
The Parameterized Complexity
of Sequence Alignment and Consensus

(Extended Abstract)∗

Hans Bodlaender † Rodney G. Downey ‡ Michael R. Fellows §

H. Todd Wareham ¶

July 7, 2010

Abstract

The Longest common subsequence problem is examined from the point of view
of parameterized computational complexity. There are several ways in which param-
eters enter the problem: the number of sequences to be analyzed, the length of the
common subsequence, and the size of the alphabet. Lower bounds on the complexity
of this basic problem imply lower bounds on more general sequence alignment and
consensus problems. At issue in the theory of parameterized complexity is whether a
problem can be solved in time O(nα) for each fixed parameter value k, where α is a
constant independent of k (termed fixed-parameter tractability). It can be argued that
this is the appropriate asymptotic model of feasible computability for problems for
which a small range of parameter values cover important applications — a situation
which certainly holds for many problems in sequence analysis. Our main results show
that: (1) The Longest Common Subsequence (LCS) parameterized by the number
of sequences to be analyzed is hard for W [t] for all t. (2) The LCS problem problem,
parameterized by the length of the common subsequence, belongs to W [P] and is hard
for W [2]. (3) The LCS problem parameterized both by the number of sequences and
the length of the common subsequence, is complete for W [1]. All of the above results

∗to appear, Combinatorial Pattern Matching, Fifth Annual Conference, Asilomar, CA, June 1994.
†Computer Science Department, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the Netherlands,

hansb@cs.ruu.nl
‡Mathematics Department, Victoria University, P.O. Box 600, Wellington, New Zealand,

downey@math.vuw.ac.nz
§Computer Science Department, University of Victoria, Victoria, British Columbia V8W 3P6, Canada,

mfellows@csr.uvic.ca, contact author
¶Computer Science Department, Memorial University of Newfoundland, St. John’s, Newfoundland A1C

5S7, Canada, harold@odie.cs.mun.ca

1

are for unrestricted alphabet sizes. For alphabets of a fixed size, problems (2) and (3)
are fixed-parameter tractable. We conjecture that (1) remains hard.

1 Introduction

The computational problem of finding the longest common subsequence of a set of k strings
(the LCS problem) has been studied extensively over the last twenty years (see [Hir83,IF92]
and references). This problem has many applications. When k = 2, the longest common
subsequence is a measure of the similarity of two strings and is thus useful in in molecular
biology, pattern recognition, and text compression [San72,LF78,Mai78]. The version of LCS
in which the the number of strings is unrestricted is also useful in text compression [Mai78],
and is a special case of the multiple sequence alignment and consensus subsequence discovery
problems in molecular biology [Pev92,DM93a,DM93b].

To date, most research has focused on deriving efficient algorithms for the LCS prob-
lem when k = 2 (see [Hir83,IF92] and references). Most of these algorithms are based on
the dynamic programming approach [PM92], and require quadratic time. Though the k-
unrestricted LCS problem is NP-complete [Mai78], certain of the algorithms for the k = 2
case have been extended to yield algorithms that require O(n(k−1)) time and space, where
n is the length of the longest of the k strings (see [IF92] and references; see also [Bae91]).
Though such algorithms are polynomial-time for each fixed k, it would be interesting to
know whether “truly” polynomial-time algorithms exist for each fixed k, i.e. does there an
exist an algorithm for the k-fixed LCS problem with running time O(f(k)nc), where f() is
some function and c is a constant independent of k?

In this paper, we analyze the Longest common subsequence problem from the point
of view of parameterized complexity theory introduced in [DF92]. The parameterizations of
the problem that we consider are defined as follows.

Longest common subsequence (LCS-1, LCS-2 and LCS-3)
Instance: A set of k strings X1, ..., Xk over an alphabet Σ, and a positive integer m.
Parameter 1: k (We refer to this problem as LCS-1.)
Parameter 2: m (We refer to this problem as LCS-2.)
Parameter 3: (k,m) (We refer to this problem as LCS-3.)
Question: Is there a string X ∈ Σ∗ of length at least m that is a subsequence of Xi for
i = 1, ..., k ?

