone is mod-
elled as a simple delayed linear dependence, measured by the parameter α.
Rc varies from the minimum value R0

c to the maximum value R0
c(1 + α),

as the sympathetic tone varies. Approximate values of the parameters are
given in Table (1), and are based on those presented by Ursino [38].

Following Ottesen [29], we take Ts(t) = g(pa(t−τ)) ≡ g(pτ
a), where g has

the sigmoidal form sketched in Fig. 2, but is otherwise quite general, and τ is
the sympathetic time delay, typically 3–4 seconds. For the parasympathetic
control, we use the form Tp(t) = 1 − g(pa(t)) ≡ 1 − g(pa), which has no
delay, since we are neglecting the much smaller time delays in this system.

4.1 Rescaled Model

We nondimensionalise our three model equations, and calculate the sizes of
the resulting non-dimensional parameters. Parameter definitions and ap-
proximate values are listed in Table 2.

We let

pa = P0p
∗
a , pv = ρµP0p

∗
v, H = H0h

∗, t = τt∗. (5)
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parameter definition value
Ca arterial compliance 1.55 ml mm Hg−1

Cv venous compliance 50 ml mm Hg−1

R0
c min arteriole resistance 0.6 mm Hg s ml−1

Rv venous resistance 0.016 mm Hg s ml−1

∆V stroke volume 50 ml
H0 uncontrolled heart rate 100 min−1

P0 arterial pressure 100 mm Hg
τ sympathetic delay 3 s
VH vagal tone 1.17 s−2

βH sympathetic control of heart rate 0.84 s−2

α sympathetic effect on Rc 1.3
γ vagal damping of βH 0.2
δH relaxation time 1.7 s−1

Table 1: Parameter values

Then, immediately dropping the asterisks, the rescaled equations are

εaṗa =
−pa + µρpv

1 + αTs
+ µh, (6)

εvṗv =
pa − µρpv

1 + αTs
− µpv, (7)

εH ḣ =
βTs

1 + γTp
− νTp + δ(1− h) . (8)

In the absence of other information, δ is taken to be one, assuming that if
central nervous control was removed, the heart would return to its uncon-
trolled rate in times of the same order as the uncontrolled period, which is
the most natural assumption.

4.2 Model Reductions

Since ρ is small compared with the other parameters, we neglect the venous
pressure pv in equation (6). This term does not appear in the heart rate
equation (8). We rename pa as simply p, so that our system is reduced to
the two equations

εH ḣ =
βg(p1)

1 + γ[1− g(p)]
− ν[1− g(p)] + δ(1− h) , (9)

εaṗ = − p

1 + αg(p1)
+ µh , (10)
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parameter definition value
εa CaR

0
c/τ 0.3

εv CvR
0
cµρ/τ 0.15

εH 1/(H0τ) 0.18
α sympathetic effect on Rc 1.3
β βH/H2

0 0.3
γ vagal damping of βH 0.2
δ δH/H0 1
µ R0

cH0∆V/P0 0.5
ν VH/H2

0 0.4
ρ Rv/R0

c 0.03

Table 2: Nondimensional parameter definitions and values

where p1 ≡ p(t− 1) and p ≡ p(t). Further simplification is possible because
the time scale of response of both h and p is quite small. Noting that εH

is smaller than εa, we will put εH = 0. This corresponds to considering a
steady heart rate, ignoring the faster transients in the heart rate equation.
However, εH is not very much smaller than (is only half the size of) εa. Hence
we check this simplification by later conducting a numerical comparison of
solutions to the coupled equations (9) and (10) with the stability results
from the simplified system, in figs (4) and (5). We find that the results are
reassuringly close.

Then to leading order equation (9) gives

h ≈ 1 +
1
δ

[
βg(p1)

1 + γ[1− g(p)]
− ν[1− g(p)]

]
, (11)

and our model further reduces to the single delay-recruitment type equation

εaṗ = − p

1 + αg(p1)
+ µ

{
1− ν

δ
[1− g(p)]

}
+

µβg(p1)
δ[1 + γ(1− g(p))]

. (12)

5 Analysis

If the right-hand side of the delay-recruitment equation (12) is set equal to
zero, it implicitly defines a map from p1 to p. The properties of this map
appear to be closely linked to the behaviour of solutions to the full delay
equation, particularly for small εa [9, 13, 39]. In our case (for physiologically
reasonable parameter values) the map is monotonically decreasing, so that
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it may have a two-cycle and a fixed point, but no other periodic or chaotic
behaviour. It is not surprising then that our delay-recruitment equation (12)
correspondingly has a steady-state and a periodic solution, and does not
exhibit period-doubling or chaos.

Steady states ps of equation (12) satisfy

ps

1 + αg(ps)
+

µν

δ
[1− g(ps)]− µ =

µβg(ps)
δ[1 + γ(1− g(ps))]

. (13)

Considering the shape of g in Fig. 2, and the fact that the right-hand side
of equation (13) is a decreasing function of ps (decreasing from a value
µβ/δ ≈ 0.15 to zero as p → ∞), while the left-hand side is an increasing
function (from near −µ to a positive value), it is clear that there is a unique
steady state solution for a range of parameter values near our values. We
now consider the stability of this steady solution.

