Customizing a Fisheye View Algorithm

to Preserve the Mental Map

Margaret-Anne D. Storey, ¥ F. David Fracchia® and Hausi A. Miiller?

March 25, 1999

tSchool of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6.
{Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC, Canada V8W 3P6.
E-mail: {mstorey}@csr.uvic.ca



Abstract

Frequently large knowledge bases are represented by graphs. Many visualization tools allow users or
other applications to interact with and adjust the layouts of these graphs. One layoul adjustment problem
18 that of showing more detail without eliding parts of the graph. Approaches based on a fisheye lens
paradigm seem well suited to this task. However, many of these techniques are non-trivial to implement
and their distortion techniques often cannot be altered to suit different graph layouts. When distorting a
graph layout, it is often desirable to preserve various properties of the original graph in an adjusted view.
Pertinent properties may include straighiness of lines, graph topology, orthogonalities and proximities.
However, it is normally not possible to preserve all of the original properties of the graph layout. The type
of layout and its application should be considered when deciding which properties to preserve or distort.
This paper describes a fisheye view algorithm which can be customized to suit various different graph
layouts. In contrast to other methods, the user can select which properties of the original graph layout
to preserve in an adjusted view. The technique is demonstrated through its application to visualizing

structures in large software systems.

Keywords: visualization, nested graphs, fisheye views, node disjointness problem, graph layouts, software

visualization.



1 Introduction

Although the computer screen is relatively small, it is possible to display so much information and detail
that it would completely overwhelm the user. It is not the amount of information displayed that is relevant,
but rather how it is displayed [41]. Frequently large knowledge bases are represented by graphs. Layout
algorithms are often used to present graphs in a more meaningful format. Many visualization tools allow a
user or other applications to interact with and adjust these graph layouts.

One layout adjustment problem is that of showing more detail (perhaps by increasing the size of certain
nodes) without obscuring other portions of the graph. Approaches based on a fisheye lens paradigm seem
well suited to this task. However, many of these techniques are non-trivial to implement and their distortion
techniques often cannot be altered to suit different graph layouts.

Misue et al. describe three properties which should be maintained in adjusted layouts to preserve the
user’s mental map: orthogonal ordering, clusters and topology [19]. Orthogonal ordering of nodes is preserved
if the horizontal and vertical ordering of points are maintained. Clusters are preserved by keeping nodes close
in the distorted view if they were close in the original view. The topology is preserved if the distorted view
of the graph is a homeomorphism of the original view. Other properties which are important to preserve for
some applications include straightness of lines, orthogonality of lines parallel to the z and y axes [20], and
relative sizes of nodes.

It is impossible to allocate more space to a portion of a graph constrained by a fixed screen size without
distorting one or more of the properties described above. The type of layout and its application should be
considered when deciding which properties to preserve or distort. For example, in a simple grid layout it
may be preferable to preserve parallel and orthogonal relationships among nodes. This could be important
for the visualization of large circuit diagrams. For other layouts, such as subway routing maps, the proximity
relationships among nodes may be a more important property to preserve.

This paper presents the Simple Hierarchical Multi-Perspective (SHriMP) layout adjustment algorithm.
This algorithm is suitable for creating fisheye views of nested graphs by uniformly resizing nodes when

requests for more screen space are made. The SHriMP algorithm is flexible in its distortion technique as it



can be altered to suit different graph layouts.

The rest of this paper is structured as follows. Section 2 provides some background on graph drawing.
Methods for drawing and visualizing large graphs are briefly discussed in Section 3. Section 4 describes the
SHriMP layout adjustment algorithm. Section 5 presents three layout strategies used by SHriMP to preserve
important properties of various graph layouts. Section 6 describes the customization of these strategies for
more sophisticated layouts. The SHriMP visualization technique is applied to the task of visualizing software

structures in Section 7. Finally, Section 8 concludes the paper.

2 Graph Drawing

A graph G = (V,E) is a set V of nodes and a set E of arcs where each arc is an unordered pair of nodes
[10]. G is directed when the arc set E is a set of ordered pairs. In this paper the term graph is used to
denote a directed graph. A nested graph, in addition to nodes and arcs, contains composite nodes which are
used to implicitly communicate the hierarchical nature of the graph [11]. In a nested graph a composite arc
abstracts arcs to lower level nodes in the hierarchy. Nested graphs are often called inclusion or compound
graphs. Figure 1 shows how the structure of a tree may be expressed through spatial containment in a nested
graph.