In the §2 we give some background on parameterized complexity theory. In §3 we detail
the proof that LCS-3 is complete for W[1]. This implies that LCS-1 and LCS-2 are W[1]-
hard, results which can be improved by more elaborate arguments to show that LCS-1 is
hard for W [t] for all t, and that LCS-2 is hard for W [2]. Concretely, none of these three
parameterized versions of LCS is thus fixed-parameter tractable unless the well-known (and
apparently resistant) k-Clique problem (and a host of others) are fixed-parameter tractable.

2

Alphabet Size |Σ|
Problem Fixed Unbounded Fixed

LCS-1 k W[t]-hard, t ≥ 1 ?
LCS-2 m W[2]-hard FPT
LCS-3 k,m W[1]-complete FPT

Table 1: The Parameterized Complexity of the LCS Problem.

Our results are summarized in the following table.

2 Parameterized Computational Complexity

The theory of parameterized compuational complexity is motivated by the observation that
many NP -complete problems take as input two objects, for example, perhaps a graph G and
and integer k. In some cases, e.g., k-Vertex cover and k-Min cut linear arrange-
ment, the problem can be solved in linear time for every fixed k. For contrasting examples
such as k-Clique, k-Dominating set and k-Bandwidth, the best known algorithms are
based essentially on brute force, and require time Ω(nk). If P = NP then all of these prob-
lems are fixed-parameter tractable. The theory of parameterized computational complexity
explores the apparent qualitative difference between these two classes of problems, and is
particularly relevant to problems where a small range of parameter values covers important
applications. This is certainly the case for many problems in computational biology. For
these the theory offers a more sensitive view of tractability vs. (apparent) intractability
than the theory of NP-completeness and may be a more appropriate complexity-analytic
tool. The framework of the theory is sketched as follows.

Parameterized Problems, Fixed-Parameter Tractability and Reductions A pa-
rameterized problem is a set L ⊆ Σ∗ × Σ∗ where Σ is a fixed alphabet. For convenience,
we consider that a parameterized problem L is a subset of L ⊆ Σ∗ × N . For a parameter-
ized problem L and k ∈ N we write Lk to denote the associated fixed-parameter problem
Lk = {x|(x, k) ∈ L}. We say that a parameterized problem L is (uniformly) fixed-parameter
tractable if there is a constant α and an algorithm Φ such that Φ decides if (x, k) ∈ L in
time f(k)|x|α where f : N → N is an arbitrary function. Where A and B are parameterized
problems, we say that A is (uniformly many:1) reducible to B if there is an algorithm Φ which
transforms (x, k) into (x′, g(k)) in time f(k)|x|α, where f, g : N → N are arbitrary functions
and α is a constant independent of k, so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

Complexity Classes The classes of the W hierarchy are based intuitively on the com-
plexity of the circuits required to check solutions. A Boolean circuit defined to be of mixed
type if it consists of circuits having gates of the following kinds: (1) Small gates: not gates,
and gates and or gates with bounded fan-in. (2) Large gates: and gates and or gates with

3

unrestricted fan-in. The depth of a circuit C is defined to be the maximum number of gates
(small or large) on an input-output path in C. The weft of a circuit C is the maximum num-
ber of large gates on an input-output path in C. We say that a family of decision circuits F
has bounded depth if there is a constant h such that every circuit in the family F has depth
at most h. We say that F has bounded weft if there is constant t such that every circuit in
the family F has weft at most t. The weight of a boolean vector x is the number of 1’s in
the vector.

