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FIXED-PARAMETER TRACTABILITY AND COMPLETENESS I: BASIC
RESULTS*

ROD (3. DOWNEY AND MICHAEL R. FELLOWS

Abstract. For many fixed-parameter problems that are trivially soluable in polynomial time, such as
(k-)DOMINATING SET, essentially no better algorithm is presently known than the one which tries all possible
solutions. Other problems, such as (k-)FEEDBACK VERTEX SET, exhibit fixed-parameter tractability: for each
fixed k the problem is soluable in time bounded by a polynomial of degree c, where c is a constant independent of k.
We establish the main results of a completeness program which addresses the apparent fixed-parameter intractabil-
ity of many parameterized problems. In particular, we define a hierarchy of classes of parameterized problems
FPT

_
W[I] c_ W[2]

___ ___
W[SAT] c_ W[P] and identify natural complete problems for W[t] for > 2. (In

other papers we have shown many problems complete for W[ ].) DOMINATING SET is shown to be complete for
W[2], and thus is not fixed-parameter tractable unless INDEPENDENT SET, CLIQUE, IRREDUNDANT SET, and
many other natural problems in W[2] are also fixed-parameter tractable. We also give a compendium of currently
known hardness results as an appendix.
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1. Introduction. Many natural computational problems have input that consists of a pair
of items. For example, the GRAPH GENUS problem is that of determining for an input pair
(G, k), where G is a graph and k is a positive integer, whether the graph G embeds on the
genus k surface. The problem of MINOR TESTING is that of determining for an input pair
of graphs (G, H) whether H is a minor of G.

One of the reasons for our interest in parameterized problems is that while many of these
problems are NP-complete PSPACE-complete, or even provably intractable, it is sometimes
the case that only a small range of parameter values are really important in practice, so that the
(apparent) intractability of the general problem may be unduly pessimistic information. For
many parameterized problems, we now have encouraging and perhaps useful fixed-parameter
tractability results, such as the following.

THEOREM 1.1 (Robertson and Seymour [108]). For everyfixed graph H it can be deter-
mined in time O(n3) whether a graph G oforder n has a minor isomorphic to H.

THEOREM 1.2 (Bienstock and Monma [15]). For every fixed k, it can be determined in
time 0 (n) whether a graph G oforder n can be embedded in the plane so that k faces cover
all the vertices.

THEOREM 1.3 (Bodlaender [16]). For every fixed k, it can be determined in time O(n)
whether a graph G oforder n has a spanning tree with at least k leaves.

THEOREM 1.4 (Lagergren [95]). For everyfixed k, it can be determined in time 0 (n log2 n)
whether a graph G oforder n has treewidth at most k.

THEOREM 1.5 (Plehn and Voigt [102]). For everyfixed graph H oftreewidth w, it can be
determined in time O(nt+l) whether a graph G oforder n has a subgraph isomorphic to H.
(Note that here the parameter is (a coding of) H.)
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THEOREM 1.6 (Fellows and Langston [74]). For every fixed k, it can be determined in
time O(n) whether a graph G oforder n has a cycle of length at least k.

THEOREM 1.7 (Bodlaender [17], Downey and Fellows [55]). For everyfixed k, it can be
determined in time 0 (n whether a graph G oforder n contains k vertex-disjoint cycles.

For other parameterized problems, such as DOMINATING SET (given a graph G and a
positive integer k is there a set of k vertices in G such that every vertex either belongs to the
set or has a neighbour in the set) we have the contrasting situation where essentially no better
algorithm is known than the "trivial" one which just exhaustively tries all possible solutions.
For each fixed k, k- DOMINATING SET is soluable in this way in time O(ng+).

We make the following definitions in order to frame these complexity issues.
DEFINITION 1.8. A parameterized problem is a set L c_ E* x E* where E is a fixed

alphabet.
For a parameterized problem L and y E* we write Ly to denote the associated fixed-

parameter problem (y is the parameter) Ly {xl(x, y) L}. We refer to Ly as the yth slice
of L.

DEFINITION 1.9. A parameterized problem L is ((weakly) uniformly) fixed-parameter
tractable if there exists a constant a and an algorithm to determine if (x, y) is in L in time
f(ly[) Ixl", where f N --+ N is an arbitraryfunction. If f is recursive then we say that
L is strongly uniformly fixed-parameter tractable. Finally, we say that L is nonuniformly
f.p. tractable if there is a family of algorithms {qx x N} and a function f such that qx
determines if(x, y) is in L in time f(lyl)" Ixl.

In recent years a variety of methods useful for demonstrating fixed-parameter tractability
have emerged, such as the well-quasiordering results of Robertson and Seymour 106], 107]
108], and general algorithmic methods for bounded treewidth (e.g., Abrahamson and Fellows

[4], [5]; Arnborg [7]; Arnborg, Lagergren, and Seese [10]; Bern, Lawler and Wong [13];
Courcelle [49]; and Wimer, Hedetniemi, and Laskar [118]).

