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Abstract

The Distributed Activation Energy Model (DAEM), used for the pyrolysis
of a range of materials (including coal, biomass, residual oils and kerogen),
assumes that the thermal decomposition of numerous components is
described by a distribution of activation energies. Existing theories are
reviewed with particular focus on methods used to evaluate solutions
quickly and efficiently. This paper demonstrates that previous approaches
taken to simplify the solution methods can usually be identified as
belonging to one of two distinct and physically relevant regimes. A careful
analysis in these two regimes is given based upon asymptotic expansions,
leading to systematic methods for rapidly finding accurate approximations.
The new theory results in simple expressions for the devolatilisation rate of
a given distribution of reactants. The method thereby provides a rapid and
highly effective method for estimating kinetic parameters and the
distribution of activation energies. Comparison of the simplified results
with existing theories and with calculations of the full model are given. The
methods provide a useful basis for calculations of coupled models of
volatilisation and combustion, and for models with spatially varying
temperatures.
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Nomenclature

DExp the double exponential term E activation energy (J/mol)
e energy rescaled to order one f distribution of volatiles
H Heaviside or step function h exponent
k rate coefficient (s−1) k0 frequency factor (s−1)
m rate of temperature change (K/s) R ideal gas constant
T temperature (K) t time (s)
V mass fraction volatilised V ∗ initial value of V
v mass fraction not yet volatilised Y LambertW function
y nondimensionalised energy

Subscripts:
i volatile constituent label s a central value
w a value representing width

Superscripts:
e extremum

Greek Symbols:
α a parameter τ nondimensionalised time

1 Introduction

The distributed activation energy model (DAEM) has proven very
successful in describing the pyrolysis of various coals under differing
temperature histories. While our focus here is primarily on parameter
values relevant to coal, the DAEM also applies to the pyrolysis of other
materials, including biomass, residual oils, resin chars [1], and kerogen [2].
Calculations of solutions to this model may require many evaluations of
double integrals, involving rapidly varying functions and this creates
significant numerical difficulties. The aim of this paper is to use asymptotic
methods to make accurate approximations to the integrals and thereby
allow rapid calculation of DAEM solutions. Existing approximations in the
literature are reviewed, and are noted to have had varying degrees of
success. Next one of the main sources of numerical difficulty, namely the
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double exponential term arising in the DAEM, is investigated for various
temperature histories. This double exponential term acts over a narrow
range of activation energies, which changes as time progresses. The key to
our approach is to recognise the importance of the relative width of the
double exponential term compared with the width of the initial distribution
of volatiles.

2 Mathematical Model

A single block of coal and the time evolution of its constituent parts is
considered, averaged over the whole block. Such an approach ignores any
spatial variation of temperature, and is appropriate for pulverised coal, or
as a component of a more complicated travelling wave model. The
development here follows Howard [3] and Solomon and Hamblen [4]. The
coal’s constituents are numbered i = 1....n, and the released (volatilised)
mass fraction for the ith constituent is Vi(t). The initial mass of constituent
i in the coal is V ∗

i . Each reaction is assumed to be first order, so that the
rate of pyrolysis is

dVi

dt
= ki (V

∗
i − Vi) . (1)

The rate coefficient ki is taken to be Arrhenius in form,

ki(t) = k0ie
−Ei/RT (t) ,

where k0i is the pre-exponential or frequency factor (s−1), Ei is the
apparent activation energy for constituent i (J/mol), R is the ideal gas
constant, and T (t) is the time-dependent temperature of the coal (K).
Equation (1) has the solution

V ∗
i − Vi

V ∗
i

= exp
(
−
∫ t

0
ki(u)du

)
.

If i = 1, the model is referred to as the single first-order reaction model
(SFOR). In contrast the distributed activation energy model (DAEM)
allows for a more complicated set of reactions by considering a continuous
distribution of reactants. In the DAEM the dependence on volatile number

3



i is replaced by a continuous dependence on activation energy E, so that
the total amount of volatile available for release from the coal is taken to be
a distribution satisfying

dV ∗ = V ∗f(E) dE .

The solution then becomes

V ∗ − V

V ∗ =
∫ ∞

0
exp

(
−
∫ t

0
k0(E)e−E/(RT (u))du

)
f(E)dE . (2)

This model is gaining acceptance for capturing the required diversity of
reaction time scales for coal volatilisation, and is an essential element of
any devolatilisation model [3, 5].