Definition. Let F be a family of decision circuits. We allow that F mayPha2 QQJvpn—Pdifferent
circuits with a given number of inputs. To F we associate the parameterized circuit problem
LF = {(C, k) : C accepts an input vector of weight k}. A parameterized problem L belongs
to W [t] if L reduces to the parameterized circuit problem LF (t,h) for the family F (t, h) of
mixed type decision circuits of weft at most t, and depth at most h, for some constant h. A
parameterized problem L belongs to W [P] if L reduces to the circuit problem LF , where F
is the set of all circuits (no restrictions). We designate the class of fixed-parameter tractable
problems FPT .

FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P]

All of the following problems are now known to be complete for W [1] : Square tiling,
Independent set, Clique, and Bounded post correspondence problem, k-Step
derivation for context-sensitive grammars, Vapnik-Chervonenkis dimension,
k-Step halting problem for nondeterministic Turing machines [CCDF93, DEF93,
DFKHW93]. Thus, any one of these problems is fixed-parameter tractable if and only if all
of the others are.

3 The Reductions

In general, issues in parameterized complexity tend to be more difficult to resolve than cor-
responding issues in traditional (e.g. NP-completeness) complexity analysis. The reductions
by which our main theorems are established are quite complicated and can only be sketched
in this abstract.

Theorem 1. LCS-3 is complete for W [1].

Proof Sketch. Membership in W [1] can be seen by a reduction to Weighted cnf
satisfiability for expressions having bounded clause size. The idea is to use a truth
assignment of weight k2 to indicate the k positions in each of the k strings of an instance of
LCS-3 that yield a common subsequence of length k. Details are omitted for this abstract.

To show W [1]-hardness we reduce from k-Clique. Let G = (V,E) be a graph for
which we wish to determine whether G has a k-clique. We show how to construct a family
FG of k′ = f(k) sequences over an alphabet Σ that have a common subsequence of length
k′′ = g(k) if and only G contains a k-clique. Assume for convenience that the vertex set of

4

G is V = {1, . . . , n}.

The Alphabet We first describe the alphabet Σ = Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4. We refer to these
as vertex symbols (Σ1), edge symbols (Σ2), vertex position symbols (Σ3), and edge position
symbols (Σ4).

Σ1 = {α[p, q, r] : 1 ≤ p ≤ k, 0 ≤ q ≤ 1, 1 ≤ r ≤ n}

Σ2 = {β[i, j, q, u, v] : 1 ≤ i < j ≤ k, 0 ≤ q ≤ 1, 1 ≤ u < v ≤ n, uv ∈ E}

Σ3 = {γ[p, q, b] : 1 ≤ p ≤ k, 0 ≤ q ≤ 1, 0 ≤ b ≤ 1}

Σ4 = {δ[i, j, q, b] : 1 ≤ i < j ≤ k, 0 ≤ q ≤ 1, 0 ≤ b ≤ 1}

We will use the following shorthand notation to refer to various subsets of Σ. The
notation indicates which indices are held fixed to some value, with the symbol * indicating
that the index should vary over its range of definition in building the set. For example,
Σ1[p, ∗, r] = {α[p, q, r] : 0 ≤ q ≤ 1} is the set of two elements with the first and third indices
fixed at p and r, respectively.

The Target Parameters There are f1(k) = 2k + k(k − 1) = k2 + k position symbols (in
Σ3 and Σ4). We take w = f1(k)2 + 1, k′ = f1(k) + 2, and k′′ = (w + 1)f1(k).

Symbol Subsets and Operations It is convenient to introduce a linear ordering on Σ
that corresponds to the “natural” order in which the various symbols occur, as illustrated
by the example above. We can achieve this by defining a “weight” on the symbols of Σ and
then ordering the symbols by weight.

Let N = 2kn (a value conveniently larger than k and n). Define the weight ||a|| of a
symbol a ∈ Σ by

||a|| =

pN6 + qN5 + r if a = α[p, q, r] ∈ Σ1

q′iN6 + qjN6 + q′N4 + q′jN3 + qiN3 + uN + v if a = β[i, j, q, u, v] ∈ Σ2

pN6 + qN5 + bN2 if a = γ[p, q, b] ∈ Σ3

q′iN6 + qjN6 + q′N4 + q′jN3 + qiN3 + bN2 if a = δ[i, j, q, b] ∈ Σ4

where q′ = (q − 1)2.