The reader should note an important detail of the definition of fixed-parameter tractability
given above. The results of Theorems 1.2-1.7 (and our Theorem 2.1 below) are clearly
uniform; the proofs of these results can be implemented as a single algorithm that works for
every parameter value. Consider, contrastingly, the consequence ofTheorem 1.1 and the graph
minor theorem 108] that for each fixed k, it can be determined in time O (n3) whether a graph G
of order n embeds on the surface of genus k. It is not immediately clear how these (infinitely
many) distinct O(n3) algorithms, each based on a different finite obstruction set, can be
combined into a single finite algorithm. This can done, however, by the two different methods
of Fellows and Langston [74], [75]. Almost all of the known fixed-parameter tractability
results are (or can be made) uniform. While it is possible to construct examples (Downey and
Fellows [58]) that show that the notions of tractability are indeed provably distinct, we also
remark that there are natural examples of apparently all flavours of tractability. For instance
consider the following examples.

PLANAR IMPROVEMENT
Instance: A graph G.
Parameter: k.
Question: Is G a subgraph of a planar graph G’ of diameter at most k?

GRAPH LINKING NUMBER
Instance: A graph G.
Parameter: k.
Question: Can G be embedded in 3-space so that at most k disjoint cycles are topologically
linked?
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We remark that both of these examples are known to be fixed-parameter tractable via
the Robertson-Seymour theorems. But at present PLANAR IMPROVEMENT is known only
to be weakly uniformly tractable and GRAPH LINKING NUMBER is known only to be
nonuniformly tractable.

The difference between the known fixed-parameter complexity of DOMINATING SET
and the problems addressed in Theorems 1.1-1.7 and the two examples, is analogous to the
apparent complexity difference between NP-complete problems and problems in P. For most
NP-complete problems we essentially know no better algorithm than the "trivial" one requiring
exponential time which tries all possible solutions.

If P NP then DOMINATING SET is fixed-parameter tractable. A converse to this
statement is not known and is perhaps unlikely. The reasonable (we think) conjecture that
DOMINATING SET is not fixed-parameter tractable is thus apparently stronger than the
conjecture that P - NP. Certainly there is oracle evidence to perhaps support this claim
(Downey and Fellows [58]). The graph minor theorem has the consequence that for each fixed
surface we can decide graph embedability by employing finitely many minor tests. Thus the
fixed-parameter tractability of MINOR TESTING leads to the fixed-parameter tractability of
the GRAPH GENUS problem. This may be kept in mind as a motivating example for the
following definition.

DEFINITION 1.10 (uniform reduction). A (uniform) reduction ofa parameterizedproblem
L to a parameterized problem L’ is an oracle algorithm A that on input (x, y) determines
whether x Ly and satisfies

(1) There is an arbitraryfunction f N --+ N and a polynomial q such that the running
time ofA is bounded by f(lYl)q(lx[).

(2) For each y E* there is a finite subset Jy cc_ E* such that A consults oracles only
forfixed-parameter decision problems L where w Jy.

Of course in the above an oracle computation takes only one unit of time. If the oracle
is consulted only once by A, then we will term the reduction many: 1. As with the notion
of tractability, there is a strong version. If the function f and the map taking y to Jy are
both recursive, we say that the reduction is strongly uniform. (Similarly there is a notion of
nonuniform reduction, which we do not consider in detail here.) All of the results we prove
in this paper hold for all of the frameworks, with the single exception of Theorem 4.1.

LEMMA 1.11. Ifthe parameterized problem L reduces to the parameterized problem Lt,
and if L’ is fixed-parameter tractable, then L isfixed-parameter tractable.

Proof Let f(lyl)q(lxl) be the bound on the running time of the reduction from L to L’,
and suppose Lo is decidable in time g(lw[), n=. Without loss of generality, we can take f and
g to be increasing. Let y 6 E* and let Jy c_ E* be the associated finite subset of E* for the
reduction. Then we can determine if (x, y) 6 L in time O(f(lYl)q(Ixl)g(m)(f(lYl)q(Ixl))
where rn max{IT[ w Jy}. [-]

Working definition. Actually for the sake of most naturally occuring concrete reduc-
tions, we can take a simpler definition than the above. Most concrete reductions are m-
reductions of the form (x, k) (x’, f(k)) with x’ depending upon x and k, running in time
h(k)lxl with f and h recursive. The reason for this is that most natural problems are smooth
in the sense that one has a natural encoding of the slices with parameters below k into the
kth slice and hence we only need to look at one slice f(k) for any input (x, k). The general
definition is useful at times, and is certainly needed for structural theorems. It does the reader
no harm to take the simplified definition for the remainder of the paper.

Remark: Alternative definition. Another view of the ideas above is provided by Cai et
al. [41 ], the advice view. In that paper, Cai et al. prove that if L is a parameterized language,
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then L FPT iff there is a function f N E* (the advice function) and a P-time oracle
(deterministic) Turing machine , such that for all (x, k),

(x, k) L iff (f(k)(x) accepts.

