
Fixed-Parameter Tractability and Completeness

Rod G. Downey
Mathematics Department

Victoria University
Wellington, New Zealand

Michael R. Fellows
Computer Science Department

University of Victoria
Victoria, B.C. Canada

Abstract

For many fixed-parameter problems that are trivially solvable in polynomial-time, such as

k-Dominating Set, essentially no better algorithm is presently known than the one which tries

all possible solutions. Other problems, such as k-Feedback Vertex Set, exhibit fixed-parameter

tractability: for each fixed k the problem is solvable in time bounded by a polynomial of degree

c, where c is a constant independent of k. We show that for this problem, and for the problem

of determining whether a graph has k disjoint cycles, we may take c = 1. We also show that

if Dominating Set is fixed-parameter tractable, then so are a variety of parameterized problems,

such as Independent Set. Some of the main results of a completeness theory for fixed-parameter

intractability are surveyed.

1. Introduction

Many natural computational problems have input that consists of a pair of items. For
example, the Graph Genus problem is that of determining for an input pair (G, k), where G
is a graph and k is a positive integer, whether the graph G embeds on the genus k surface.
The problem of Minor Testing is that of determining for an input pair of graphs (G,H)
whether H is a minor of G.

One of the reasons for our interest in parameterized problems, is that while many of these
problems are NP -complete, it is sometimes the case that only a small range of parameter
values are really important in practice, so that the NP -completeness of the general problem
may be unduly pessimistic information. For many parameterized problems, we now have
encouraging and perhaps useful fixed-parameter tractability results, such as the following.

Theorem 1.1 (Robertson and Seymour) [RS1] For every fixed graph H it can be determined

1

in time O(n3) whether a graph G of order n has a minor isomorphic to H.

Theorem 1.2 (Bienstock and Monma) [BM] For every fixed k, it can be determined in time
O(n) whether a graph G of order n can be embedded in the plane so that k faces cover all
the vertices.

Theorem 1.3 (Bodlaender) [Bod1] For every fixed k, it can be determined in time O(n)
whether a graph G of order n has a spanning tree with at least k leaves.

Theorem 1.4 (Lagergren) [La] For every fixed k, it can be determined in time O(n log2 n)
whether a graph G of order n has treewidth at most u.Q?Ø Qe.w[indent The7rem 1.5 (Plehn
and Voigt) [PV] For every fixed graphH of treewidth w, it can be determined in timeO(nw+1)
whether a graph G of order n has a subgraph isomorphic to H.

Theorem 1.6 (Fellows and Langston) [FL1] For every fixed k, it can be determined in time
O(n) whether a graph G of order n has a cycle of length at least k.

For other parameterized problems, such as Minimum Dominating Set (see [GJ] for the
definition), we have the contrasting situation where essentially no better algorithm is known
than the “trivial” one which just exhaustively tries all possible solutions. For each fixed k,
k-Minimum Dominating Set is solvable in this way in time O(nk+1).

We make the following definitions in order to frame these complexity issues.

Definition. A parameterized problem is a set L ⊆ Σ∗ × Σ∗ where Σ is a fixed alphabet.

For a parameterized problem L and y ∈ Σ∗ we write Ly to denote the associated fixed-
parameter problem (y is the parameter) Ly = {x|(x, y) ∈ L}.

Definition. A parameterized problem L is (uniformly) fixed-parameter tractable if there
exists a constant α and an algorithm to determine if (x, y) is in L in time f(|y|) · |x|α, where
f : N → N is an arbitrary function.

The difference between the known fixed-parameter complexity of Dominating Set and the
problems addressed in Theorems 1.1–1.6, is analogous to the apparent complexity difference
between NP -complete problems and problems in P . For most NP -complete problems we
essentially know no better algorithm than the “trivial” one requiring exponential time, which
tries all possible solutions.

If P = NP then Dominating Set is fixed-parameter tractable. A converse to this state-
ment is not known, and is perhaps unlikely. The reasonable conjecture that Dominating
Set is not fixed-parameter tractable is thus stronger than the reasonable conjecture that
P 6= NP .

2

In recent years a variety of methods useful for demonstrating fixed-parameter tractability
have emerged, such as the well-quasiordering results of Robertson and Seymour [RS1,RS2],
and general algorithmic methods for bounded treewidth [AF,Ar,ALS,BLW,Co,WHL].

The reader should note an important detail of the definition of fixed-parameter tractabil-
ity given above. The results of Theorems 1.1–1.6 (and our Theorem 2.1 below) are clearly
uniform; the proofs of these results can be implemented as a single algorithm that works
for every fixed parameter value. Consider, contrastingly, the consequence of Theorem 1 and
the Graph Minor Theorem [RS2] that for each fixed k, it can be determined in time O(n3)
whether a graph G of order n embeds on the surface of genus k. It is not immediately
clear how these (infinitely many) distinct O(n3) algorithms, each based on a different finite
obstruction set, can be combined into a single finite algorithm. This can done, however,
by the two different methods of [FL1] and [FL2]. Almost all of the known fixed-parameter
tractability results are (or can be made) uniform. We note in passing that a nonuniform
framework is also possible and interesting, although we will say no more about it in this
survey.