Define a linear order on Σ by a < b if and only if ||a|| < ||b||. The reader can verify that,
assuming a < b < c, the symbols of the example sequence σ(a, b, c) described above occur in
ascending order.

For a, b ∈ Σ, a < b, we define the segment Σ(a, b) to be Σ(a, b) = {e ∈ Σ : a ≤ e ≤ b},
and we define similarly the segments Σi(a, b).

If Γ is a finite set of symbols, then it is easy to see that there is a “universal” string
(mΓ) ∈ Γ∗ of length m|Γ| that contains as a subsequence every string of length at most m
ove9 .avma, for example, by running through the symbols in Γ m times. We will use the
notation (mΓ) to refer to any choice of such a string. Where m is unimportant except that

5

it be “large enough” (with the understanding that this means also “not too large”) we may
write (∗Γ) for convenience.

If Γ ⊆ Σ, let (↑ Γ) be the string of length |Γ| which consists of one occurence of each
symbol in Γ in ascending order, and let (↓ Γ) be the string of length |Γ| which consists of
one occurence of each symbol in Γ in descending order.

String Gadgets We next describe some “high level” component subsequences for the
construction. In the following let l denote either ↑ or ↓. Product notation is interpreted as
refering to concatenation.

Vertex and Edge Selection Gadgets

〈l vertex p〉 = γ[p, 0, 0]w(l Σ1[p, 0, ∗])γ[p, 0, 1]w

〈l vertex p echo〉 = γ[p, 1, 0]w(l Σ1[p, 1, ∗])γ[p, 1, 1]w

〈l edge (i, j)〉 = δ[i, j, 0, 0]w(l Σ2[i, j, 0, ∗, ∗])δ[i, j, 0, 1]w

〈l edge (i, j) echo〉 = δ[i, j, 1, 0]w(l Σ2[i, j, 1, ∗, ∗])δ[i, j, 1, 1]w

〈l edge (i, j) from u〉 = δ[i, j, 0, 0]w(l Σ2[i, j, 0, u, ∗])δ[i, j, 0, 1]w

〈l edge (i, j) to v〉 = δ[i, j, 1, 0]w(l Σ2[i, j, 1, ∗, v])δ[i, j, 1, 1]w

Control and Selection Assemblies

〈l control p〉 = 〈l vertex p〉

p−1∏
s=1

〈l edge (s, p) echo〉

·

 k∏
s=p+1

〈l edge (p, s)〉

 〈l vertex p echo〉

〈↑ choice p〉 =
n∏
x=1

γ[p, 0, 0]wα[p, 0, x]γ[p, 0, 1]w
p−1∏
t=1

〈↑ edge (t, p) to x〉

·
k∏

t=p+1

〈↑ edge (p, t) from x〉γ[p, 1, 0]wα[p, 1, x]γ[p, 1, 1]w

〈↓ choice p〉 =
down to 1∏

x=n

γ[p, 0, 0]wα[p, 0, x]γ[p, 0, 1]w
p−1∏
t=1

〈↓ edge (t, p) to x〉

·
k∏

t=p+1

〈↓ edge (p, t) from x〉γ[p, 1, 0]wα[p, 1, x]γ[p, 1, 1]w

6

Edge Symbol Pairing Gadget

〈edge (i, j) from u to v〉 = β[i, j, 0, u, v] (∗Σ(δ[i, j, 0, 1], δ[i, j, 1, 0])) β[i, j, 1, u, v]

The Reduction We may now describe the reduction. The instance of LCS-3 consists of
strings which we may consider as belonging to three subsets: Control, Selection and Check.
The two strings in the Control set are