That is, if we allow for each k a finite piece of advice, then we can solve all the instances in
time Ix 1. There is similarly a relativized version for the reductions. We refer the reader to
Cai et al. [41 for more details.

The plan of this paper is as follows. In 2 we prove a particular combinatorial problem
reduction that plays a key role in our main theorem, which is presented in 3. Section 4
summarizes our results and discusses open problems. During the time this paper was under
consideration many new hardness and completeness results have been found, and we see that
this theory seems to have wide-ranging consequences for the classification of parameterized
hardness results. This is particularly true of, for instance, problems in molecular biology
where one is often interested in a small parameter (e.g., the number of strands ofDNA) yet the
problem is very large (e.g., the length of the strand), and in very large scale integration design
where we might have a small number of wafers of very large size. In the appendix we give a
list of currently known hardness results, as well as a list of open classification problems.

Related work and historical remarks. To conclude this section we give some brief
remarks concerning related investigations. As far as we are aware, the first person to suggest
that something might be interesting in the fact that DOMINATING SET seems to require
time fg(nk+) was Ken Regan [104], in some comments in that paper. Regan did not pursue
this issue. There have been investigations into "nondeterminism in P" such as the Kintala-
Fischer/-hierarchy [93] and the work ofBuss and Goldsmith [35] but these and similar related
investigations were mainly structural, and looked at problems for a single k. One then cannot

use P-time reductions since the class is in DTIME(nf(k) and usually DTIME(n). These
authors instead used small reductions such as quasilinear (e.g., Gurevich and Shelah [86])
time reductions, which are of course machine dependent. The only paper to truely study the
asymptotic parameterized behavior (i.e., the issue of n versus nf(k) with f(k) cx) is
Abrahamson et al. [3]. (Some of these results were recast in [35].) In that paper the objects
were P-checkable, P-indexed relations, called (polynomial time) generator tester pairs. For
each k, one needed to be able to generate a P-time list of potential candidates for solutions
that were easy to test. The actual definition is very involved but the following example gives
the flavour.

If we consider the problem VERTEX COVER, then for an instance G and a parameter
k, the potential witnesses would be pairs consisting of G and a vertex cover V with the index
of V _< j () /... / (). The ideas only seemed to apply to relations in NP. While
there is a notion of parameterized tractability in [3], it is roughly equivalent to our notion of
nonuniform fixed-parameter tractability and hence suffers from the problem that the tractable
classes can be nonrecursive. The real problem with that paper is that the notion of reducibility,
which is defined on relations rather than parameterized languages, is rather unnatural and very
unwieldy, and the notion of intractability is that of (essentially) being P-complete (or "dual
P-complete") under logspace reducibility "by the slice." That is, in [3], problems are PGT-
complete (in their notation) only when for each k they are more or less P-complete. Of course
this means that the Abrahamson et al. [3] ideas cannot address things such as DOMINATING
SET and INDEPENDENT SET, nor apparently anything in the W[t] classes below. We remark
that the Abrahamson et al. [3] results can be easily placed in our setup because they give W[P]-
completeness results (see, e.g., Abrahamson, Downey, and Fellows ], [2]). We see our major
contributions as identifying the correct notions of reducibility, identifying the correct setting
for the study of parameterized intractibility, and finally identifying some "good" problems
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with which to measure hardness. The number of problems that have now been identified
as W[1] hard, and hence apparently intractable, would seem to support our claims. (W[1]
hardness is not analysed in the present paper, but in Downey and Fellows [56].) At this stage
we will only remark that quite a number of parameterized problems have been shown to be
W[ ]-complete. (See the appendix.) We also have a sort of Cook-Levin theorem for W[
which we feel strongly suggests its intractability. Cai et al. [40] have shown that the following
very generic problem is W[ complete.

SHORT TURING MACHINE ACCEPTANCE
Input: A nondeterministic Turing machine M and a string x.
Parameter: k.
Question: Does M have an accepting computation for x in k or fewer steps?

To conclude, we reiterate the remark that the notion of parameterized tractability is not a
refinement of the classical notions arising from NP-completeness, despite the fact that many
of our examples arise from this arena. Problems can be PSPACE complete (e.g., ALTERNAT-
ING HITTING SET; see Abrahamson, Downey, and Fellows [2]) and yet have parameterized
versions that are FPT. Also there are problems that are almost certainly not NP-complete un-
less some unlikely collapse occurs such as NP to LOGNP and yet their parameterized versions
can be W[2] or W[ 1] hard (e.g., the VAPNIK CHERVONENKIS DIMENSION; see Downey,
Evans, and Fellows [54], Downey and Fellows [59], and Papadimitriou and Yannakakis 100]).
Finally take any set A and consider the parameterized problem {(x, x) x 6 A}. Then this
problem is just as hard as A classically, so it can even be provably intractable, and yet it is
trivially FPT. These examples show that the parameterized complexity of problems and their
unparameterized versions are pretty well unrelated, and thus our investigations point to a new
dimension in the structure of problems.