The Graph Minor Theorem has the consequence that for each fixed surface we can
decide graph embedability by employing finitely many minor tests. Thus the fixed-parameter
tractability of Minor Testing leads to the fixed-parameter tractability of the Graph Genus
problem. This may be kept in mind as a motivating example for the following definition.

Definition. A (uniform) reduction of a parameterized problem L to a parameterized problem
L′ is an oracle algorithm A that on input (x, y) determines whether x ∈ Ly and satisfies
(1) There is an arbitrary function f : N → N and a polynomial q such that the running
time of A is bounded by f(|y|)q(|x|).
(2) For each y ∈ Σ∗ there is a finite subset Jy ⊆ Σ∗ such that A consults oracles only for
fixed-parameter decision problems L′w where w ∈ Jy.

Lemma 1.1 If the parameterized problem L reduces to the parameterized problem L′, and
if L′ is f.p. tractable, then L is f.p. tractable.

Proof. Let f(|y|)q(|x|) be the bound on the running time of the reduction from L to
L′, and suppose L′w is decidable in time g(|w|) · nα. Let y ∈ Σ∗ and let Jy ⊆ Σ∗ be the
associated finite subset of Σ∗ for the reduction. Then we can determine if (x, y) ∈ L in time
f(|y|)g(m)|x|αq(|x|) where m = max{|w| : w ∈ Jy}. 2

The plan of this paper is as follows. In Section 2 we illustrate some of the methods
for proving fixed-parameter tractability results, showing that for every fixed k the problems
k-Feedback Vertex Set and k-Disjoint Cycles can be solved in time linear in the number of
vertices of an input graph. In Section 3 we show that a variety of parameterized problems
reduce to Dominating Set. In Section 4 we survey the main facts presently known concerning
a completeness theory for fixed-parameter tractability. Section 5 concludes with a discussion

3

of some of the many open problems in this subject.

2. Fixed-Parameter Tractability for Problems About Cycles in Graphs.

In this section we consider the following parameterized problems. For each of these
problems, and for each fixed k the problem can be addressed by the Graph Minor Theorem,
since for each fixed k the set of yes–instances forms a lower ideal. Thus our results only
improve upon previous fixed-parameter tractability results available by those methods. In
fact, linear-time algorithms for these problems based on graph minor theory and graph
rewriting (but using O(nO(k)) space!) can be obtained by the methods of [ACPS]. A similar
approach to ours was found independently by Bodlaender [Bod2].

Feedback Vertex Set
Instance: An undirected graph G = (V,E) and a positive integer k.
Question: Is there a set of V ′ of at most k vertices of G such that every cycle in G passes
through some vertex u ∈ V ′?

Disjoint Cycles
Instance: An undirected graph G = (V,E) and a positive integer k.
Question: Is there a set of k vertex disjoint cycles in G?

Lemma 2.1 For all fixed k, uniformly in time O(n) we can accomplish one of the following
for a graph G = (V,E) of order n.
(1) Find a tree decomposition of G of width at most 16k4 + 16k3 + 8k2 + 1.
(2) Find k+1 vertex disjoint cycles in G.
(3) Find a vertex u of G with the property that if V ′ ⊆ V is any k-element feedback vertex
set in G, then u ∈ V ′.

Proof. We use a slightly modified form of the linear-time algorithm due to Bodlaender
(Theorem 3.12 of [Bod1]) based on the depth-first search minor testing technique introduced
in [FL1]. This algorithm yeilds either (1) or a minor of G isomorphic to the 2× (2k+ 2) grid
(which gives (2)), or a minor of G isomorphic to a circus graph of size 2k2 + 1. The last case
immediately gives a minor of G isomorphic to a bouquet of size k2 + 1. (A bouquet of size b
consists of b loops on a single vertex.) Note that if G has any vertex v with a loop, then we
may take u = v to accomplish (3). Thus the subgraph H of G identified in the remaining
case (which is contractible to the size k2 +1 boquet) consists of a tree T together with k2 +1
disjoint cycles, each attached to the tree at a single vertex. If more than k vertices of T
have attached cycles, then we have achieved (2). Otherwise, some vertex u of T has at least
k+ 1 disjoint cycles attached. If u does not belong to V ′, then V ′ cannot be a k-element set
covering all cycles in G. 2

4

A vertex as in (3) of the lemma above we will refer to as essential. The next lemma
gives a useful general result. To state the lemma, we review briefly some of the main
results concerning the finite-state tree automata point of view on bounded treewidth graph
properties. For greater detail the reader should consult the papers [ACPS,AF,Co,FL2,La].

Definition. A t-boundaried graph G = (V,E,B, f) is an ordinary graph G = (V,E) to
gether with (1) a distinguished subset (the boundary) of the vertex set B ⊆ V with |B| = t,
and (2) a bijection f : B → {1, ..., t}.

Definition. If G = (V,E,B, f) and G′ = (V ′, E ′, B′, f ′) are t-boundaried graphs, then G⊕G′
denotes the ordinary graph obtained from the disjoint union of the graphs G = (V,E) and
G′ = (V ′, E ′) by identifying each vertex u ∈ B with the vertex v ∈ B′ for which f(u) = f ′(v).

If F is an arbitrary family of (ordinary) graphs, we define the following canonical equiv-
alence relation induced by F on the set of t-boundaried graphs.