A graph drawingis a visual representation of the geometrical description of a graph [17]. Nodes are usually
drawn as boxes, points or circles. Arcs may be drawn as one or more straight-line segments connecting nodes.
A high number of line segments may give the impression of curved lines connecting nodes. A graph where
arcs are drawn as single line segments are called straight-line drawings. In a polyline drawing, arcs are drawn
with multiple straight line segments where segments connect at bend points. An orthogonal-line drawing
constrains arc segments to be parallel to the horizontal or vertical axes of a grid.

A graph layout specifies coordinates in the plane for each of the nodes and arc bend points [4]. One
example is a grid layout where nodes are positioned on a rectangular grid. A graph drawing algorithm
automatically calculates a layout for an input graph [5]. Graph layouts for nested or compound graphs are

presented in [23, 28, 38]. Graph drawing algorithms use additional information or constraints to compute



a layout to improve the readability of a graph. Graph layout algorithms may be designed to minimize the
number of arc crossings, minimize the total area occupied by the drawing, display symmetries in the graph
or avoid node and arc intersections.

An original graph layout may be adjusted for several reasons: to add or delete nodes in the graph; to
reposition selected nodes so that the graph is more informative; to abstract a subgraph into a composite
node; or to allocate more space to certain structures in the graph.

The following section describes various solutions to the problem of displaying large graphs on a small

computer display.

3 Dealing with Large Graphs

Manipulating large graphs on a small display can be problematic. Various methods have been proposed for
displaying and manipulating large graphs. Some of these techniques rely on multiple views which segment

the graph into subgraphs, while others display the graph in a single view.

3.1 Multiple Views

For a large information space, a representative graph may contain thousands of nodes and arcs. Some tools
partition large graphs into pieces and then display each piece in a separate window [32]. These windows may
be cascaded or arranged so that the user can selectively choose which part of the graph to examine further.
Frequently, an overview or map window is provided to show a less detailed, global view of the entire graph.
A rectangle marker in an overview window is sometimes used to show which area is enlarged in a more
detailed view. For many applications, this multiple view approach is less than satisfactory since the user has
the difficult task of accurately conceptualizing and integrating implicit relationships among the contents of

the individual windows.
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3.2 Single View: Pan+Zoom

Several approaches display large graphs using a single, unified view. In a pan+4zoom view, the user may
pan (drag) the view using scroll bars or by dragging the mouse over the view. Also, the user may explore
the graph in varying detail by zooming in (enlarging) or zooming out (shrinking) the view. Pad++ [1] uses
optimized graphics to achieve smooth panning and zooming, making out-of-view parts of the graph quickly
accessible. One problem with the pan4zoom technique is that a user can only enlarge one area of interest
at a time in a given view. For some applications, it is often necessary to look at several disjoint parts of the

graph in detail at the same time in order to compare them.

3.3 Single View: Context+Detail

Several approaches have been devised to present detailed information while also providing the user with
important contextual cues. The term fisheye view, coined by Furnas [9], is commonly used to describe views
that simultaneously display both context and detail. A fisheye lens has the distorting optical effect that
objects closer to the center of the view appear increasingly larger. Furnas’ original technique applied a
degree of interest function to two measures for each object: its a priori relevance to the user and its distance
from a focal point. When applied, this function produces a set of priority values. Objects with priorities
below a certain threshold are filtered from the view. Furnas applied these ideas to display program source
code and to display calendars.

The Treemap [14], Interactive Graph Layout [12] and Layout Independent Fisheye View [23] systems use
a static, context+detail display technique. There is no stability in the graph layouts generated by these
systems. A reissued layout might change dramatically due to a small change in requested node sizes. For
many applications, such as software visualization, a graph layout is often designed to assist the programmer
in building a mental map of the information structures presented. Drastically changing the whole layout due
to a change of focus would disturb the visualizer’s mental map.

Dynamic context+detail display techniques allow the user to change the area(s) of interest interactively

and incrementally. For example, SemNet was developed for exploring and modifying large information spaces



[7]. SemNet uses 3-D point perspective (closer objects are displayed larger than objects farther away) to
create a fisheye view effect. An advantage of 3-D drawing is that the view can be rotated until arcs of interest
do not overlap. However, these graph displays tend to be cluttered and unfortunately impede understanding
of the structure [27].