2. A key combinatorial reduction. Neither of the well-known computational problems
of (1) determining whether a graph G has a dominating set of size k (DOMINATING SET), and
(2) determining whether a graph G has an independent set of size k (INDEPENDENT SET)
is know to be fixed-parameter tractable, and it is perhaps a reasonable conjecture that they are
not. The reader skeptical of this conjecture and willing to challenge it, will be advised by the
results of this section to begin by working on INDEPENDENT SET, since a consequence of
Theorem 2.1 is that INDEPENDENT SET reduces to DOMINATING SET (and so the latter
is "apparently harder" with respect to fixed-parameter tractability). Presently the best known
results for these problems are the trivial O(nk+) algorithm for DOMINATING SET and a
nontrivial algorithm for INDEPENDENT SET due to Nesetril and Poljak [99], requiring time
O(nlC(2+E)/3), where 2 + represents the best known exponent for fast matrix multiplication.

We show that WEIGHTED CNF SATISFIABILITY (defined below) reduces to DOM-
INATING SET. By the weight of a truth assignment to a set of boolean variables, we mean
the number of variables assigned the value true, in the same way that the weight of a binary
vector means the number of l’s in the vector. Since INDEPENDENT SET (and many other
parameterized problems) easily reduce to this problem, we have the consequence claimed
above. For example, a graph G (V, E) has a k-element independent set if and only if the
expression 1-Iuoe(ff + 7) has a weight k truth assignment. The notion of reduction that we
use is (the working reduction) defined in 1.

WEIGHTED CNF SATISFIABILITY
Instance: A boolean expression X in conjuctive normal form.
Parameter: k.
Question: Is there a truth assignment of weight k that satisfies X?
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FIG. 1. Gadgetfor CNFSAT <f.p.DOMINATING SET,

THEOREM 2.1. WEIGHTED CNF SATISFIABILITY strongly uniformly reduces to DOM-
INATING SET.

Proof Let X be a Boolean expression in conjuctive normal form consisting of m clauses
C Cm over the set of n variables x0 x,_. We show how to produce in polynomial-
time by local replacement a graph G (V, E) that has a dominating set of size 2k if and only
if X is satisfied by a truth assignment of weight k.

A diagram of the gadget used in the reduction is given in Fig. 1. The idea of the proof is
as follows. There are k of the gadgets arranged in a circle. Each of the gadgets has three main
parts. Taken clockwise from top to bottom, these are variable selection, gap selection, and
gap enforcement. The variable selection component is a clique and the gap selection consists
of n cliques which we call columns. Our first action is to ensure that in any dominating set
of 2k elements, we must pick one vertex from each of these two components. This goal is
achieved by the 2k sets of 2k + enforcers, vertices from V4 and Vso (The names refer to the
sets below.) Take the set V4, for instance. For a fixed r, these 2k + vertices are connected
to all of the variable selection vertices in the component A (r), and nowhere else. Thus if they
are to be dominated by a 2k dominating set, then we must choose some element in the set
A(r), and similarly we must choose an element in the set B(r) by virtue of the V5 enforcers.
Since we will need exactly 2k (or even < 2k) dominating elements it follows that we must

pick exactly one from each of the A(r) and B(r) for r k.
As the name suggests these will be picked by the variable selection components, A (r),

r 0 k 1. Each of these k components consists of a clique of n vertices labeled
0 n 1, the intention being that the vertex labeled represents a choice of variable
being made true in the formula X. Correspondingly in the next B (r) we have columns (cliques)

0 n 1. The intention is that column corresponds to the choice of variable in
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the preceding A (r). The idea then is the following. We join the vertex a[r, i] corresponding
to variable i, in A(r), to all vertices in B(r) except those in column i. This means that the
choice of in A(r) will cover all vertices of B(r) except those in this column. It follows that
we must choose the dominating element from this column and nowhere else. (There are no
connections from column to column.) The columns are meant to be the gap selection that says
how many O’s there will be until the next positive choice for a variable. We finally need to
ensure that if we chose variable in A(r) and gap j in column from B(r) then we need to
pick + j + in A (r / 1). This is the role of the gap enforcement component which consists
of a set of n vertices (in V6.) The method is to connect vertex j in column of B(r) to all
of the n vertices d[r, s] except to d[r, + j + ]. The point of this is that if we choose j in
column we will dominate all of the d[r, s] except d[r, + j + ]. Since we will only connect
d[r, s] additionally to a[r + 1, s] and nowhere else, to choose an element of A[r + and still
dominate all of the d[r, s] we must actually choose a[r + 1, + j + ].