Definition. G ∼F H if and only if, for every t-boundaried graph K, G ⊕ K ∈ F ⇐⇒
H ⊕K ∈ F .

We say that a graph family F is t-cutset regular if ∼F has a finite number of equivalence
classes on the set of t-boundaried graphs. We say that F is cutset regular if it is t-cutset
regular for every t. The beauty of this notion, which the reader may note is similar in
spirit to the classic Myhill-Nerode theorem of formal languages, is that it supports a similar
necessary and sufficient condition for finite-state recognition from structural parse trees for
graphs of bounded treewidth [AF] (see also [Co]). We have the following.

Lemma 2.2 If F is t-cutset regular, then F is recognizable in time O(n) for graphs of
treewidth at most t given with a tree-decomposition. 2

Definition. The cycle cover number γ(G) of a graph G is the minimum number of vertices
in a feedback vertex set for G.

Lemma 2.3 Suppose F is a cutset regular family of graphs of bounded cycle cover number.
Then F is recognizable in time O(n).

Proof. Let k be the bound on the cycle cover number of graphs in F . Run the algo-
rithm of Lemma 2.1. If we discover k + 1 disjoint cycles then we know that G /∈ F . If we
obtain a bounded width tree decomposition, then we can finish the decision in time O(n) by
the cutset regularity of F and Lemma 2.2. Otherwise, we have located an essential vertex u
of G. In this case we run the algorithm of Lemma 2.1 again on G− u. (We may repeat this
up to k times.) If we ever obtain a bounded width tree decomposition, then by including
the (at most k) deleted essential vertices into each set of the decomposition, we obtain a
bounded width tree decomposition (with the bound increased by at most k) and can finish
the decision in linear time as above. If more than k essential vertices are identified, then we

5

know that G is not in F . 2

Theorem 2.1 For each fixed k, Feedback Vertex Set and Disjoint Cycles can be solved in
time O(n) where n is the number of vertices of the input graph G.

Proof. By the theorem of Erdos and Posa [EP], if γ(G) ≥ C · k log k then G has more
than k disjoint cycles. Cutset regularity can be demonstrated either directly or through
expressibility in second-order monadic logic [Co]. Thus the hypotheses of Lemma 2.3 are
satisfied for each fixed k. 2

All of the algorithms involved in Theorem 6 can be made uniform in k, so that these two
problems are shown to be uniformly fixed-parameter tractable in the sense of our definition
in Section 1. Lemma 2.3 has the further interesting consequence that every lower ideal in
the topological order having bounded cycle cover number is recognizable in time O(n), since
for every k the family of graphs not containing k disjoint cycles is well-quasiordered by
topological containment and topological order tests are expressible in second order monadic
logic.

3. A Key Combinatorial Reduction

Neither of the well-known computational problems of (1) determining whether a graph G
has a dominating set of size k (Dominating Set), and (2) determining whether a graph G has
an independent set of size k (Independent Set) is know to be f.p. tractable, and it is perhaps a
reasonable conjecture that they are not. The reader skeptical of this conjecture and willing to
challenge it, will be advised by the results of this section to begin by working on Independent
Set, since a consequence of our Theorem 7 is that Independent Set reduces to Dominating
Set (and so the latter is “harder” with respect to f.p. tractability). Presently the best
known results for these problems are the trivial O(nk+1) algorithm for Dominating Set, and
a nontrivial algorithm for Independent Set due to Nesetril and Poljak [NP], requiring time
O(nk(2+ε)/3) where 2 + ε represents the best known exponent for fast matrix multiplication.

We show that Weighted Satisfiability (defined below) reduces to Dominating Set. By the
weight of a truth assignment to a set of boolean variables, we mean the number of variables
assigned the value true. Since Independent Set (and many other parameterized problems)
easily reduce to this problem, we have the consequence claimed above. For example, a graph
G = (V,E) has a k-element independent set if and only if the expression

∏
uv∈E(ū + v̄) has

a weight k truth assignment. The notion of reduction that we use is defined in Section 1.

Weighted Satisfiability
Instance: A boolean expression X in conjuctive normal form, and a positive integer k.
Question: Is there a truth assignment of weight k that satisfies X?

Theorem 3.1 Weighted Satisfiability uniformly reduces to Dominating Set.

6

Proof. Let X be a Boolean expression in conjuctive normal form consisting of m clauses
C1, ..., Cm over the set of n variables x0, ..., xn−1. We show how to produce in polynomial-
time by local replacement, a graph G = (V,E) that has a dominating set of size 2k if and
only if X is satisfied by a truth assignment of weight k.

An example of the construction is shown in Figure 1.

Figure 1. An example of the reduction.