X1 =
k∏
t=1

〈 ↑ control t〉

X2 =
k∏
t=1

〈↓ control t〉

The 2k strings in the Selection set are, for p = 1, ..., k

Yp =

p−1∏
t=1

〈↑ control t〉

 〈↑ choice p〉

 k∏
t=p+1

〈↑ control t〉

Y ′p =

p−1∏
t=1

〈↓ control t〉

 〈↓ choice p〉

 k∏
t=p+1

〈↑ control t〉

The 2

(
k
2

)
= k(k − 1) strings in the Check set are, for 1 ≤ i < j ≤ k

Zi,j =

(
i−1∏
t=1

〈↑ control t〉
)
〈↑ vertex i〉

(
i−1∏
s=1

〈↑ edge (s, i) echo〉
) j−1∏

s=i+1

〈↑ edge (i, s)〉

· δ[i, j, 0, 0]w

lex↑∏
1 ≤ u < v ≤ n
uv ∈ E

〈edge (i, j) from u to v〉

· δ[i, j, 1, 1]w

 j−1∏
s=i+1

〈↑ edge (s, j) echo〉

 k∏
s=j+1

〈↑ edge (j, s)〉

· 〈↑ vertex j echo〉〈

k∏
t=j+1

〈↑ control t〉

Z ′i,j =

(
i−1∏
t=1

〈↓ control t〉
)
〈↓ vertex i〉

(
i−1∏
s=1

〈↓ edge (s, i) echo〉
) j−1∏

s=i+1

〈↓ edge (i, s)〉

· δ[i, j, 0, 0]w

lex↓∏
1 ≤ u < v ≤ n
uv ∈ E

〈edge (i, j) from u to v〉

7

· δ[i, j, 1, 1]w

 j−1∏
s=i+1

〈↓ edge (s, j) echo〉

 k∏
s=j+1

〈↓ edge (j, s)〉

· 〈↓ vertex j echo〉〈

k∏
t=j+1

〈↓ control t〉

We comment that the key difference between Zi,j and Z ′i,j is that in Zi,j the edge sym-
bol pairing gadgets occur in increasing lexicographic order, and in Z ′i,j the gadgets are in
decreasing lexicographic order.

Proof of Correctness Where S1 and S2 are strings of symbols, let l(S1, S2) denote the
maximum length of a common subsequence of S1 and S2. In the Control Strings X1 and
X2 we distinguish certain substrings that we term positions. Note that both of these strings
are formed as the concatenation of four different kinds of substrings: 〈vertex〉, 〈vertex echo〉,
〈edge〉 and 〈edge echo〉, and that each of these “vertex and edge selection” substrings begins
and ends with a matched pair of substrings of repeated symbols from Σ3 (in the case of
vertex selection), or from Σ4 (in the case of edge selection). These matched pairs of position
symbol substrings determine a position — note that these position symbol substrings (and
therefore the positions defined) occur in the same order in X1 and X2. Thus there are
k(2 + k − 1) = k2 + k positions.

Between a matched pair of position symbol substrings in X1 there is a set of symbols
in increasing order that we will term a set of (vertex or edge) stairs, and in X2 in the
corresponding position there occurs the same set of symbols in decreasing order. The proof
of the following Claim 1 is trivial, and the proof of Claim 2 is omitted for reasons of space.

Claim 1. Suppose Σ is a linearly ordered finite alphabet, and that S ↑ is the string consisting
of the symbols of Σ in increasing order, and that S ↓ is the symbols of Σ in decreasing order.
Then l(S ↑, S ↓) = 1. 2

Claim 2. A common subsequence C of the control sequences X1 and X2 of maximum
length l satisfies the conditions: (1) l = k′′, and (2) C consists of the position symbol
substrings (common to X1 and X2) together with one symbol in each position defined by
these substrings.

By Claim 2, if C is a common vertex of X1 and X2 of length k′′, we may refer unam-
biguously to the vertices and edges represented in the various positions of C. In particular,
note that these positions occur in k vertex units, each of which consists of an initial vertex
position, followed by k−1 edge and edge echo positions and concluding with a terminal vertex
echo position. If uv is an edge of the graph with u < v, then we refer to u as the initial
vertex and to v as the terminal vertex of the edge. The following can be proved.