Thus the above provides a selection gadget that chooses k true variables with the gaps
representing false ones. We enforce that the selection is consistent with the clauses of X via
the clause variables V3. These are connected in the obvious ways. One connects a choice in
A[r] or B[r] corresponding to making a clause Cq true to the variable Cq. Then if we dominate
all the clause variables too, we must have either chosen in some A[r] a positive occurrence of
a variable in Cq or we must have chosen in B[r] a gap corresponding to a negative occurrence
of a variable in Cq, and conversely. We now turn to the formal details.

The vertex set V of G is the union of the following sets of vertices:

V1- {a[r,s] O < r < k- l, O < s < n 1},
V2--{b[r,s,t]’O<r <k- l,O<s <n-l, <t <n-k+ l},

V3 {c[j]" < j < m},

V4 {a’[r, u] O < r <k-l, < u < 2k + },

Vs {b’[r,u] O < r <k-l, < u < 2k + },
V6 {d[r,s] "O < r < k- l,O < s <n-l}.

For convenience, we introduce the following notation for important subsets of some of
the vertex sets above. Let

A(r) {a[r, s]’0 < s < n 1},
B(r) {b[r,s,t] O < s <n-l,1 < < n k + },

B(r,s) {b[r,s,t] < < n-k + }.

The edge set E of G is the union of the following sets of edges. In these descriptions we
implicitly quantify over all possible indices.

El {c[j]a[r, s] Xs Cj },

E2 {a[r, s]a[r, s’] s s’},
E3 {b[r, s, t]b[r, s, t’] t’},
E4 {a[r, s]b[r, s’, t] s s’},
E5 {b[r, s, t]d[r, s’] s’ =/: s + (mod n)},
E6 {a[r, s]a’[r, u]},

E7 {b[r, s, t]b’[r, u]},
E8 {c[j]b[r,s,t] 3i r Cj,s < < s + t},

E9 {d[r, s]a[r’, s] r’ r + (mod n)}.
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Suppose X has a satisfying truth assignment 7: ofweight k, with variables Xio, xi, xik_
assigned the value true. Suppose i0 < i2 < < i_. Let dr ir+l(mod k) ir (mod n) for
r 0 k 1. It is straightforward to verify that the set of 2k vertices

D {a[r, ir] 0 < r < k 1} t.9 {b[r, ir, dr] 0 < r <_ k 1}

is a dominating set in G.
Conversely, suppose D is a dominating set of 2k vertices in G. The closed neighborhoods

of the 2k vertices a’[0, 1] a’[k 1, 1], b’[0, 1] b’[k 1, 1] are disjoint, so D must
consist of exactly 2k vertices, one in each of these closed neighborhoods. Also, none of
the vertices of V4 U V5 are in D, since if a’[r, u] D then necessarily a’[r, u’] D for
< u’ < 2k + (otherwise D fails to be dominating), which contradicts that D contains

exactly 2k vertices. It follows that D contains exactly one vertex from each of the sets A (r)
andB(r) for0<r<k-1.

The possibilities for D are further constrained by the edges of E4, E5, and E9. The vertices
of D in V represent the variables set to true in a satisfying truth assignment for X, and the
vertices of D in V2 represent intervals of variables set to false. Since there are k variables
to be set to true there are, considering the indices of the variables mod n, also k intervals of
variables to be set to false.

The edges of E4, E5, and E9 enforce that the 2k vertices in D must represent such a choice
consistently. To see how this enforcement works, suppose a[3, 4] 6 D. This represents that
the third of k distinct choices of variables to be given the value true is the variable x4. The
edges of E4 force the unique vertex of D in the set B(3) to belong to the subset B(3, 4). The
index of the vertex of D in the subset B(3, 4) represents the difference (mod n) between the
indices of the third and fourth choices of a variable to receive the value true, and thus the vertex

represents a range of variables to receive the value false. The edges of E5 and E9 enforce
that the index of the vertex of D in the subset B(3, 4) represents the "distance" to the next
variable to be set true, as it is represented by the unique vertex of D in the set A (4).

It remains only to check that the fact that D is a dominating set ensures that the truth
assignment represented by D satisfies X. This follows by the definition of the edge sets El
and E8. [3

Because DOMINATING SET can be easily reduced to WEIGHTED CNF SATISFIABIL-
ITY with no negated literals, the above theorem shows the surprising fact that WEIGHTED
SATISFIABILITY reduces to MONOTONE WEIGHTED CNF SATISFIABILITY. (The re-
duction is straightforward. Let {xt xn denote the set of vertices of the given graph G,
and we will interpret them as input variables for our circuit C(G). Have a layer of Or gates
directly below the variables. These are also one per input variable and we will label them
g gn. Make xi and input to the Or gate gj precisely in the case that (xi, xj) is an edge
of G. Now to complete the circuit, we have one large And gate with inputs from each of the
Or gates. It is easy to see that satisfying assignments correspond directly to dominating sets
and conversely.) Interpreted in terms of circuits, this combinatorial reduction plays a crucial
role in the fundamental completeness results surveyed in the next section. We can use this
reduction in the main theorem (Theorem 3.7) because the reduction proves rather more than
is stated in Theorem 2.1 and the relavant properties we need are stated in the remark below.
(It is also used to generalize Theorem 2.1 to MONOTONE 2t-NORMALIZED BOOLEAN
FORMULAE in Corollary 3.8.)