Bifocal Displays present objects on the screen using two magnification factors [16]. This algorithm splits
the screen into nine regions, where the central region is the focus, and the surrounding regions are uniformly
scaled to accommodate the larger center panel. Nodes that are orthogonal in the original view remain
orthogonal in the distorted view.

Misue et al. [20] described three interactive methods for visualizing nested graphs: Biform, Fisheye
(FE), and Orthogonal Fisheye (OFE). The Biform technique uniformly demagnifies nodes outside the areas
of focus while preserving orthogonal relationships between nodes. The Biform method uses view areas, where
items inside these areas are uniformly magnified, and items outside are uniformly demagnified. This method
preserves the straightness of lines and the orthogonal ordering of nodes in the distorted view. The Fisheye
Display (FE) method uses an inverse tangent function to distort the view in a fisheye lens manner. This
method does not maintain orthogonal ordering. The Orthogonal Fisheye Display (OFE) method, a variant
of FE, preserves both straightness of lines and orthogonal orderings. The FE and OFE display methods
both tend to distort the graph too much, making the objects near the boundaries appear compressed.

Sarkar and Brown extended Furnas’ technique to create interactive fisheye views of graphs [29]. Points
of greater interest are magnified and points of lesser interest are demagnified by distorting the space around
the focal point. Nodes farther away from the focal point appear increasingly smaller. For many applications,
however, this use of distance to derive interest or importance may not be entirely suitable. Related approaches
include Perspective Wall [18], Document Lens [26], Rubber Sheet [30], Hyperbolic Fisheye Views [15], and
3DPS [3].

The Continuous Zoom algorithm by Dill et al. [6], is suitable for interactively displaying hierarchically-
organized, two-dimensional networks. This approach allows users to view and navigate nested graphs by

expanding and shrinking nodes. The underlying algorithm uniformly resizes nodes to provide space for focal



points and uses a budgeting process to distribute space among the nodes in the network. However, this
algorithm adversely distorts certain layouts, such as spring [8] and tree [25] layouts. The SHriMP fisheye
algorithm, first described in [33], can adjust an existing layout while preserving selected constraints in various
layouts.

The next section describes the SHriMP algorithm.

4 The SHriMP Layout Adjustment Algorithm

The SHriMP layout adjustment algorithm is elegant in its simplicity. Nodes in the graph uniformly give up
screen space to allow a node of interest to grow.

Figure 2 shows an example where one node is enlarged in a grid layout of nine nodes. Figure 2(a) shows
the graph before the node of interest (the center node) is scaled by the desired factor. The node grows
by pushing its neighbor nodes outward as if there were infinite screen space (Fig. 2(b)). The node and its
neighbors are then scaled around the center of the screen so that they fit inside the available space (Fig. 2(c)).

Each neighbor is pushed outward by adding a translation vector [T = T,,T,] to its coordinates, it is
then scaled by a factor s around the center of the screen (zp,y,). The scale factor s is equal to the ratio of
the size of the bounding box divided by the size of the bounding box after applying T. Equations (1) and

(2) show the functions applied to the coordinates (z,y) of the neighbor nodes to determine the new position

(', y):

= rpt+s(e+Te—ap) (1)

Yy = Yptsy+Ty—y) (2)

To shrink a node that has previously been enlarged, the following inverse equations are used:

vz (@ —a)/sta,-Ts (3)

(i‘//—yp)/s‘i‘yp - Ty (4)
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In a nested graph, the node of interest pushes the boundaries of its parent node outward also. The parent
in turn pushes its siblings' out and so on until the root is reached. As a final step, everything is scaled to
fit inside the root. In Figure 3, the node labeled A is enlarged causing its siblings, B and C to be pushed
out. Its parent node, D, also grows in response to A’s request for more space. D in turn pushes its siblings
outward. As a final step, everything is scaled to fit in the root node (H) since H cannot grow any larger due
to limited screen space.

A simple extension allows for multiple focal points of varying scaling factors. To scale multiple nodes,
each node in turn may grow (or shrink) pushing outward (or pulling inward) their neighbors. Finally, nodes
are scaled to fit inside the available space (cf. Fig. 4). This is more efficient since the scaling step does not
need to be repeated for every focal point. In addition, this ensures that the set of multiple focal points can
be scaled uniformly.