This model is used for two main purposes. The first is to assume the initial
distribution of volatiles f(E) and the pre-exponential factors k0(E) and
then find the resulting time-dependence of the volatiles. The second is the
inverse problem, where the rate of volatilisation dV/dt is measured and the
distribution of volatiles must be determined. This second problem is one of
estimating parameters, and there are significant difficulties in determining
accurately both f(E) and k0(E) as they are highly correlated. A common
assumption is then to take all the pre-exponential, or frequency factors, k0i

to have the same value k0. This simplifies much of the later analysis and is
reasonable given much of the uncertainty over the reactant distributions.
Formally the inverse problem then becomes one of solving a Volterra
integral equation of the first type for the function f(E). Such problems are
invariably ill-posed and it is necessary to regularise the problem, with
conditions such as f(E) being as smooth as possible or being of a particular
form, in order for solutions to be properly defined.

In this paper approximations for the time-dependence of the volatiles are
determined first, when the DAEM for volatilisation is given by Eq. (2),
with k0(E) replaced by the constant k0.

Within the integral the integrand consists of the product of the double
exponential term

DExp ≡ exp
(
−
∫ t

0
k0e

−E/(RT (u))du
)

,
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and a term representing the initial distribution f(E). DExp is determined
only by the temperature conditions used in the experiment and the initial
distribution is determined only by the coal being considered. Another way
to write the double integral is in the form

v =
∫ ∞

0
exp (h(E)) dE ,

where v = 1− (V/V ∗) and is the fraction of the volatile matter not yet
released, and

h(E) ≡ −
∫ t

0
k0e

−E/(RT (u))du + ln(f(E)) .

3 Previous Simplifications

One of the main difficulties with the solution as written in Eq. (2) is that
evaluating the integral can require significant computing resources,
particularly when it needs evaluating many times. Previous approximations
to the solution, especially those seeking to convert the DAEM back to an
equivalent SFOR model, suffer from difficulties in extrapolating to other
heating regimes, and difficulties in extracting the volatile distribution f(E)
from experimental measurements. These approaches to simplifying this
problem are discussed further in this section.

Niksa and Lau [5] have explored the relationship between the DAEM and
the SFOR model with an approach based on holding the activation energy
fixed, and defining an effective or nominal rate constant < k >, which
varies with time, as

dV

dt
=< k > (V ∗ − V ) .

Calculation of < k > requires fully evaluating the DAEM. They note [5]
that there is a large variation in < k > with time or temperature, and also
a more modest variation with coal rank.

Niksa and Lau [5] also derive approximate analytical approximations to the
DAEM for temperatures undergoing linear or exponential ramping. Their
approach is based on exploiting the rapid changes occurring in DExp. They
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first note that in the physically relevant regime where E/(RT ) � 1, it is
possible to make the approximation, e.g. in the case where the temperature
ramps as T = mt, that

∫ t

0
k0e

−E/(RT (u))du ∼ k0RT 2

mE
exp(−E/(RT )) .

The resulting rapidly-varying double exponential function is then
approximated by a piece-wise linear function that has three regions: one
where DExp is zero, one where it is unity and one in between where it rises
linearly from zero to one. The width and location of the linear region varies
with time. In the case where the initial distribution is Gaussian, use of this
simple piece-wise linear approximation results in integrals that can be
easily evaluated.

Niksa and Lau indicate that this procedure provides accurate
approximations to the full DAEM for all parameters of interest. Their work
represents a refinement of the ideas in Suuberg [6], who uses a simple
step-function approximation to DExp (see also [3, 7, 8]) which jumps from
zero to one at an energy that varies with time. Such a step-function
approximation leads to simple integrals and for the case of a Gaussian
initial distribution gives an error function approximation to the DAEM.
Niksa and Lau note that there remain some problems in using their
approximation at lower temperatures, especially with the numerical solution
of the equations for the position of the piece-wise linear approximation.

Miura and Maki [9] (and see also [10, 11]) consider the inverse problem and
present a method for estimating the distribution f(E) and the frequency
factor k0 from volatilisation data associated with three sets of experiments
with different heating profiles. For a linearly ramping temperature, they
replace DExp with a step-function, and find that f is proportional to the
rate of change of released volatile with time. They then use this relation to
find f from the data.