The vertex set V of G is the union of the following sets of vertices:
V1 = {a[r, s] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1}
V2 = {b[r, s, t] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1, 1 ≤ t ≤ n− k + 1}3 = {c[j] : 1 ≤ j ≤ m}
V4 = {a′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}
V5 = {b′[r, u] : 0 ≤ r ≤ k − 1, 1 ≤ u ≤ 2k + 1}
V6 = {d[r, s] : 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n− 1}

For convenience, we introduce the following notation for important subsets of some of
the vertex sets above. Let
A(r) = {a[r, s] : 0 ≤ s ≤ n− 1}
B(r) = {b[r, s, t] : 0 ≤ s ≤ n− 1, 1 ≤ t ≤ n− k + 1}
B(r, s) = {b[r, s, t] : 1 ≤ t ≤ n− k + 1}

The edge set E of G is the union of the following sets of edges. In these descriptions we
implicitly quantify over all possible indices.
E1 = {c[j]a[r, s] : xs ∈ Cj}
E2 = {a[r, s]a[r, s′] : s 6= s′}
E3 = {b[r, s, t]b[r, s, t′] : t 6= t′}
E4 = {a[r, s]b[r, s′, t] : s 6= s′}
E5 = {b[r, s, t]d[r, s′] : s′ 6= s+ t (mod n)}

7

E6 = {a[r, s]a′[r, u]}
E7 = {b[r, s, t]b′[r, u]}
E8 = {c[j]b[r, s, t] : ∃i xi ∈ Cj, s < i < s+ t}
E9 = {d[r, s]a[r′, s] : r′ = r + 1 (mod n)}

Suppose X has a satisfying truth assigment τ of weight k, with variables xi0 , xi1 , ..., xik−1

assigned the value true. Suppose i0 < i2 < ... < ik−1. Let dr = ir+1(modk) − ir (mod n) for
r = 0, ..., k − 1. It is straightforward to verify that the set of 2k vertices

D = {a[r, ir] : 0 ≤ r ≤ k − 1} ∪ {b[r, ir, dr] : 0 ≤ r ≤ k − 1}

is a dominating set in G.

Conversely, suppose D is a dominating set of 2k vertices in G. The closed neighborhoods
of the 2k vertices a′[0, 1], ..., a′[k−1, 1], b′[0, 1], ..., b′[k−1, 1] are disjoint, so D must consist of
exactly 2k vertices, one in each of these closed neighborhoods. Also, none of the vertices of
V4∪V5 are inD, since if a′[r, u] ∈ D then necessarily a′[r, u′] ∈ D for 1 < u′ < 2k+1 (otherwise
D fails to be dominating), which contradicts that D contains exactly 2k vertices. It follows
that D contains exactly one vertex from each of the sets A(r) and B(r) for 0 ≤ r ≤ k − 1.

The possibilities for D are further constrained by the edges of E4, E5 and E9. The
vertices of D in V1 represent the variables set to true in a satisfying truth assignment for
X, and the vertices of D in V2 represent intervals of variables set to false. Since there are k
variables to be set to true there are, considering the indices of the variables mod n, also k
intervals of variables to be set to false.

The edges of E4, E5 and E9 enforce that the 2k vertices in D must represent such a
choice consistently. To see how this enforcement works, suppose a[3, 4] ∈ D. This represents
that the third of k distinct choices of variables to be given the value true is the variable x4.
The edges of E4 force the unique vertex of D in the set B(3) to belong to the subset B(3, 4).
The index of the vertex of D in the subset B(3, 4) represents the difference (mod n) between
the indices of the third and fourth choices of a variable to receive the value true, and thus
the vertex represents a range of variables to receive the value false. The edges of E5 and E9

enforce that the index t of the vertex of D in the subset B(3, 4) represents the “distance”
to the next variable to be set true, as it is represented by the unique vertex of D in the set
A(4).

It remains only to check that the fact that D is a dominating set insures that the truth
assigment represented by D satisfies X. This follows by the definition of the edge sets E1

and E8. 2

Because Dominating Set can be easily reduced to Weighted Satisfiability with no negated
literals, the above theorem shows the surprising fact that Weighted Satisfiability reduces
to Monotone Weighted Satisfiability. Interpreted in terms of circuits, this combinatorial

8

reduction plays a crucial role in the fundamental completeness results surveyed in the next
section.

4. A Completeness Theory for Fixed-Parameter Intractability

So far we have seen that many parameterized problems are fixed-parameter tractable,
by means of a variety of algorithm design techniques. We have also seen that there are a
number of interesting reductions between natural problems. In order to frame a completeness
theory to address the apparent fixed-parameter intractability of Dominating Set and other
problems, we need to define appropriate classes of parameterized problems. The classes that
we define below are intuitively based on the complexity of the circuits required to check a
solution.

We first define circuits in which some gates have bounded fan-in and some have unre-
stricted fan-in. It is assumed that fan-out is never restricted.

Definition. A Boolean circuit is of mixed type if it consists of circuits having gates of the
following kinds.

(1) Small gates: not gates, and gates and or gates with bounded fan-in. We will usually
assume that the bound on fan-in is 2 for and gates and or gates, and 1 for not gates.

(3) Large gates: And gates and Or gates with unrestricted fan-in.

We will use lower case to denote small gates (or gates and and gates), and upper case
to denote large gates (Or gates and And gates).

Definition. The depth of a circuit C is defined to be the maximum number of gates (small
or large) on an input-output path in C. The weft of a circuit C is the maximum number of
large gates on an input-output path in C.