This algorithm is simple, fast and effective. When considering only one focal point, the algorithm is
linear with respect to the number of nodes in the graph. When scaling multiple nodes, it is O(kn) where k
equals the number of focal points and n is the total number of nodes in the graph. For most applications, &
will be very small. The next section describes how different translation vectors may be used for repositioning

neighbors when a node is resized.

5 Preserving the Mental Map

When zooming a node in a graph layout it is often desirable to maintain pertinent properties of the layout
such as orthogonality, proximity, straightness of lines and the overall topology of the graph. It is impossible
to preserve all of a graph’s layout properties using a fixed screen size. Depending on the graph layout and
its application, it is often only necessary to preserve some of these properties.

With the SHriMP layout adjustment algorithm, a node grows (or shrinks) by pushing (pulling) its neigh-
bor nodes outward (inward) along vectors. The translation vectors determine how the neighbor nodes are

repositioned when a request for more space is made. This section describes three methods for setting the

INodes which have the same parent in the nested graph are called siblings.



magnitude and direction of a vector.

5.1 Preserving Orthogonality

One layout strategy, called ORTHO, preserves orthogonal relationships among nodes. The graph is divided
into nine partitions by extending the edges of the scaled node. The translation vector for each neighbor node
is calculated according to the partition containing its center. Figure 6 summarizes the translation vectors
for each of the nine partitions. For example, the translation vector for those nodes in the top left partition
is T= [—dy, dy], where d; and dy are the z and y differences between the new size of the scaled node and
its previous size. All neighbor nodes above (below) the scaled node are pushed upward (downward) by the
same amount, thereby maintaining the orthogonal relationships of these nodes with respect to the y axis.
Similarly, nodes to the right (left) are pushed right (left) by the same amount, maintaining the orthogonal
relationships with respect to the z axis.

The following equations show the translation vectors to be applied to a neighbor node B when the node

of interest A is scaled, (z4,¥y,) and (zp, y») are the origins of the nodes A and B respectively:

0 if 2 = 24
To = —d, ifa, >z (5)
dy  ifz. <y
0 if yp = ya
Ty =9 —dy ifya>u (6)
dy  ifya <

In Fig. 5, a simple grid layout of a graph is displayed. Figure 5(a) shows the grid before any nodes have
been scaled. Figure 5(b) demonstrates how ORTHO maintains the grid-like appearance of a graph when a
node is resized. This strategy is similar in result to the Continuous Zoom algorithm [6], the Biform Display

Method [20] and the Bifocal Display [16].
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5.2 Preserving Proximities

Many layout algorithms position nodes in groups or clusters to depict certain relationships in the graph.
For example, a spring layout algorithm positions nodes which are highly connected closer to one another [5].
In interactive systems, where the user is allowed to manually position nodes, the ORTHO strategy would
not be suitable as minor node position adjustments could be badly distorted in the boundaries of the nine
regions surrounding a scaled node. Therefore, a layout strategy which keeps those nodes that are close in
the original view close in the distorted view would be beneficial.

A layout strategy, called PROX1, preserves clusters by constraining each neighbor node to stay on the
line connecting its center to that of the node being resized. When a node is resized, it pushes a neighbor node
outward along this line. Therefore, the direction of each node’s translation vector is equal to the direction
of the line connecting the centers. The magnitude (i) of this vector is equal to the distance that a corner
point of the scaled node moves as it is enlarged.

In Figure 7, the node A is enlarged. d, and d, are the z and y differences between the new size of A and
its previous size. (24, yq) is the center of A, and (x4, yp) is the center of B, a neighbor of A. The direction of
B’s translation vector is equal to the direction of the connecting line, and its magnitude is equal to u as per
Equation (7). Equations (8) and (9) show how to calculate the translation vector T = [T;,T,]. Note that

p 1s constant for all neighbor nodes; and need only be calculated once.

po= A2+ d? (7)
Tp — Lg
T, = p (8)
\/(Ib - xa)z + (yb - ya)2
Yo — Ya
T, = (9)

M o — 2 ¥ W — va)?