In the following section, a more accurate approximation to DExp is first
developed, which is then used in the two cases of narrow and wide
distributions.
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4 Systematic simplifications

The integrand in (2) consists of two parts. The first part (DExp) depends
on time through the temperature history experienced by the sample. The
second part is independent of time, and depends on the distribution of
volatiles in the sample. The behaviour of the temperature dependent part
DExp is considered first, and approximations are derived that are useful for
physically relevant problems. Both constant and ramping temperature
histories are investigated, together with simple distributions of volatiles.

4.1 The double exponential integrand

Approximations to the double exponential

DExp = exp
(
−
∫ t

0
k0e

−E/(RT (u))du
)

are considered, where T (u) is specified and E can take any positive value.
The approach taken is similar to that of Niksa and Lau [5] but uses more
systematic methods and a more accurate approximation.

In order to motivate the systematic simplifications of this integrand it is
useful to consider the typical values of the parameters and functions on
which it depends.

The frequency factors are typically in the range k0 ∼1010–1013 s−1, while
the activation energies of interest are in the region 100–300 kJ/mole. The
temperatures considered depend on the particular experiments but
1000–2000◦C are typically used. Note however, that the DAEM model is
also of interest for combustion problems where the temperature range can
be significantly larger, and it is therefore useful to be able to extrapolate
the simplifications made in the temperature range of 1000–2000◦C to these
higher regimes.

To motivate and demonstrate the simplification method exploited later, the
case of constant temperature (when the integral is particularly simple
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anyway) is considered first. Taking T (u) = T0, DExp becomes

exp
(
−tk0e

− E
RT0

)
.

Taking typical values, E/(RT0) ∼ 10 while tk0 ∼ 1010. The large size of
both of these parameters makes the function very rapidly varying with E.
This is further illustrated if the function (4.1) is re-written in the form

exp
(
− exp

(
Es − E

Ew

))
.

where
Es ≡ RT0 ln(tk0) and Ew ≡ RT0 .

For E much less than Es the function is nearly zero while for E much
greater than Es the function is nearly one. The function changes from zero
to one in a range of E values within a distance of approximately Ew of Es.
Using the data above, this implies that the function changes within about
Ew ≈ 10 kJ/mole of Es ≈ 100 kJ/mole, and hence that the change is
reasonably rapid.

For more complicated time histories the same ideas hold but the integral
needs more careful attention. For example if the temperature is taken to
ramp linearly with T = mt, DExp becomes

exp
(
−
∫ t

0
k0e

− E
Rmu du

)
.

The integral in the exponent can be approximated using the conventional
Laplace approach where the parameter E/(Rmt) is assumed to be large
and hence the dominant contribution from the integral is when u is near t
(and the temperature is near its maximum). This gives the following
well-known asymptotic approximation to the function:

exp
(
−
∫ t

0
k0e

− E
Rmu du

)
∼ exp

(
−k0Rmt2

E
e−

E
Rmt

)
as

E

Rmt
→∞ . (3)

This approximate function is now written in the form

exp
(
− exp

(
Es − E

Ew

))
,
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where again the function switches rapidly from zero to one as E increases,
over a range of size Ew around Es, and this can be approximated as follows.
Defining

g(E) = (Es − E)/Ew

then (3) can be written as

exp (− exp(g(E)))

where

g(E) ≡ − E

Rmt
+ ln

(
k0Rmt2

E

)
.

Because only the behaviour near Es is of interest, this function is expanded
in a Taylor series,

g(E) ∼ g(Es) + (E − Es)g
′(Es) + . . .

Hence using this equation and the definition of g(E), Es and Ew are chosen
so that

g(Es) = 0 and g′(Es) = −1/Ew .

Solving these gives

Es = Rmt Y (k0t) and Ew =
RmtEs

Rmt + Es

where Y (x) is the LambertW function defined to be the one real root of the
equation

Y eY = x .

It is useful to note that approximations to Y (x) for small and large x
(corresponding to short and long times) are [12]

Y ∼ x− x2 , x � 1 ,

and

Y ∼ ln

 x

ln
(

x
ln x

)
 , x � 1 .