Remark. An important fact about the above proof is the following. For our fixed k
the enforcement gadgetry causes us to choose the 2k vertices, k from the A(r)’s and k from
the B’s, and there is a 1-1 correspondence between weight k assignments to X and size
2k sets that dominate the graph G’ which denotes the gadget, that is, G without the clause
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connections and vertices. Define a weak dominating set to be a set of (2k) vertices that
dominates the gadget of G. The fact we will use in the proof of the normalization theorem is
that under the 1-1 correspondence between weight k assignments to X and weak dominating
sets, if a clauses Ci Cip are the subset of the set of clauses satisfied by some weight k
assignment, then ci Cip are exactly the clause vertices dominated by the corresponding
size 2k weak dominating set in G. That is, not only is there a correspondence between weight
k satisfying assignments for X and weight 2k dominating sets in G, but in fact there is an exact
correspondence between all weight k assignments together with the clauses they satisfy, and
with all weak dominating sets and the clause vertices they dominate.

The DOMINATING SET reduction also allows for a number of other applications. For
instance, consider the problem below.

WEIGHTED {0, }-INTEGER PROGRAMMING
Instance: A binary matrix A and a binary vector b
Parameter: k.
Question: Does A x > b have a binary solution of weight k?

We have the following corollary.
COROLLARY 2.2. WEIGHTED CNF SATISFIABILITY reduces to WEIGHTED {0, }-

INTEGER PROGRAMMING.
Proof Let (X, k) be an instance ofMONOTONEWEIGHTEDCNF SAT. Let C Cp

list the clauses of X and x Xm list the variables. Let A be the matrix {ai,j
p, j m} with ai,j if xj is present in Ci and ai,j 0 otherwise. Let b

be the vector with in the jth position for j p. It is easy to see that A. x > b
has a solution of weight k iff X has a satisfying assignment of weight k (and the reasoning is
reversible).

In passing we remark that the situation of Corollary 2.2, where a classical reduction can
easily be modified for a normal parameterized case, is exceedingly rare. It seems to be that it
is almost never the case that a classical reduction gives rise to a parameterized one.

3. A completeness theory for fixed-parameter intractability. In order to frame a com-
pleteness theory to address the apparent fixed-parameter intractability ofDOMINATING SET
and other problems, we need to define appropriate classes of parameterized problems. As one
might expect, satisfiability occupies a central role in our investigations. But now the situation
is apparently much more complex than in the classical case. For instance, while classically
there is no difference between CNF SATISFIABILITY and SATISFIABILITY for general
formulae in propositional logic, there seems to be no parameterized reduction computing gen-
eral SATISFIABILITY from CNF SATISFIABILITY and hence they do seem to be genuinely
of different complexity from a parameterized point of view. Considerations such as these lead
to the conclusion that there seem to be many different parameterized degree classes of natural
problems. This is quite different from the situation in classical, say, NP-completeness results
where virtually all natural problems which are not in P seem to be NP complete.

Current measure of intractability. At the present time if we wish to prove parame-
terized intractability, we show that the problem at hand can compute WEIGHTED 3CNF
SATISFIABILITY. This is the class we call W[ and as we said before, we seem to have very
strong evidence that it is intractable. We refer the reader to Downey and Fellows [56].

t-normalized formulae. In fact, there does not seem to be any reduction from param-
eterized CNF to 3CNE This leads naturally to the realization that the logical depth of a
propositional formula affects its parameterized complexity. Thus if CNF is thought of as
products-of-sums of literals, then we can define a propositional formula to be t-normalized
if it is of the form products-of-sums-of-products of literals with t-alternations. (Hence
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2-normalized is the same as CNE) Now we believe that for all t, WEIGHTED SATISFIA-
BILITY for t-normalized formulae is strictly easier than WEIGHTED SATISFIABILITY for
+ 1-normalized formulae. This suggests a hierarchy based on the complexity of t-normalized

formulae. It turns out that this hierarchy is quite useful for the classification of the complexity
of many natural problems, and t-normalized formulae do give quite a bit more computational
power. We make this more precise through the introduction of the circuit-based classes below.

The classes that we define below are intuitively based on the complexity of the circuits
required to check a solution. The size of a circuit is as usual the number of gates in the circuit.

We first define decision circuits in which some gates have bounded fan-in and some have
unrestricted fan-in. It is assumed that fan-out is never restricted.

DEFINITION 3.1o A circuit is of mixed type if it consists of circuits having gates of the
following kinds:

(1) Small gates: not gates, and gates and or gates with boundedfan-in. We will usually
assume that the bound onfan-in is 2for and gates and or gates, and for not gates.