This strategy has been applied to the grid in Figure 5(c). This figure demonstrates that this strategy does
not preserve all of the orthogonal relationships of ORTHO, but it does keep those nodes which were close in
the original view, close in the transformed view. However, the screen space is not being used effectively by

this method, valuable space is wasted in the corners of the screen. PROX2, described in the next subsection,
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makes better use of screen space while maintaining similar proximity relations.

5.3 An Alternative Proximity Preservation Strategy

An alternative proximity preserving strategy, PROX2, makes use of the fact that nodes are often drawn as
rectangles.? As in PROX1, the direction of the translation vectors is determined by the relative location
of the sibling node to the node of interest. However, the magnitude (i.e. the amount they are pushed away
from the node of interest) is not the same for all sibling nodes. Instead, a node pushes out sibling nodes
only as much as is necessary to make room for the node of interest to grow. Therefore, the magnitude of the
translation vector is also dependent on the relative location of the sibling node to the node of interest.

For example, in Fig. 8, node A is to be enlarged. The T, component of the translation vector is set to
dy. Since the sibling node is above A, it must be pushed upwards by at least this amount to provide room
for A to grow in that direction. The T, component is calculated by solving for T, in a point-line equation
of the line through (zs, ) and (24, Ya)-

For square nodes, the T, and T, components may be calculated using the following simplified equations.
m 1s equal to the slope of the line connecting the centers of A and B and the negative values are selected for

T, and T, when z; < z, and y, < y, respectively.

0 if [m| = oo

T, - (10)
+min(dg, %l) otherwise
0 if [m| =0

T, = (11)
+ min(dy, |m| * d;) otherwise

Figure 9 shows the benefits of using this approach to enlarge several nodes in a spring layout. Figure 9(a)
shows the original spring layout. In Fig. 9(b), several nodes were enlarged using the ORTHO strategy.

Note that this strategy distorts some of the clusters in the spring layout and destroys the user’s mental map

2The ORTHO and PROX1 strategies can also be applied to circular nodes.

12



in the process. The same nodes are scaled in Fig. 9(c) using the proximity relationships preserving strategy,
PROX2. The general appearance of the spring layout is maintained by retaining the proximity relationships

between nodes in the adjusted view.

5.4 Preserving the Topology of a Graph

The orthogonal and proximity preserving strategies also preserve the topology of the graph nodes. That is,
nodes that do not overlap in the original view, will not overlap in the adjusted view. However, additional
arc intersections may be introduced in an adjusted view. This could be avoided by drawing arcs as curved
line segments instead of straight line segments [2]. However, the extra overhead for translating arc segment
end points would be quite significant.

The next section in this paper describes how the strategies just described may be customized and blended

to preserve important properties of more sophisticated layouts.

6 Hybrid Strategies

To preserve the mental map of more sophisticated layouts other considerations may need to be taken into
account. By developing hybrid strategies based on the ORTHO and PROX strategies, it is possible to

preserve the layouts of more sophisticated graph layouts. Several examples are described next.

6.1 Tree Layouts

In a tree layout of an acyclic graph it is desirable to preserve orthogonal relationships between levels in the
hierarchy while repositioning a node’s descendants so that they remain close to one another. This can be
achieved by applying a variation of the orthogonal preserving strategy, ORTHO. If the T, component of
the translation vector for descendants of the node to be scaled is set to 0, the descendants’ relative horizontal

positions do not change. The following equations describe the translation vector for this constrained variation
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of the ORTHO strategy:

0 if 2, = x4 or if B 1s a descendant of A

T, = —d, 1if 2, > xp and B is not a descendant of A (12)
dy if 2, < xp and B is not a descendant of A
0 ifyp = ya

T, = —dy ify,>m (13)
dy if yo < o

Figure 10 illustrates the advantage of applying this hybrid strategy to a tree graph. Figure 10(a) shows
the tree layout before any nodes are scaled. In Fig. 10(b) two nodes are scaled using the orthogonality
preservation layout strategy. Note how the children of these scaled nodes are spread apart. The same nodes
are scaled using the proximity preservation layout strategy in Fig. 10(c). Here the layout of the node’s
children and the rest of the graph are distorted. The hybrid strategy described above is applied in Fig. 10(d)
which preserves orthogonal relationships between levels in the tree, but keeps children close to their parent

nodes. This hybrid strategy more effectively preserves the mental map of a tree layout.