DExp has been observed to be like a smoothed step-function, rising rapidly
(for large values of tk0) from zero to one in a range of activation energies of
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width Ew around the value E = Es, where both Es and Ew vary with time.
In the total integrand of (2) DExp is multiplied by the initial distribution
f(E). The initial distribution is typically centered around a value E0 and
has a width designated by σ, both of which are constant. Typically a
Gaussian may be used but much of what is considered later applies to more
general distributions. There are two different limits of interest, that of a
relatively wide initial distribution compared with the width of DExp, and
that of a relatively narrow distribution. The general way that the shape of
the total integrand changes with time depends on which limit applies.
When the initial distribution is relatively wide compared to Ew, the total
integrand is initially the distribution f(E), but then it is progressively
chopped off from the left by the step-like DExp as time proceeds. The
location of the maximum of the total integrand can move significantly, and
the shape becomes quite skewed. When the initial distribution is relatively
narrow, the total integrand remains similar in shape to the initial
distribution, with an amplitude that is progressively reduced by DExp as
time proceeds. The total integrand remains more symmetrical than in the
wide distribution limit, although the location of its maximum does move.

To demonstrate the approach, consider the special case where the initial
distribution f(E) is Gaussian, centered at E0 with standard deviation σ.
Approximations are sought to the integral

v =
1

σ
√

2π

∫ ∞

0
exp (h(E)) dE ,

where

h(E) = − exp
(

Es − E

Ew

)
− (E − E0)

2

2σ2

and Es and Ew are functions of t as defined earlier.

Energy is now rescaled as y = E/E0. so that the problem becomes

v =

√
α

π

∫ ∞

0
exp

[
− exp

(
ys − y

yw

)
− α(y − 1)2

]
dy (4)

h(y) = − exp

(
ys − y

yw

)
− α(y − 1)2 (5)

where the constant parameter α =
E2

0

2σ2 . Note that in practice α � 1.
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Note also the time dependence in the following two special temperature
history cases that are commonly encountered.

For constant temperature T = T0,

ys =
RT0

E0

ln τ , yw =
RT0

E0

.

For linear ramping temperature T = mt,

ys =
Rmτ

k0E0

Y (τ) , yw =
ys

1 + Y (τ)
,

where Y is the LambertW function defined in (4.1) and time has been
rescaled as τ = k0t.

These results show that in the ramping temperature case the location
Es (= E0ys) moves with time in a similar manner to the constant
temperature case, with the log replaced by a LambertW function. However,
the width of DExp, Ew (= E0yw), is narrower at early times. It is this
second feature that accounts for the major difference in the appearances of
the curves of released volatile versus time, between the ramping and
constant temperature cases. In the constant temperature case, the amount
of released volatile begins to change perceptibly even at very early times,
whereas in the ramping temperature case the amount of released volatile
does not change perceptibly until the critical time is reached when the two
parts of the integrand overlap significantly.

Note that the ramping temperature case is easily generalised to the case of
a nonzero initial temperature T0, by simply replacing t with t + T0/m
everywhere. The analysis is otherwise unchanged.

Approximations to Eq. (4) are now studied, noting that the initial
distribution is centered around y = 1 with width 1/

√
α while DExp jumps

from zero to one around y = ys with a width yw.
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5 The Wide Distribution Case

First the case where the initial distribution is much wider than DExp is
considered. To do this, the limit yw

√
α � 1 is taken. In this limit, as

previously discussed, DExp jumps from zero to one near y = ys, in a manner
that has previously [3, 6, 7, 8] been approximated by the step-function

H(y − ys) =

{
0, y < ys

1 y ≥ ys

The following approach improves upon this, and upon the linear ramp
approximation used in [5].

Motivated by previous work, Eq. (4) is rewritten in the form

v =

√
α

π

∫ ∞

0

[
exp

(
− exp

(
ys − y

yw

))
−H(y − ys)

]
exp

(
−α(y − 1)2

)
dy

+

√
α

π

∫ ∞

ys

exp
(
−α(y − 1)2

)
dy .

The second integral in this equation is a conventional error function, or
normal distribution, and hence straightforward to compute. In fact many
previous simplifications (the step-function approximations) use just this
term and neglect the first integral. Note that in the first integral, the
integrand is the initial distribution multiplied by a function that is very
small everywhere except in a neighbourhood of size yw around the point
y = ys. This integrand can therefore be approximated by expanding the
initial distribution term as a Taylor series about y = ys giving√

α

π

∫ ∞

0

[
exp

(
− exp

(
ys − y

yw

))
−H(y − ys)

]
exp

(
−α(y − 1)2

)
dy

=

√
α

π

∫ ∞

0

[
exp

(
− exp

(
ys − y

yw

))
−H(y − ys)

]
(1 + (y − ys)2α(ys − 1) + . . .) exp

(
−α(ys − 1)2

)
dy .