Definition. We say that a family of circuits F has bounded depth if there is a constant h such
that every circuit in the family F has depth at most h. We say that F has bounded weft if
there is constant t such that every circuit in the family F has weft at most t. F is monotone
if the circuits of F do not have not-gates. F is a decision circuit family if each circuit has
a single output. A decision circuit C accepts an input vector x if the single output gate has
value 1 on input x. The weight of a boolean vector x is the number of 1’s in the vector.

Definition. Let F be a family of decision circuits. We allow that F may have many different
circuits with a given number of inputs. To F we associate the parameterized circuit problem
LF = {(C, k) : C accepts an input vector of weight k}.

Definition. A parameterized problem L belongs to W [t] (monotone W [t]) if L uniformly

9

reduces to the parameterized circuit problem LF for some family F of bounded depth, mixed
type (monotone) decision circuits of weft at most t.

Definition. We designate the class of fixed-parameter tractable problems the Easy class and
denote it E.

Thus we have the containments

E ⊆ W [1] ⊆ W [2] ⊆ ...

and we conjecture that each of these containments is proper. We term the union of these
classes the W Hierarchy, and denote it WH.

Lemma 4.1 If P = NP then WH ⊆ E. 2

Our main result shows that Weighted Satisfiability is complete for W [2] and that similar
problems are complete for each level of the W Hierarchy of parameterized problem classes.
Theorem 4.1 plays a role in our theory analogous to Cook’s theorem for NP -completeness. It
is interesting that the combinatorial reduction of Theorem 3.1 plays a key role (as a “change
of variables”) in our proof of Theorem 4.1. Thus the entire argument that Dominating
Set is complete for W [2] actually uses this combinatorial reduction twice. A variation of
Weighted Satisfiability based on a normal form for boolean expressions supplies the problems
we identify in Theorem 4.1 as complete.

Definition. A boolean expression X is termed t-normalized if:
(1) t = 2 and X is in product-of-sums (P-o-S) form,
(2) t = 3 and X is in product-of-sums-of-products (P-o-S-o-P) form,
(3) t = 4 and X is in P-o-S-o-P-o-S form,
... etc.

Weighted t-Normalized Satisfiability
Input: A t-normalized boolean expression X and a positive integer k.
Question: Does X have a satisfying truth assignment of weight k?

Theorem 4.1 For t ≥ 2 Weighted t-Normalized Satisfiability is complete for W [t].

Proof. Let L ∈ W [t]. Let F be the family of circuits of depth bounded by h and weft
bounded by t to which L reduces. It suffices to reduce LF to Weighted t-Normalized Satis-
fiability. An instance of the latter problem may be viewed as a pair consisting of a positive
integer k and a circuit having t alternating layers of And and Or gates corresponding to the
t-normalized expression structure P-o-S-o-P-..., and having a single output And gate. Thus
the argument essentially shows how to “normalize” the circuits in F .

Let (C, k) be an instance of LF . We show how to determine whether C accepts a weight
k input vector, by consulting an oracle for Weighted t-Normalized Satisfiability (viewed as

10

a problem about circuits) for finitely many weights k′. The algorithm for this determination
will be uniform in k, and run in time f(k)nα where n is the size of the circuit C. The
exponent α will be a (possibly exponential) function of h and t. This is permissible, since
every circuit in F observes these bounds on depth and weft.

Step 1. The reduction to tree circuits.

The first step is to transform C into a tree circuit C ′ of depth and weft bounded by h
and t, respectively. In a tree circuit every logic gate has fan-out one. (The input nodes may
have large fan-out.) The transformation is accomplished by replicating the portion of the
circuit above a gate as many times as the fan-out of the gate, beginning with the top level of
logic gates, and proceeding downward level by level. The creation of C ′ from C may require
time O(nO(h)) and involve a similar blow-up in the size of the circuit. The tree circuit C ′

accepts a weight k input vector if and only if the original circuit C accepts a weight k input
vector.

Step 2. Moving the not gates to the top of the circuit.

Let C denote the circuit we receive from the previous step (we will use this notational
convention throughout the proof). Trpns3orvP`a` into an equivalent circuit C ′ by com-
muting the not gates to the top, using DeMorgan’s laws. This may increase the size of the
circuit by at most a constant factor. The tree circuit C ′ thus consists (from the top) of the
input nodes, with not gates on some of the lines fanning out from the inputs. In counting
levels we consider all of this as level 0, and may refer to negated fan-out lines from the input
nodes as negated inputs. Next, there are levels consisting only of large and small and and
or gates, with a single output gate (which may be of either principal logical denomination
at this point).

Step 3. Homogenizing the layers.

We transform our current circuit C (received from the previous step) by repeating the
following operations (with operation (1) of higher priority) until no further operation of ei-
ther kind is possible.
(1) Merge two gates of the same logical character if the (single) output line from one gate
is an input line to the other gate. (This produces an equivalent circuit.)
(2) Commute a small gate upward past the two gates (necessarily of complementary char-
acter) that produce its inputs. For example, a small and gate is commuted past two large
or gates that supply the two arguments in accordance with the distribution:

(a1 + a2 + ...+ ar)(b1 + b2 + ...+ bs) = (a1 + b1)(a1 + b2)(a2 + b1)...(ar + bs)

This step may require time (and increase the size of the circuit) by the function n 7→ n2h
2

.
The circuit C ′ produced has large gates only in the bottommost t layers.