(2) Large gates: And gates and Or gates with unrestrictedfan-in.
We will use lowercase to denote small gates (or gates and and gates), and uppercase to

denote large gates (Or gates and And gates).
DEFINITION 3.2 (depth and weft). The depth ofa circuit C is defined to be the maximum

number ofgates (small or large) on an input-output path in C. The weft ofa circuit C is the
maximum number oflarge gates on an input-output path in C.

DEFINITION 3.3. We say that afamily ofcircuits has bounded depth ifthere is a constant
h such that every circuit in thefamily S1c. has depth at most h. We say that " has bounded weft

ifthere is constant such that every circuit in thefamily .T" has weft at most t. " is monotone

if the circuits of" do not have not-gates. A circuit C is a decision circuit if it has a single
output. A decision circuit C accepts an input vector x ifthe single output gate has value on

input x.
DEFINITION 3.4. Let .T" be afamily ofdecision circuits. We allow that 2F may have many

different circuits with a given number of inputs. To .T" we associate the parameterized circuit
problem L {(C, k) C .T" accepts an input vector ofweight k}.

DEFINITION 3.5. A parameterized problem L belongs to W[t] (monotone Wit]) if L
uniformly (m-)reduces to the parameterized circuit problem Ly for the family J:h,t of depth
h, mixed type (monotone) decision circuits of weft at most t.

DEFINITION 3.6. We denote the class offixed-parameter tractable problems as FP T.
Thus we have the containments

FPT c_. W[I]

___
W[2] __....

and we conjecture that each ofthese containments is proper. We term the union ofthese classes
together with two other classes W[SAT] c_ W[P], the W-Hierarchy. Here W[P] denotes the
class obtained by having no restriction on depth, i.e., P-size circuits, and W[SAT] denotes
the restriction to boolean circuits of P-size. We do not explore W[SAT] or W[P] here but
do so in Abrahamson, Downey, and Fellows [1 ], [2].

Our main result shows that WEIGHTED CNF SATISFIABILITY is complete for W[2]
and that similar problems are complete for each level of the W-Hierarchy of parameterized
problem classes. This theorem, Theorem 3.7, plays a role in our theory analogous to Cook’s
theorem for NP-completeness, in the following sense. Usually proofs of membership in a
particular W[t] class are easy, so the circuit definition is easy to reduce to, whereas the t-

normalized formulae provide problems that are easy to reduce from to establish hardness.
The other view of the Cook(-Levin) theorem is that it connects a generic problem from Turing
machines to SATISFIABILITY and hence SATISFIABILITY is very unlikely to be tractable.
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This other view of the Cook(-Levin) theorem is not pursued here but is established for W[
in Downey and Fellows [56], as we mentioned earlier. The present paper, and particularly
Theorem 3.7, provide an important technical framework for hardness results.

It is interesting that the combinatorial reduction of Theorem 2.1, and the subsequent
remark play a key role (as a "change of variables") in our proof of Theorem 3.7. Thus the
entire argument thatDOMINATING SET is complete for W[2] actually uses this combinatorial
reduction twice. Recall the notion of t-normalized formula we discussed earlier, It naturally
gives rise to the following problem.

WEIGHTED t-NORMALIZED SATISFIABILITY
Input: A t-normalized boolean expression X.
Parameter: A positive integer k.
Question: Does X have a satisfying truth assignment of weight k?

THEOREM 3.7. For > 2 WEIGHTED t-NORMALIZED SATISFIABILITY is many:
completefor W[t ]o

Proof Let L W[t]. Let .T" be the family of circuits of depth bounded by h and weft
bounded by to which L reduces. It suffices to reduce L: to WEIGHTED t-NORMALIZED
SATISFIABILITY. An instance of the latter problem may be viewed as a pair consisting of a
positive integer k and a circuit having alternating layers ofAnd and Or gates corresponding
to the t-normalized expression structure P-o-S-o-P- and having a single output And gate.
Thus the argument essentially shows how to "normalize" the circuits in ’.

Let (C, k) be an instance of L-. We show how to determine whether C accepts a weight
k input vector by consulting an oracle for WEIGHTED t-NORMALIZED SATISFIABILITY
(viewed as a problem about circuits) for finitely many weights k’. The algorithm for this
determination will be uniform in k, and run in time f(k)n where n is the size of the circuit
C. The exponent c will be a (possibly exponential) function of h and t. This is permissible,
since every circuit in 9r" observes these bounds on depth and weft.

Step 1. The reduction to tree circuits.
The first step is to transform C into a tree circuit C’ (or formula) of depth and weft

bounded by h and t, respectively. In a tree circuit every logic gate has fan-out one. (The input
nodes may have large fan-out.) The transformation is accomplished by replicating the portion
of the circuit above a gate as many times as the fan-out of the gate, beginning with the top
level of logic gates and proceeding downward level by level. (We regard a decision circuit as
arranged with the inputs on top and the output on the bottom.) The creation of C’ from C may
require time O(n(h)) and involve a similar blow-up in the size of the circuit. The tree circuit
C’ accepts a weight k input vector if and only if the original circuit C accepts a weight k input
vector.