Each of the integrals arising from a term in the Taylor series can now be
integrated separately to yield

v ∼ 1

2
erfc(

√
α(ys − 1)) +

√
α

π
ywe−α(ys−1)2

[
A0 − 2αyw(ys − 1)A1
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+αy2
w{2α(ys − 1)2 − 1}A2 +

2

3
y3

wα2{2(ys − 1) + 2α(ys − 1)3 + 1}A3

]
,

(6)

where the integrals remaining to be evaluated are represented by

Ai ≡
∫ ∞

−∞
xi
(
e−e−x −H(x)

)
dx i = 0, 1, 2 . . . .

These Ai need only be evaluated once, as they are independent of any
parameters, and the first few values are

A0 ≈ −0.5772 , A1 ≈ −0.98906 , A2 ≈ −1.81496 , A3 ≈ −5.89037 .

Formally this expansion is only valid when αyw(ys− 1) � 1 and in the limit
yw

√
α → 0, but in practice the expansion is quite robust, as the formal

errors occur only at the extremes of the distribution. Further terms in this
expansion are easily found if it is desired to improve the accuracy of the
approximation or the approximation can be made simpler by taking fewer
terms. For example the approximation used by [3, 6, 7, 8] is just the first
term in this series.

For a general initial distribution f(E), which is wide compared to yw, this
asymptotic approach gives the general result

v ∼
∫ ∞

ys

f(y) dy + ywA0f(ys) + y2
wA1f

′(ys) + y3
wA2f

′′(ys)/2 + y4
wA3f

′′′(ys)/6

(7)
where, as usual, the symbol ′ is used to indicate the derivative.

5.1 Inverse Problems

For the general result (7), the rate of volatilisation can be written in the
form

dv

dτ
∼

[
−f(ys) + ywA0f

′(ys) + y2
wA1f

′′(ys) + y3
wA2f

′′′(ys)
] dys

dτ
+[

A0f(ys) + 2A1ywf ′(ys) + 3y2
wA2f

′′′(ys)
] dyw

dτ
. (8)
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This last equation gives a method for considering the inverse problem with
greater accuracy than previously considered (these neglected all terms with
A0, A1, A2 etc.).

Since in this case E0 is not known beforehand, it is best to rewrite Eq. (8)
in the dimensional form

dv

dt
∼
(
−dEs

dt
+ A0

dEw

dt

)
f(Es) + A0Ew

dEs

dt
f ′(Es) + . . . (9)

Note that the original Volterra integral equation of first type for f has been
approximated by a differential equation. The left hand side is known, Es

and Ew are known functions of t (provided that k0 is known), and we need
to determine f(Es). As explained by Niksa and Lau [5], dependence on t
may be replaced by dependence on Es, by inverting Es(t).

A perturbation approach to solving Eq. (9) takes advantage of the narrow
double exponential (compared with the width of the distribution) by
considering Ew ≡ εew , ε � 1. Then to order ε for example,

εA0ew
dEs

dt
f ′(Es) +

(
εA0

dew

dt
− dEs

dt

)
f(Es) =

dv

dt
.

Usually when higher derivatives are multiplied by small parameters, the
problem requires singular perturbation techniques, and consideration of
boundary layers. However, here the boundary conditions (f → 0 when
Es → 0 or ∞) are automatically satisfied by the zeroth-order (or outer)
solution, and regular series expansion techniques provide a simple way to
approximate f . Hence f is expanded as a power series in ε,
f ∼ f0 + εf1 + ε2f2 + . . ., and coefficients of powers of ε are equated to
obtain

f0 = −
dv
dt

dEs

dt

, (10)

εf1 = A0

(
Ew

df0

dEs

+
dEw

dt
f0

dEs

dt

)
. (11)

The zeroth-order approximation f0 is the same as that obtained by Miura
and Maki [9]. Adding εf1 gives an improved formula, and higher-order
terms are similarly easily calculated. However, each improvement requires
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higher-order derivatives (differences) of v to be calculated, and without
some form of prior smoothing this will eventually lead to numerical errors
large enough to swamp the results.