Claim 3. If C is a subsequence of length k′′ common to the Control and Selection sets,
then in each vertex unit: (1) the vertex u represented in the initial vertex position is also
represented in the terminal vertex echo position, (2) each edge represented in an edge echo

8

position has terminal vertex u, and (3) each edge represented in an edge position has initial
vertex u.

The length w substrings of the position symbols δ[i, j, 0, 0] and δ[i, j, 0, 1] in C define
the (i, j)th edge position in the ith vertex unit and the length w substrings of the position
symbols δ[i, j, 1, 0] and δ[i, j, 1, 1] in C define the (i, j)th edge echo position in the jth vertex
unit. We term these a corresponding pair of edge and edge echo positions.

Claim 4. If C is a subsequence of length k′′ common to the Control, Selection and Check
sets, then for each corresponding pair of an edge position and an edge echo position, the
same edge must be represented in the two positions.

Proof. Suppose C is a subsequence of length k′′ common to the Control and Selection
sets. We argue that if C is also common to Zi,j and Z ′i,j then Lemma holds for the (i, j)th

corresponding pair of positions. Let Ci,j and C ′i,j denote specific subsequences of Zi,j and
Z ′i,j isomorphic to C.

It is convenient to consider Zi,j (and similarly Z ′i,j) under the factorization Zi,j =
Zi,j(1)Zi,j(2)Zi,j(3) where

Zi,j(2) =
lex↑∏

1 ≤ u < v ≤ n
uv ∈ E

〈edge (i, j) from u to v〉

and where Zi,j(1) and Zi,j(3) are the appropriately defined prefix and suffix (respectively)
of Zi,j.

Since none of the position symbols in Zi,j(1) or Zi,j(3) occur in Zi,j(2), all of the position
symbols in Zi,j(1) and Zi,j(3) must belong to Ci,j. Similarly, all of the position symbols in
Z ′i,j(1) and Z ′i,j(3) must belong to C ′i,j. This implies, by Lemma 2, that Ci,j ∪ Zi,j(2) =
C ′i,j ∪ Z ′i,j(2) begins with a symbol β[i, j, 0, u, v] and ends with a symbol β[i, j, 0, x, y]. We
argue that necessarily u = x and v = y.

¿From the fact that β[i, j, 1, x, y] follows β[i, j, 0, u, v] in Zi,j(2), and from the construc-
tion of the latter in increasing lexicographic order, we may deduce that (u, v) precedes (x, y)
lexicographically. Similarly, since Z ′i,j(2) is constructed in decreasing lexicographic order, we
obtain that (x, y) precedes (u, v), and therefore (x, y) = (u, v). 2

We now argue the correctness of the reduction as follows. If G has a k-clique, then
it is easily seen that there is a common subsequence of length k′′ in which the k vertex
units represent the vertices of the clique, and the edge and edge echo positions within each
vertex unit represent the edges incident on the represented vertex of the unit in increasing
lexicographic order. (Each edge is thus represented twice, in the vertex units corresponding
to its endpoints, first in an edge position in the initial vertex unit, and second in an edge
echo position in the terminal vertex unit.)

Conversely, suppose there is a common subsequence C of length k′′. By Claims 2 and

9

3, C represents a sequence of k vertices of G. That these must be a clique in G follows
from Claim 4 and the definition of the “edge from” and “edge to” gadgets, which restrict
the edges represented in a vertex unit to those present in the graph and for which the vertex
is, respectively, initial or terminal. That completes the proof. 2

Theorem 1 implies immediately that LCS-1 and LCS-2 are hard for W [1]. We can
strengthen this result by more complicated reductions that space limitations preclude de-
scribing in this abstract.

Theorem 2. LCS-1 is hard for W [t] for every positive integer t.