6.2 Directed Acyclic Graph Layouts

The Sugiyama algorithm produces a nice layout for directed acyclic graphs [39]. For Sugiyama layouts it
is desirable to preserve orthogonal relationships between levels in the hierarchy when adjusting the layout.
However, since nodes may have more than one ancestor in the hierarchy, the strategy just described for tree
layouts is not suitable. A better approach is to maintain the relative spacing between nodes in the horizontal
direction.

A hybrid of ORTHO and PROXZ2 can be used to preserve both of these properties for Sugiyama layouts.
The orthogonality preservation strategy is used to preserve the parallel relationships between levels in the
tree, and the proximity preserving strategy is applied to nodes on the same level.

For this hybrid strategy, the equation for the T, component is calculated using Equation 10 from PROX2

14



and the equation for the T, component is calculated using Equation 6 from ORTHO. Figure 11 demonstrates

the benefits of using this approach for scaling nodes in a Sugiyama layout.

6.3 Nested Graph Layouts

In a nested graph layout, different layout algorithms may be used to draw subgraphs for different layers in
the hierarchy. For example, in Fig. 12, the top level in the hierarchy was laid out in a grid. Tree, spring and
grid layouts were used to draw subgraphs in other layers of the hierarchy. When scaling a node in this graph
the mental map of each of these layouts can be preserved by applying appropriate translation vectors to the
nodes. Each node is repositioned according to its original layout. When a node is scaled, it pushes (pulls)
its siblings outward (inward) using a strategy to preserve the layout with which they were drawn. When
this change propagates to a parent, the parent pushes (pulls) its siblings outward (inward) using a strategy
which preserves the layout for that layer of the hierarchy. Children nodes simply move according to their

parent, thus preserving the layouts in lower layers.

6.4 Orthogonal Line Drawings

An orthogonal line drawing constrains arc segments to be parallel to the horizontal or vertical axes of a grid
[4]. The ORTHO strategy may be extended to preserve the mental map of orthogonal line drawings. Edge
bend points are also translated and scaled when a node is enlarged. Figure 13(a) shows an orthogonal line
drawing with edge bend points drawn as small black circles. A single node is selected in Fig. 13(b) so that it
may be enlarged. This node pushes out its neighbors and the edge bend points. Finally, the entire drawing

is scaled to fit the available space (cf. Fig. 13(c)).

6.5 Node Disjointness

The SHriMP layout algorithm can also be used to make adjustments to a graph with overlapping nodes.
The goal is to redraw the graph so that node images will be disjoint. This task is referred to as the node

disjointness problem [19] or cluster busting [17].



According to Misue et al. [19], an algorithm which addresses this problem should satisfy three require-

ments:
1. nodes in the new drawing should be disjoint;
2. the new drawing should be compact and should fit in the available space; and
3. the user’s mental map (influenced by the original layout) should be preserved.

The SHriMP layout adjustment algorithm may be applied as follows. An initial pass through the set of
graph nodes should be made to determine which nodes (if any) overlap. Sorting the nodes first will improve
the efficiency of this step. If two nodes overlap, one of these nodes should push out the rest of the graph by
the amount of the overlap so that they no longer overlap (Requirement 1). Finally, if it is necessary, the graph
is scaled to fit in the available screen space (Requirement 2). Appropriate selection of the various layout
preserving strategies, will help to maintain the user’s mental map (Requirement 3). Figure 14 demonstrates

how the SHriMP algorithm is used to reposition nodes in a graph with overlapping nodes.

7 Visualizing Software Structures using SHriMP Views

SHriMP views have been added to the Rigi system for documenting and manipulating structures of large
software systems [37]. The Rigi reverse engineering system is designed to analyze, summarize and document
the structure of large software systems [44]. The Rigi system is centered around a language-independent
graph editor for presenting software artifacts. The first phase of reverse engineering a subject software
system 1s fully automatic and involves parsing the software and storing the extracted artifacts. This first
phase results in a flat resource-flow graph which can be manipulated using the Rigi graph editor.

Various visualization tools are available in the Rigi editor to aid the reverse engineer in discovering and
documenting system design information. Some of these tools include selection algorithms, filtering (elision)
algorithms, software metrics, and graph layout algorithms [22, 40].