6 The Narrow Distribution Case

The analysis and expansions presented by McGuinness et al. [13] prove to
be accurate only for relatively narrow distributions f(E), in particular for
ramping temperature histories which satisfy σ �

√
2 RT1 where T1 is the

temperature of the point of inflection in a plot of released volatiles versus
temperature. The development in this section is aimed at the same case of
narrow distribution, but differs from the approach of [13] by considering
simultaneously the behaviour of the initial distribution f(E) and of the
term DExp, in a manner analogous to the method of the moving maximum
for Laplace problems [14]. In contrast the method presented in [13] is
equivalent to taking the maximum of the total integrand to remain fixed at
the maximum of the initial distribution and then proceeding in a manner
analogous to that of a standard Laplace problem. The present approach
yields results that are more robust and more accurate over a wider range of
operating parameters, because it allows for the fact that the maximum of
the integrand moves in a time-dependent manner.

The assumption of a narrow distribution for the Gaussian distribution
corresponds to taking σ � RT in both temperature history cases, with
T = T0 for constant temperature, and T = mt in the ramping temperature
case. Formally this corresponds to taking yw

√
α � 1 in (4).

Although the integral in (4) is not in Laplace form, the method of Laplace
motivates the approach taken here. The value ye of y is sought, where the
function h(y) given in (5) is at an extremum, by finding the point where h′

is zero. Hence since

h′(y) =
e

ys−y
yw

yw

− 2α(y − 1) .

it is necessary to find ye that satisfies the equation

e
ys−ye

yw = 2αyw(ye − 1) .

15



The solution is given by

ye = 1 + yw Y

(
1

2αy2
w

exp

(
ys − 1

yw

))
,

where Y the LambertW function.

A Taylor series expansion of h about ye, truncated after the quadratic term,
gives

h(y) ∼ h(ye) + h′′(ye)(y − ye)2/2 . (12)

Noting that the second derivative of h is

h′′(y) = −e
ys−y
yw

y2
w

− 2α

the leading behaviour of v in (5) is

exp(h(ye))

σ
√
|h′′(ye)|

.

and this may be written in the form

exp [−α(ye − 1)(ye + 2yw − 1)]√
1 + ye−1

yw

,

where ye is defined above.

This approach to approximating the volatiles when the initial distribution
is narrow compared to yw can be used for other distributions but it will
always require finding the maximum of the total integrand and this is not
easy to generalise.

7 Numerical Comparisons

In this section the asymptotic approximations are compared with full
numerical calculations of the double integral (2) and with the
approximations of Niksa and Lau [5]. The case of a Gaussian distribution is
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used, with a linearly ramping temperature. For a wide range of parameter
values, the asymptotic approximations derived here are found to be more
accurate than previous work, and our approximations are generally found
to be accurate enough to give v vs t plots that are indistinguishable from
plots generated from the full calculations. Furthermore, in the narrow
distribution case, the asymptotic method provides accurate approximations
of the integrand of the energy integral, as it evolves in time. In these
comparisons, T0 = 273 K and E0 = 2.05E05 J/mol.

All calculations were performed using Maple, which has built-in support for
LambertW functions. The full numerical calculations were done by first
rewriting the double integral in terms of exponential integrals, and are
accurate to four significant figures.

7.1 Wide Gaussian

In the case that the Gaussian distribution is relatively wide, both the
asymptotic results and those of Niksa and Lau are indistinguishable from
plots of the full calculations of v, as illustrated in Fig. (1).

Note from the plot of the differences between full and asymptotic results,
that our results are more accurate than those of Niksa and Lau. The
parameter values used are indicated in Table (1).

Table 1: Parameter values used for comparisons.

case k0 (s−1) E0 (kJ/mol) σ (kJ/mol) m (K/s)

Fig. (1) 1.07E10 205 40 650
Fig. (2) 1.0E13 205 50 650
Fig. (3) 1.07E10 205 1 650
Fig. (4) 1.07E10 205 2 650