11

Step 4. Removing a bottommost Or gate.

Since our reductions are Turing reductions, we can determine whether a tree circuit
giving output from an Or gate accepts weight k input vector, by simply making the same
determination for each of the input branches to the gate.

Step 5. Organizing the small gates.

The tree circuit C received from the previous step has the properties: (i) the output
gate is an And gate, (ii) from the bottom, the circuit consists of layers which alternately
consist of only And gates or only Or gates, for up to t layers, and (iii) above this, there are
branches B of height h′ = h− t consisting only of small gates. Since a small gate branch B
has bounded depth, it has at most 2h

′
gates, and thus in constant time (since h is fixed), we

can find an equivalent sum-of-products circuit with which to replace B.

In this step, all such small gate branches B of C are replaced in this way. The depth 2
sum-of-products circuits replacing the small gate branches B have a bottomost or gate gB
of fan-in at most 22h

′
, and the and gates feeding into gB have fan-in at most 2h

′
, so the weft

of the circuit has been preserved by this transformation, which may increase the size of C

by the constant factor 22h
′
. If the topmost level of large gates (to which the branches B are

attached in C) consists of Or gates, then the gates gB can be merged into this level. For
the next step we consider two cases, depending on whether the topmost level of large gates
consists of And gates or Or gates. (Essentially, this corresponds to whether t is even or odd.)

Step 6. A monotone change of variables. (Two cases.)

Case 1. The topmost large-gate level consists of Or gates.

Let C denote the circuit resulting from the above transformations. We perform a “change
of variables” based on the combinatorial reduction of Theorem 3.1. The sequence of trans-
formations of C for this step is shown schematically in Figure 2.

Figure 2. Case 1: A topmost large-gate layer of Or gates.

12

The new circuit inputs correspond to the vertices (other than the clause vertices) of the
graph GX constructed in the proof of that theorem. Each positive input to C (corresponding
to a positive literal in the construction of GX) is represented k times in the construction,
and each negated input to C (corresponding to a negative literal) is represented O(n2) times,
where n is the number of inputs to C.

There are two aspects to this change of variables. First, each input line to the top layer
of and gates in C that arrives directly from an input gate (without a negation) is replaced
by an Or gate with fan-in k, and each input line to the top layer of small or gates that is
negated enroute from an input gate is replaced by a (large) Or gate. Secondly, we must add
to the circuit an enforcement of the combinatorics of the Dominating Set problem. This can
be expressed as the requirement that the weight 2k input must also be accepted by a P-o-S
circuit which is the product over the vertex set (the new input set) of the sum of the inputs
corresponding to a closed neighbor of a vertex. This enforcement can be merged with the
bottommost (output) And gate of the circuit.

The result is a circuit C ′ with no not gates. The input weight we are now concerned
with is 2k, and the construction of C ′ from C may involve quadratic blow-up.

Next, we commute the small and gates on the second level upward past the Or gates
introduced by the change of variables, and then merge the Or gates down to the topmost
large-gate layer (of Or gates). The one remaining step is described below following the
treatment of case 2.

Case 2. The topmost large-gate level consists of And gates.

The sequence of transformations for this case is depicted schematically in Figure 3. Below
each gate of the topmost large-gate layer (of And gates), a double negation is introduced
(equivalently). One of the not gates is commuted to the top of the circuit (by DeMorgan’s
identities). This is followed by a change of variables based on Theorem 3.1, as in Case 1.
The second level and gates are commuted upwards, and the Or gates of the second and third
levels are merged, as in Case 1. Finally, the remaining not gates are commuted to the top.
We are now in position for the last step.

13

Figure 3. Case 2: A topmost large-gate level of And gates.

Step 7. Eliminating the remaining small gates.

The circuit C that we receive at the beginning of this step is depicted schematically in
figure 2(d) or figure 3(d). If we regard the inputs to C as variables, this step consists of
another “change of variables.” Let k be the relevant weight parameter value supplied by the
last transformation. In this step we will produce a circuit C ′ corresponding directly to a
t-normalized boolean expression (that is, consisting only of t alternating layers of And and
Or gates) such that C accepts a weight k input vector if and only if C ′ accepts a vector of
weight k′ = k · 2k+1 + 2k.

Suppose that C has m remaining small gates. In Case 1, these are and gates, and the
inputs are all positive. In Case 2, these are or gates, and the inputs are all negated. For
i = 1, ...,m we define the sets Ai of the inputs to C to be the sets of input variables to these
small gates. The central idea for this step is to create new inputs representing the sets Ai of
inputs to C.

For example, suppose (Case 1) that the output of the small and gate gi in C is the
boolean product (abcd) of the inputs a, b, c, d to C. Thus Ai = {a, b, c, d}. The gate gi can
be eliminated by replacing it with an input line from a new variable v[i] which represents
the predicate a = b = c = d = 1. (This representation, of course, will need to be enforced
by additional circuit structure.) Similarly (Case 2) if gi computes the value (ā + b̄ + c̄ + d̄)
then gi can be replaced by a negated input line from v[i].