For large software systems, understanding the structural aspects of a system’s architecture is initially

more important than understanding any single component [44]. The SHriMP visualization technique has
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been integrated in the Rigi system for exploring legacy systems. SHriMP views are particularly well suited to
showing different levels of abstraction in a system’s architecture concurrently. Nodes are used to represent
artifacts in the software, such as functions or data variables. Arcs represent dependencies among these
artifacts, such as call dependencies. Composite nodes correspond to subsystems in the software. The
nesting feature of nodes communicates the hierarchical structure of the software (e.g. subsystem or class
hierarchies). The SHriMP layout adjustment algorithm provides the ability to browse pertinent information
in large software systems. By zooming different areas in a large graph, a software engineer can quickly
identify important features such as highly connected nodes and candidate subsystems.

Reverse engineering a system involves information extraction and information abstraction [21]. One
objective of a reverse engineer is to obtain a mental model of the structure of a subject software system
and to communicate this model effectively. A reverse engineer uses visualization techniques to facilitate the
identification of candidate subsystems and to assist in the visualization of structures and patterns in the
graph. The application of graph layout algorithms play a key role in communicating the reverse engineer’s
mental model, and in the identification of structures and patterns in the software.

Figure 15(a) shows the result of applying a spring layout algorithm to the graph representation of the
SQL/DS software [44]. This layout algorithm assisted in the identification of several candidates for sub-
systems, by clustering groups of highly connected nodes around the fringe of the graph. In Figure 15(b),
the user has selected and enlarged one of these clusters, in order to see more detail. By using the SHriMP
layout adjustment algorithm which preserves proximity relationships, this structure was emphasized without
adversely affecting the general layout of the graph.

In Rigi, tree layout algorithms are commonly used for visualizing call graphs, data dependency trees and
other hierarchies. For example, Fig. 16 shows a call dependency tree routed at the main function in a small C
program. This program implements a list data structure. One of these nodes, mylistprint has been expanded
by the SHriMP layout adjustment algorithm using the hybrid layout strategy suitable for tree layouts. By
zooming nodes in this fashion, software engineers can read the source code of the mylistprint function and at

the same time maintain their mental map of the location of this function in the call dependency tree.
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Rigi is end-user programmable [40] through the RCL (Rigi Command Language) which is based on the
Tcl/Tk language [24]. This feature is very powerful and allows for significant experimentation with different
visualization approaches in Rigi. The first implementation of SHriMP views was also implemented in the
Tcl/Tk language and was therefore easily integrated in the Rigi system. Since SHriMP (through Rigi) is
end-user programmable, the layout strategy can be dynamically changed for one or more nodes. The user
can experiment with a variety of hybrid strategies based on the graph layout hierarchy. This may be done
by writing a series of RCL scripts and invoking these scripts dynamically through the RCL interpreter in
Rigi.

Although the SHriMP layout adjustment algorithm is linear for a small number of focal points, scaling
many graphical nodes (which may have source code displayed inside them) can be quite slow in Tcl/Tk. A
more recent version of SHriMP [35] uses Pad++ [1], a graphics extension for Tcl/Tk. Pad++ is a substrate
for building multiscale, dynamic user interfaces. It is optimized for efficiently displaying large numbers
of objects and smoothly animating the motions of panning and zooming on standard PC or workstation
hardware.

In this newer prototype of SHriMP, the nested graph views and fisheye-view algorithm are implemented
in Tcl/Tk using the Pad++ widgets. Since Pad++ supports HTML items in its canvas, we used this feature
to display HTML’ized source code inside the nodes, as opposed to displaying ordinary text. This latest

version is currently being evaluated through user testing [36].

8 Conclusions

This paper describes the SHriMP layout adjustment algorithm. This algorithm is suitable for uniformly
resizing nodes when requests for more screen space are made. It preserves straightness of lines and the graph
topology of nodes in adjusted views. Moreover, the SHriMP algorithm is flexible in its distortion technique
and can be customized to suit various graph layouts. Several variants were described for preserving orthogonal
and proximity relationships. Hybrid strategies were also shown to be feasible, and are useful when trying

to preserve the mental map of more sophisticated layouts. The effects of the different layout adjustment
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strategies on various graph layouts are summarized in Fig. 17. The SHriMP algorithm can also be applied
to the node disjointness problem.

This technique, due to its simplicity, can be easily integrated with existing graph drawing tools. This
has been demonstrated through its integration with the Rigi system, where it was used for creating fisheye
views of nested graphs representing software systems. The SHriMP algorithm is also currently being used
in medical image analysis for viewing and analyzing large sets of medical images on a computer screen [43].