The inverse problem of determining the distribution from measurements of
v versus time is illustrated in Fig. (2). The circles indicate the underlying
Gaussian distribution used to generate values of v versus time by using full
calculations of the DAEM as in Eq. (2). The parameter values used are
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Figure 1: Comparisons of v values obtained from accurate integrations and
asymptotic results . See Table (1) for parameter values used. The first plot
shows v values, from full calculations (solid curves), from our asymptotic re-
sults (circles), and from the work of Niksa and Lau (crosses). The second plot
shows differences between full calculations and asymptotic values obtained
for v, with circles indicating our results, and crosses the results of Niksa and
Lau.
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Figure 2: Comparisons of the underlying Gaussian distribution with distri-
butions estimated inversely from v values versus time. See Table (1) for
parameter values used. The actual distribution is indicated by circles, the
leading-order result by a solid line, and the higher-order result by a dashed
line.

indicated in Table (1). The solid line shows the result of calculating just
the leading-order term f0 using Eq. (10), and the dashed line is the result
obtained by adding our higher-order correction term from Eq. (11). It can
be seen that adding εf1 does provide a more accurate estimate of the
underlying distribution in the DAEM, but also that errors due to
differencing are becoming more significant, as the v values were only
generated accurate to 4 significant figures. This is particularly apparent in
Fig. (2) at energies less than 125 kJ/mol, and could be improved in practice
by first fitting an appropriate smooth function (perhaps a power times an
exponential) to the data, or by using a running polynomial fitted over just
a few nearby points.

7.2 Narrow Gaussian

Typical results for the case of a relatively narrow Gaussian are displayed in
Fig. (3).

The parameter values used are listed in Table (1). In the first plot, circles
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Figure 3: Comparisons between full calculations, our asymptotics, and those
of Niksa and Lau, for the narrow Gaussian case. The first plot shows the
amount of volatile v remaining to be released versus time, with the solid line
being full calculations, the circles our results, and the crosses those of Niksa
and Lau. The second plot shows differences between v values obtained from
asymptotic results and from full calculations, using our results (circles) and
those of Niksa and Lau (crosses).
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indicate full calculation values, the solid line is our asymptotic result, and
the dashed line is the result of Niksa and Lau. The second plot shows
differences between our asymptotic results and full calculations (circles),
and between the results of Niksa and Lau and full calculations (crosses).
The asymptotic results can be seen to be better, especially at early times.

It is also useful to compare full calculations of the time-dependent
integrand with our approximation based on Eq. (12). Figure (4) shows a
comparison at different times for Savage Mine lignite [3](see Table (1) for
parameter values used). The symbols are full calculations for the DAEM
integrands, and the solid curves are our asymptotic approximations.

0

0.2

0.4

0.6

0.8

1

0.96 0.98 1 1.02 1.04
y

exp(h)

Figure 4: Comparisons between integrands for full calculations (curves) and
our asymptotic results (circles), as they evolve in time in the case of a nar-
row Gaussian. The abscissa is the rescaled energy variable, y. The times
used, from the highest curve down, are 0, 1.25, 1.35, 1.43, and 1.51 seconds
respectively.

These figures are illustrative of results obtained over a wide range of
parameter values. Tables (2) and (3) summarise these results in more
detail, by showing the maximum errors (differences in v values) obtained
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when comparing our results (and those of Niksa and Lau) with full
calculations, for a selection of the parameter values we considered.

Table 2: Table showing the maximum error, that is, the maximum difference
between approximate and full calculations of v, for a range of parameter
values. The calculations have been done for asymptotic results (”AsW”)
using the wide distribution case, and for those of Niksa and Lau (”NL”).

m (K/s) σ (kJ/mol) k0 s−1 AsW NL
1.0E+00 20 1.0E+10 .011 .023
1.0E+00 20 1.0E+12 .007 .021
1.0E+00 20 1.0E+14 .005 .019
1.0E+00 50 1.0E+08 .013 .016
1.0E+00 50 1.0E+12 .010 .012
1.0E+00 50 1.0E+16 .009 .012
1.0E+02 50 1.0E+08 .020 .014
1.0E+02 50 1.0E+12 .010 .010
1.0E+02 50 1.0E+16 .013 .013
1.0E+04 50 1.0E+08 .031 .031
1.0E+04 50 1.0E+12 .013 .016
1.0E+04 50 1.0E+16 .010 .012

In particular, our results have been numerically checked against accurate
evaluations and against the approximations of Niksa and Lau, for
E0 = 205 kJ/mol; and for σ taking the values 1, 5, 10, 20, and 50 kJ/mol;
and for k0 taking the values 1E08, 1E10, 1E12, 1E14, and 1E16 s−1; and for
m taking the values 0.1, 1, 10, 100, 1000, and 10000 K/s. In nearly all cases
our approximation fitted the accurate results more closely than that of
Niksa and Lau.