Let x[j] for j = 1, ...s be the input variables to C. We introduce new input variables of
the following kinds:
(1) One new variable v[i] for each set Ai for i = 1, ...,m to be used as indicated above.
(2) For each x[j] we introduce 2k+1 copies x[j, 0], x[j, 1], x[j, 2], ..., x[j, 2k+1 − 1].
(3) “Padding” consisting of 2k meaningless variables (inputs not supplying output to any
gates) z[1], ..., z[2k].

We add to the circuit an enforcement mechanism for the change of variables. The
necessary requirements can be easily expressed in P-o-S form, and thus can be incorporated
into the bottom two levels of the circuit as additional Or gates attached to the bottommost
(output) And gate of the circuit.

We require the following implications concerning the new variables:

(1) The s · 2k+1 implications, for j = 1, ..., s and r = 0, ..., 2k+1 − 1,

x[j, r]⇒ x[j, r + 1 (mod 2k+1)]

(2) For each containment Ai ⊆ Ai′ , the implication

v[i′]⇒ v[i]

14

(3) For each membership x[j] ∈ Ai, the implication

v[i]⇒ x[j, 0]

(4) For i = 1, ...,m the implication

(
∏

x[j]∈Ai

x[j, 0])⇒ v[i]

It may be seen that this transformation may increase the size of the circuit by a lin-
ear factor exponential in k. We make the following argument for the correctness of the
transformation.

If C accepts a weight k input vector, then setting the corresponding copies x[i, j] among
the new input variables accordingly, together with appropriate settings for the the new
“collective” variables v[i] yields a vector of weight between k · 2k+1 and k · 2k+1 + 2k that
is accepted by C ′. The reason the weight of this corresponding vector may fall short of
k′ = k · 2k+1 + 2k is that not all of the subsets of the k input variables to C having value 1
may occur among the sets Ai. An accepted vector of weight exactly k′ can be obtained by
employing some of the “padding” input variables z[i] to C ′

Note that the seemingly simpler strategy of creating a new input variable for each set
of at most k inputs to C would not serve our purposes, since it would involve increasing the
size n of the circuit to possibly nk. (We are limited in our computational resources for the
reduction to f(k)nα. The constant α can be an arbitrary function of the depth and weft
bounds h and t, but not k.)

For the other direction, suppose C ′ accepts a vector of weight k′. Because of the impli-
cations in (1) above, exactly k sets of copies of inputs to C must have value 1 in the accepted
input vector. Because of the implications (2)–(4), the variables v[i] must have values in the
accepted input vector compatible with the values of the sets of copies. By the construction
of C ′, this implies there is a weight k input vector accepted by C. 2

The W [t] hierarchy reflects, in a finely resolved way, the difficulty of “solution checking.”
What happens if, more bluntly, we simply address fixed-parameter complexity for problems
for which solutions can be checked in polynomial time? To study this question, it is natural
to define the following complexity class.

Definition. A parameterized problem L belongs to W [P] (monotone W [P]) if L uniformly
reduces to the parameterized circuit problem LF for some family of circuits F .

Note that W [t] is contained in W [P] for every t, and that W [P] = E if P = NP . We
have been able to show that all of the problems identified in [AEFM] as complete for PGT
are uniformly complete for W [P]. (We would argue that the present theory offers a better
framework for those results.) We also have these further completeness results.

15

Theorem. The following problems are complete for W [P]:

Monotone Circuit Satisfiability
Instance: A monotone circuit C and a positive integer k.
Question: Does C accept an input vector of weight k?

Degree Three Subgraph Annihilator
Instance: A graph G = (V,E) and a positive integer k.
Question: Is there a set X ⊆ V of at most k vertices such that G−X has no subgraph of
minimum degree three.

5. Open Problems

In some ways, the study of fixed-parameter tractability and completeness addresses the
subject of computational infeasibility inside of P . For related work see Buss and Goldsmith
[BG]. Many of the approaches and issues concerning the standard complexity classes have
natural analogues in this setting that are so far unexplored.

Consider, for example, the issue of parallel complexity. Trivially, there is a parallel
algorithm running in time O(log n) and using nk processors to determine if a graph G on n
vertices has a dominating set of size k, for each fixed k. For a contrasting result, Lagergren
[La] has shown that for each fixed k, it can be determined in time O(log2 n) with O(n3)
processors whether a graph has treewidth at most k. This suggests a natural fixed-parameter
analogue of NC.

For another example, consider approximation algorithms. One of the fundamental results
of Robertson and Seymour (quite apart from their work on graph minors) is that there is an
algorithm that in time f(k)·n2 finds for a graph G of order n, either: (1) a tree decomposition
of width at most 5k, or (2) evidence that the treeewidth of G is greater than k. An analogous
result for Dominating Set might be an algorithm running in time f(k) · nc that finds either:
(1) a dominating set of size O(k), or (2) evidence that the minimum size of a dominating
set for G is greater than k. Such an algorithm is presently unknown. It may even be that
the existence of such an algorithm would imply the collapse of the W hierarchy, much as the
existence of a P -time relative approximation algorithm for the Travelling Salesman problem
would imply P = NP [GJ].

Many interesting structural questions concerning the W hierarchy remain to be explored.
For example, we conjecture that W [1] does not have complete problems, in contrast to W [t]
for t ≥ 2. We also do not know if a problem such as the following belongs to W [t] for any t.