5.1 Stability

Expanding p = ps + P in equation (12) for small disturbances P about
equilibrium gives

Ṗ = −BP −GP1 , (14)

where

εaB ≡ 1
1 + αg

+
µν|g′|

δ
+

µβγg|g′|
δ[1 + γ(1− g)]2

> 0 (15)

and

εaG ≡ psα|g′|
(1 + αg)2

+
µβ|g′|

δ[1 + γ(1− g)]
> 0, (16)

with g, g′ being evaluated at ps. By P is meant P (t), and P1 means the
delayed P (t− 1).

Putting P = eσt then gives

σ = −B −Ge−σ, (17)

and instability occurs if Re σ > 0; the instability is oscillatory if Im σ 6= 0.
This is an equation whose properties are well understood, see for example

Diekmann et al. [12] or Murray [28]. It is a transcendental equation, which
has an infinite number of complex roots, no more than two of which are real.
The roots accumulate at the essential singularity at σ = ∞, and the set of
Re σ is easily shown to be bounded above. There is an instability criterion
which determines when all the roots σ have negative real part, and this is
indicated in Fig. (3).
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Figure 3: Stability map for the solutions of equation (17). The curves demar-
cate the behaviours of the two roots involved in the transition to instability.
osc means oscillation and complex conjugate roots, U means unstable, S
means stable, and + and − indicate the signs of the two roots when they
are real. If only one sign is indicated, the other root has disappeared by
tending to infinity. The diagram indicates that stability occurs only if G lies
within the sector bounded by and to the right of the two curves G = −B
and G = γ1(B). Note that the region of interest for this work is just the
first quadrant.
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Specifically, the three curves in the figure are given by G = −B, G =
exp[−(1 + B)], and the Hopf bifurcation curve γ1(B), which is given para-
metrically by

B = − Ω
tanΩ

, G =
Ω

sinΩ
, (18)

where Ω ∈ (0, π). In the present case, B > 0 and G > 0, so that Ω ∈
(π/2, π), and instability occurs if and only if G > γ1(B). The period of the
resulting oscillation is 2π/Ω, and we expect that this will be comparable
to the frequency of oscillations that occur in practice. The dimensionless
period P of the bifurcating periodic solution is thus P → 2 as B → ∞,
P → 4 as B → 0, the behaviour being monotonic along the bifurcation
curve. The dimensional period is simply Pτ . This is consistent with 10
second Mayer waves, if the delay τ = 3 seconds (since the corresponding
value of B = 3.3).

6 Cases

6.1 Peripheral resistance effects

The full stability map depends in a complicated way on the control param-
eters α, β, γ, µ and ν. In the search for simple criteria, it useful to consider
the rôles of the three controls separately. We begin by considering the α–
sympathetic control only, by taking α 6= 0 and putting β = γ = ν = 0.
This corresponds to investigating only the sympathetic control of peripheral
resistance. From this we have that the steady state is given by

h = 1, µ =
p

1 + αg
, (19)

and the parameters B and G are given by

εaB =
1

1 + αg
, εaG =

pα|g′|
(1 + αg)2

. (20)

Fig. (4) shows the resultant Hopf stability curve in α–εa space. Oscillations
occur in this simplified system when εa lies below the stability curve. The
figure also shows the results of direct numerical simulations of the full equa-
tions (9) and (10), and indicates that the simple system (with εH = 0) gives
a good approximation to the more complicated one.
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Figure 4: Stability map for α–only control. The solid curve shows the
theoretical stability limit based on the limit εH → 0, together with β = γ =
ν = 0. The inclined crosses (×) indicate non-decaying oscillatory numerical
solutions of the full two-dimensional system with εH = 0.18, β = 0.3, γ =
0.2, δ = 1, ν = 0.4, µ = 0.5, n = 3. The upright crosses (+) indicate where
numerical results exhibit oscillatory decay to a stable steady state. It can be
seen that the simple analytic asymptotic theory gives a good (over) estimate
of the actual stability boundary.
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Figure 5: Stability map for β–only control. The solid curve shows the
theoretical stability limit based on the limit εH → 0, together with α = γ =
ν = 0. The inclined crosses (×) indicate non-decaying oscillatory numerical
solutions of the full two-dimensional system with εH = 0.18, α = 1.3, γ =
0.2, δ = 1, ν = 0.4, µ = 0.5, n = 3. The upright crosses (+) indicate where
numerical results exhibit oscillatory decay to a stable steady state. It can
be seen that the simple asymptotic theory gives a good (under) estimate of
the actual stability boundary.
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6.2 Heart rate effects

The second simplified case we study is when β 6= 0, but α = γ = ν = 0.
This corresponds to having only sympathetic control of heart rate. In this
case the steady state is

h = 1 +
βg

δ
, µ =

p

h
, (21)

and the parameters B and G are given by

εaB = 1, εaG =
µβ|g′|

δ
. (22)

Fig. (5) shows the resultant Hopf stability curve in β–εa space. Oscillations
occur when εa lies below the stability curve. Direct simulations of the full
equations (9) and (10) again indicate that the simple system gives a good
approximation to the more complicated one.