Graphical fisheye views have become increasingly popular in recent years. It is generally accepted by
many in the visualization community that fisheye views are a viable approach for presenting large amounts
of information on a small screen. However, there is little empirical evidence that clearly indicates their
value. There has been a lack of evaluation in this area (notable exceptions are [7, 9, 13, 16, 31, 42]). We
have compared SHriMP views to other visualization methods, such as a multiple window approach and
pan+zoom, in two user studies [34, 36]. Initial observations indicate that fisheye views may be useful in
certain scenarios, but further studies are needed to evaluate the benefits of the various layout strategies and
to determine if fisheye views are a useful medium for visualizing large software programs.
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Figure 1: (a) A tree view of a hierarchy. (b) A nested graph view of the same hierarchy with composite

nodes A, B, and C.



Figure 2: (a) The graph before any scaling is done. (b) The node of interest (center node) grows by the
desired scale factor and pushes its neighbors outward. (c) Finally, the node and its neighbors are scaled to
fit inside the parent. This last step is the only step visible to the user of SHriMP.
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Figure 3: The node A is enlarged. This change is propagated from child to parent. Because H is fixed in
size, its descendants are scaled to fit inside H. Dotted lines denote the new positions of the nodes.
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Figure 4: (a) Grid before any scaling is done; two nodes are selected to be enlarged. (b) The first node
pushes the other nodes away to provide room for it to grow. (c) Similarly, the second node pushes away
nodes to allow it to grow. (d) Finally, everything is scaled to fit in the available space.
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Figure 5: (a) Grid before any scaling is done. (b) The center node is scaled using a layout strategy which
preserves orthogonality in the graph. (c) and (d) The center node is scaled using layout strategies which are
more suited to preserving proximities in the graph.
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Figure 6: In the ORTHO layout strategy, the translation vector for each neighbor node is determined by the
partition containing its center.
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direction

Figure 7: Sibling node, B, is pushed outward along the line connecting its center and the center of A, the
node being scaled.
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Figure 8: The node, B, is pushed along the vector between its center and that of A, the node being scaled.
The distance it is pushed along this vector is determined by the displacement of the intersecting node’s edge
as it moved along the vector.
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Figure 9: (a) A spring layout of a graph before any nodes are scaled. (b) Several nodes are enlarged
using ORTHO, which preserves orthogonal relationships. Note how some of the clusters created by the
spring layout are distorted. (c) The same nodes are scaled using the proximity preservation layout strategy,
PROX2. The clusters are better preserved using this strategy.
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Figure 10: (a) A tree layout before any scaling is done. (b) Two nodes are scaled using the orthogonality
preservation layout strategy. (c) The same two nodes are scaled using the proximity preservation layout
strategy. (d) Here a hybrid strategy based on ORTHO is used to preserve parallel relationships between
levels in the tree, and keep siblings close to one another.
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Figure 11: (a) A Sugiyama layout. (b) A node is scaled using the acyclic tree layout preservation strategy,
causing the layout of children with more than one ancestor to be badly distorted. (c¢) Here, the node is scaled
using a hybrid strategy which preserves orthogonal relationships between levels in the tree and proximity
relationships between nodes on a single level.
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Figure 12: A Nested Graph Layout
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Figure 13: Extending the ORTHO strategy to preserve the mental map of an orthogonal line drawing.

37




GlobalVars GlobalVvars Globalvars

NN .

Figure 14: (a) A grid layout. (b) Here the user has manually repositioned the nodes in a more meaningful
layout, resulting in overlapped nodes. (c¢) The user runs the node disjointness feature (using a strategy to
preserve proximity relationships between nodes) so that nodes will not overlap.
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Figure 15: (a) The spring layout algorithm has been applied to the SQL/DS software system. This algorithm
helped to expose clusters of nodes on the fringe of the graph, which are candidates for subsystems. (b) One
of the node clusters is enlarged, so that it can be examined in more detail. By enlarging these nodes, the
user was able to read the node labels on the screen and was able to determine that all of the node labels

were prefixed with the same alphanumeric string (a programming convention).
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Figure 16: Browsing software source code using SHriMP Views
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Figure 17: This figure summarizes how different strategies distort or preserve the mental map of various

graph layouts.
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