Two-Player Dominating Set
Instance: A graph G = (V,E) and a positive integer k.
Question: Is it true that for every k-element subset V ′ ⊆ V , there is a k-element subset

16

V ′′ ⊆ V such that V ′ ∪ V ′′ is a 2k-element dominating set for G?

It would be interesting to know if the collapse of the W hierarchy would imply any
“disaster” concerning the usual complexity classes (such as the collapse of the polynomial
hierarchy (see [GJ]) to a finite level). We have been able to prove the following analogue of
Ladner’s well-known theorem.

Theorem 5.1. If any of the containments

E ⊆ W [1] ⊆ W [2] ⊆ · · ·

of the W Hierarchy is proper, then there are infinitely many intervening equivalence classes
of parameterized problems with respect to uniform reductions. 2

Lastly, there are many natural parameterized problems that may well be complete for
various levels of the W hierarchy. Demonstrations of such completeness would provide an
explanation of why, though they are solvable in polynomial time for each fixed parameter
value, these problems resist attempts to show fixed-parameter tractability.

Acknowledgements Thanks to Karl Abrahamson for useful early discussions about this
work.

References

[ACPS] S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, “An Algebraic Theory of
Graph Reduction,” Technical Report 90-02, Laboratoire Bordelais de Recherche en Informa-
tique, Universite de Bordeaux I, January 1990.

[AEFM] K. R. Abrahamson, J. A. Ellis, M. R. Fellows and M. E. Mata, “On the Complexity
of Fixed-Parameter Problems.” In 30th Annual Symposium on Foundations of Computer
Science, IEEE Computer Society Press (1989), 210-215.

[AF] K. R. Abrahamson and M. R. Fellows, “Cutset Regularity Beats Well-Quasiordering
for Bounded Treewidth,” to appear.

[Ar] S. Arnborg, “Efficient Algorithms for Combinatorial Problems on Graphs with Bounded
Decomposability — A Survey,” BIT 25 (1985), 2-23.

[ALS] S. Arnborg, J. Lagergren and D. Seese, “Problems Easy for Tree-Decomposable Graphs
(extended abstract).” In T. Lepisto and A. Salomaa, eds., Proc. 15th Int. Coll. Automata,
Languages and Programming, Lecture Notes in Computer Science, Vol. 317 (Springer, Berlin,
1988), 38-51.

[BG] J. F. Buss and J. Goldsmith, “Nondeterminism Within P ,” manuscript, 1990.

17

[BLW] M. W. Bern, E. L. Lawler and A. L. Wong, “Linear Time Computation of Optimal
Subgraphs of Decomposable Graphs,” J. of Algorithms 8 (1987), 216-235.

[BM] D. Bienstock and C. L. Monma, “On the Complexity of Covering Vertices by Faces in
a Planar Graph,” SIAM J. Comp. 17 (1988), 53-76.

[Bod1] H. L. Bodlaender, “On Linear Time Minor Tests and Depth First Search,” In F.
Dehne et al., eds., Proc. 1st Workshop on Algorithms and Data Structures, Lecture Notes
in Computer Science, Vol. 382 (Springer, Berlin, 1989), 577-590.

[Bod2] H. L. Bodlaender, “On Disjoint Cycles,” Technical Report RU*-C)¯9¸¯YøVQe”2x:ff
of Computer Science, Utrecht University, Utrecht, The Netherlands, August 1990.

[Co] B. Courcelle, “Graph Rewriting: An Algebraic and Logical Approach.” In J. van
Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. B (North-Holland, Amster-
dam, 1990), Chapter 5.

[EP] P. Erdős and L. Pósa, “On Independent Circuits Contained in a Graph,” Canad. J.
Math. 17 (1965), 347-352.

[FL1] M. R. Fellows and M. A. Langston, “On Search, Decision and the Efficiency of
Polynomial-Time Algorithms.” In Proc. Symp. on Theory of Computing (STOC) (1989),
501-512.

[FL2] M. R. Fellows and M. A. Langston, “An Analogue of the Myhill-Nerode Theorem
and Its Use in Computing Finite Basis Characterizations.” In Proc. Symp. Foundations of
Comp. Sci. (FOCS) (1989), 520-525.

[GJ] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP -Completeness (Freeman, San Francisco, 1979).

[La] J. Lagergren, “Algorithms and Minimal Forbidden Minors for Tree-Decomposable Graphs,”
Dissertation, Department of Numerical Analysis and Computing Science, Royal Institute of
Technology, Stockholm, Sweden, March 1991.

[NP] J. Nesetril and S. Poljak, “On the Complexity of the Subgraph Problem,” Commen.
Math. Univ. Carol. 26 (1985), 415-419.

[PV] J. Plehn and B. Voigt, “Finding Minimally Weighted Subgraphs,” to appear.

[RS1] N. Robertson and P. D. Seymour, “Graph Minors XIII. The Disjoint Paths Problem,”
to appear.

[RS2] N. Robertson and P. D. Seymour, “Graph Minors XV. Wagner’s Conjecture,” to
appear.

18

[WHL] T. V. Wimer, S. T. Hedetniemi and R. Laskar, “A Methodology for Constructing
Linear Graph Algorithms,” Congressus Numerantium 50 (1985), 43-60.

19