Theorem 3. LCS-2 is hard for W [2], and belongs to W [P].

4 Conclusions

Our results have implications for the fixed-parameter tractability of the multiple sequence
alignment and consensus subsequence discovery problems in molecular biology because the
LCS problem is a special case of each of these problems.

One weakness of our results is that we consider above only the case of unbounded
alphabet sizes. When the size of the alphabet is a fixed constant, it is easy to observe that
LCS-2 (and thus also LCS-3) are fixed-parameter tractable. We conjecture, but do not yet
have a proof, that LCS-1 remains hard for W [t] for all t, for alphabets of size at least 2.

References

[Bae91] R. A. Baeza-Yates, “Searching Subsequences”, Theoretical Computer Science, 78,
363–376, 1991.

[CCDF93] L. Cai, J. Chen, R. Downey and M. Fellows, “The Parameterized Complexity of
Short Computations and Factorizations,” University of Victoria, Technical Report, Depart-
ment of Computer Science, July, 1993.

[DEF93] R. Downey, P. Evans and M. Fellows, “Parameterized Learning Complexity,” Proc.
Sixth ACM Workshop on Computational Learning Theory (COLT), pp. 51–57, ACM Press,
1993.

[DF92] R. Downey and M. Fellows, “Fixed-Parameter Intractability (Extended Abstract)”.
In Proceedings of the Seventh Annual Conference on Structure in Complexity Theory, pp.
36–49, IEEE Computer Society Press, Los Alamitos, CA, 1992.

[DFKHW93] R. Downey, M. Fellows, B. Kapron, M. Hallett and T. Wareham, “The Param-
eterized Complexity of Some Problems in Logic and Linguistics,” Workshop on Recursion
Theory and Complexity in Logic, Vancouver, B.C., Canada, October, 1993, and University

10

of Victoria, Technical Report, Department of Computer Science, July, 1993.

[DM93a] W. H. E. Day and F. R. McMorris, “Discovering Consensus Molecular Sequences”.
In O. Opitz, B. Lausen, and R. Klar (eds.) Information and Classification – Concepts,
Methods, and Applications, pp. 393–402, Springer-Verlag, Berlin, 1993.

[DM93b] W. H. E. Day and F. R. McMorris, “The Computation of Consensus Patterns in
DNA Sequences”, Mathematical and Computer Modelling, 17(10), 49–52, 1993.

[Hir83] D. S. Hirschberg, “Recent Results on the Complexity of Common Subsequence Prob-
lems”. In D. Sankoff and J. B. Kruskal (eds.) Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison, pp. 325–330, Addison-Wesley,
Reading, MA, 1983.

[IF92] R. W. Irving and C. B. Fraser, “Two Algorithms for the Longest Common Subsequence
of Three (or More) Strings”. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber
(eds.) Proceedings of the Third Annual Symposium on Combinatorial Pattern Matching, pp.
214–229, Lecture Notes in Computer Science no. 644, Springer-Verlag, Berlin, 1992.

[LF78] S. Y. Lu and K. S. Fu, “A Sentence-to-Sentence o Clustering Procedure for Pattern
Analysis”, IEEE Transactions on Systems, Man, and Cybernetics, 8, 381–389, 1978.

[Mai78] D. Maier, “The Complexity of Some Problems on Subsequences and Supersequences”,
Journal of the ACM, 25(2), 322–336, 1978.

[PM92] W. R. Pearson and W. Miller, “Dynamic Programming Algorithms for Biological
Sequence Comparison”, Methods in Enzymology, 183, 575–601, 1992.

[Pev92] P. A. Pevzner, “Multiple Alignment, Communication Cost, and Graph Matching”,
SIAM Journal on Applied Mathematics, 52(6), 1763-1779, 1992.

[San72] D. Sankoff, “Matching Comparisons under Deletion/Insertion Constraints”, PNAS,
69(1), 4–6, 1972.

11