The wide distribution results were used for the cases in Table (2), and the
narrow distribution results were used for the cases in Table (3). Note that
while all of the cases in Table (2) have wide distributions, and some of the
cases in Table (3) have narrow distributions, a number of the cases in
Table (3) have distributions of similar width to DExp. It is clear that the
approach taken here when assuming narrow distributions yields results that
are robust enough to be applicable even when the distribution is not
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Table 3: Table showing the maximum error, that is, the maximum difference
between approximate and full calculations of v, for a range of parameter
values. The calculations have been done for asymptotic results (”AsN”)
using the narrow distribution case, and for those of Niksa and Lau (”NL”).

m (K/s) σ (kJ/mol) k0 s−1 AsN NL
1.0E-01 1 1.0e+10 .02 .13
1.0E-01 1 1.0e+14 .02 .12
1.0E-01 1 1.0e+16 .02 .12
1.0E+00 1 1.0e+10 .03 .13
1.0E+00 1 1.0e+16 .02 .12
1.0E+01 1 1.0e+10 .03 .13
1.0E+01 1 1.0e+16 .02 .12
1.0E+02 1 1.0e+08 .04 .13
1.0E+02 1 1.0e+16 .02 .12
1.0E+03 1 1.0e+08 .04 .13
1.0E+03 1 1.0e+16 .02 .12
1.0E+04 1 1.0e+08 .05 .13
1.0E+04 1 1.0e+16 .03 .12
1.0E-01 10 1.0E+08 .015 .048
1.0E-01 10 1.0E+16 .039 .033
1.0E+00 10 1.0E+08 .017 .051
1.0E+00 10 1.0E+16 .035 .035
1.0E+01 10 1.0E+08 .024 .054
1.0E+01 10 1.0E+16 .033 .036
1.0E+02 10 1.0E+08 .023 .057
1.0E+02 10 1.0E+16 .029 .038
1.0E+03 10 1.0E+08 .030 .061
1.0E+03 10 1.0E+16 .025 .040
1.0E+03 10 1.0E+08 .034 .065
1.0E+04 10 1.0E+16 .022 .042
1.0E+00 20 1.0E+08 .049 .026
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narrow. We have also found it to be better than the previous results of
McGuinness et al [13].

Some comments are included here to help with decisions about whether the
distribution is wide or narrow. In our calculations, σ is compared with a
critical value σc, which is found by setting the width yw of DExp equal to
the distribution width 3σc/E0. This requires calculating the time tc when
DExp is passing through the center of the distribution (y = 1). Reasonable
results are obtained by using

σc ≡
E0Rmtc

3(Rmtc + E0)
,

where
tc = (tmin + tmax)/2

and tmin is the time when DExp just begins to encounter the distribution,
found by solving

ys + 2yw = 1− 3σ/E0 ,

that is,
TY (k0t)(3 + Y (k0t))

1 + Y (k0t)
=

E0 − 3σ

Rm
,

while tmax is the time when DExp has just moved past the distribution,
found by solving

ys − yw = 1 + 3σ/E0 ,

that is,
tY 2(k0t)

1 + Y (k0t)
=

E0 + 3σ

Rm
.

8 Discussion

A detailed investigation has been presented of the behaviour of the double
exponential time-dependent part of the double integral that arises in the
DAEM, here called DExp. Two limits were considered, one in which the
distribution of volatiles is wide compared with DExp, and one in which the
distribution is comparatively narrow. In each case, asymptotic
approximations for the amount of volatile released in the full DAEM were
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derived, and have been found (for Gaussian distributions) by numerical
testing to be more accurate than previous approximations, particularly in
the case of a narrow distribution.

The narrow distribution results have also been found to be useful in cases
where the distribution is of similar width to DExp.

Furthermore, for the case of a wide distribution, an improved way to
calculate the actual volatile energy distribution directly from the
experimental rate of release of volatile is presented. A numerical
investigation of this inverse problem for a model Gaussian distribution
indicates that our higher-order correction term provides an improved
estimate of the underlying distribution. The results and approach here are
general enough to apply to any form of energy distribution (provided it is
wide compared with DExp), and to be used for multiple distributions (as
when several volatiles with different mean and standard deviation are
combined).
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