6.3 Solely vagal effects

Finally we consider the case where the sympathetic system is switched off,
so that α = β = 0. In this case the equations (9) and (10) reduce to two
ordinary differential equations. When these are linearised about the unique
steady state, one finds that the trace of the linearised stability matrix is neg-
ative, and its determinant is positive. Thus the steady state is always stable
in this case. This agrees with the results of Abbiw-Jackson and Langford
[1], who also find that vagal control of heart rate does not induce instability.

6.4 Comparison of gain versus delay

As noted in the introduction, the cause of Mayer waves continues to be the
subject of research, with disagreement over the importance of delay versus
feedback gain [1, 6, 34], and questions about the relative importance of
feedback to the heart versus feedback to the peripheral resistance [23, 26, 31].

We assess the relative importance of these factors by considering their
proximity to the Hopf bifurcation curve in the stability diagrams of fig-
ures (4) and (5). When parameter values are far from the curve, then the
solutions of the model are strongly damped or strongly oscillatory. It is
only near the curve that a change in parameter values will cause a change
of behaviour. In particular, when α or β are small and the associated Hopf
curve is nearly vertical, the model is more sensitive to variations in α and β.
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For larger values of α and β, where the Hopf curve is flatter, the behaviour
is more sensitive to variations in εa.

Our model allows us then to compare the relative importance for the
onset of Mayer waves, of

1. the gain α in peripheral resistance control,

2. the gain β in sympathetic control of heart rate, and

3. the delay τ in these controls, which appears in εa.

Noting that typical values are α = 1.3, β = 0.3, and εa = 0.3, we draw
from Figs (4) and (5) the following points:

For small εa (large delays), the system is not very sensitive to εa (and
hence to the delay τ), compared with gain. For larger εa (small delays),
where the stability curves are nearly horizontal, the system is much more
sensitive to delay.

The effects of heart rate control are greater than those of peripheral resis-
tance control at values of εa ≈ 0.3, since a β value near 3–5 gives oscillation,
whereas no α values in the range zero to twenty can cause oscillation. The
graphs also reveal that on average, tracking the Hopf bifurcation curve, a
change in εa of the order of one (with changes τ of order of a factor of 3)
is equivalent to a change of order of a factor of fifty in α and of order ten
in β. Hence the system is generally more sensitive to changes in time delay
than to changes in feedback gain, and is more sensitive to changes in the
sympathetic feedback to the heart than to peripheral resistance. This result
is at odds with the ideas presented in [23, 26, 31], and needs further study.

6.5 Ageing

As humans age, generally their reflexes get slower, and hence we expect
somewhat longer delay times for the sympathetic system. As pointed out
elsewhere [1], in other models and in ours, regions of instability correspond
to longer delay times. This is at first glance not consistent with clinical
observations, which indicate that older people are less likely to exhibit Mayer
waves [20, 22].

However, perhaps more significantly, ageing also brings impaired func-
tion of the smooth muscle walls of arterioles, resulting in less responsive
peripheral resistances, together with higher overall resistances and smaller
arterial compliances [35]. In terms of our model then, we would simulate
ageing by decreasing the gains α and β of feedback to peripheral resistance
and the heart, increasing the capillary resistance R0

c , and increasing the

21



time delay τ . Then we anticipate little change in εa, since increases in τ and
decreases in Ca are offset by a larger value for R0

c .
The implications of these changes in parameter values are, referring to

Figs (4) and (5), that ageing corresponds to a movement from the oper-
ating point εa = 0.3, β = 0.3, and α = 1.3 in the direction of reduced α
and β, which is a movement away from the region of unstable oscillations.
Hence ageing corresponds to a movement towards the region of greater sta-
bility in our model, which is consistent with clinical observations of reduced
variability with age.

7 Conclusions

We have proposed a simple model for the human cardiovascular system with
baroreceptor control feedback, which is an extension of a model by Ottesen.
We have reduced our model to a single delay-recruitment equation, and we
have studied analytically and numerically the behaviour of solutions. Steady
solutions can lose stability in a Hopf bifurcation to oscillatory solutions,
consistent with Mayer waves, as delays are increased, or as feedback gain is
increased, or as peripheral resistance is reduced. Chaotic dynamics are not
a feature of our model.

Our model indicates that sympathetic control of heart rate is more im-
portant than sympathetic control of peripheral resistance, and that solution
stability is more sensitive to delay than to gain. The consequences of ageing
are considered and found to be consistent with our model, with decreased
gains giving more stable behaviour.
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