Step 2. Moving the not gates to the top ofthe circuit.
Let C denote the circuit we receive from the previous step (we will use this notational

convention throughout the proof). Transform C into an equivalent circuit C’ by commuting
the not gates to the top, using DeMorgan’s laws. This may increase the size of the circuit by
at most a constant factor. The tree circuit C’ thus consists (from the top) of the input nodes,
with not gates on some of the lines fanning out from the inputs. In counting levels we consider
all of this as level 0, and may refer to negated fan-out lines from the input nodes as negated
inputs. Next, there are levels consisting only of large and small and and or gates, with a single
output gate (which may be of either principal logical denomination at this point).

Step 3. Homogenizing the layers.
The goal of this step is to reduce to the situation where all of the large gates are at the

bottom of the circuit, in alternating layers of large And and Or gates. To achieve this we work
from the bottom up, with the first task being to arrange for the output gate to be large.
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Let C denote the circuit received from the previous step. Suppose the output gate z is
small. Let C[z] denote the connected component of C including z that is induced by the
set of small gates. Thus all gates providing input to C[z] are either large or are input gates
of C. Because of the bound h on the depth of C, there are at most 2h inputs to C[z]. The
function of these inputs computed by C[z] is equivalent to a product-of-sums expression Ez
having at most 22h sums, with each sum a product of at most 2h inputs. Let C’ denote the
circuit equivalent to C obtained by replacing the small gate output component C[z] with Ez,
duplicating subcircuits of C as needed to provide the inputs to the depth 2 circuit representing
Ez. (The "product" gate of Ez is now the output gate of C’.) This entails a blow-up in size
by a factor bounded by 22’. Since h is an absolutely fixed constant (not dependent on n or k)
this blow-up is "linear" and permitted. Note that Ez and therefore C’ are easily computed in
a similar amount of time to this size blow-up.

Let p denote the output and gate of C’ (corresponding to the product in Ez). Let sl Sm
denote the or gates of C’ corresponding to the sums of Ez. We consider all of these gates to
be small, since the number of inputs to them does not depend on n or k. (Equivalently, if the
gates of these two levels were replaced by binary input gates, we would see that the reduction
of C to C’ has increased circuit depth from h to 2h.)

Each or gate si of C’ has three kinds of input lines: those coming from large And gates,
those coming from large Or gates, and those coming from input gates of C’. We will use
the same symbol to denote an input line, the subcircuit of C’ that computes the value on that
line, or the Boolean expression corresponding to the subcircuit (since C’ is a tree circuit, it is
equivalent to a Boolean expression). Let these three groups of inputs be denoted, respectively,
by

Si,/ {Si[/X, j]: j mi,A},

Si,v {si[v, j]: j mi,v},

Si,T {si[-T, j]: j mi,T},

and define

S/= S/,A U S/,v U S/,T,

For each line si[V j] of C’ coming from a large Or gate u, let

Si,v,j {si[v, j, k] k 1,..., mi,v,j}

denote the set of input lines to u in C’. Similarly, for each line si[/, j] of C’ coming from a
large And gate v, let

Si,^,j {si[/x, j, k] k mi,/,j}

denote the set of input lines to v in C’o
Let

The integer k’ is the number of or gates (counting both large and small gates) that are either
part of C[z] or directly supply input to C[z]. Note that k’ is bounded above by 2h 22h.
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We describe how to produce a weft circuit C" from C’ that accepts an input vector of
weight k" k + k’ if and only if C’ (and therefore C) accepts an input vector of weight k.
The tree circuit C" will have a large And gate giving the output.

Let X Xn denote the inputs to C’. The circuit C" has additional input variables that,
for the most part, correspond to the input lines to the or gates singled out for attention above.
The set V of new input variables is the union of the following groups of variables:

i=1 i=1 j=l

where

V/ {vi[A, j] < j < mi,/} U {vi[v, j] < j < mi,v} U {l)i[m, j] < j < mi,T}

and

Vi,j {yi[v, j, k] < k < mi,v,j} U {n[i, j]}.

The circuit C" is represented by the Boolean expression

C" E1 E2. E3. E4. E5 E6- E7,

where

E1 --/1-l.= u

i=1 u#v, u,veVi

(--u + --,v),

’= j=l

m mi, u,vEVi,j

E4-- HH H (--U"J--’I))’
i=1 j=l u=/=v

m mi,^ mi,^,j

E5 HH H (Si[A’ j’ k] + ""l)i[/k j]),
i=1 j--1 k=l

m illi,v

e6 l-I I-I (-,vi[v, j] +-,n[i, j]),
i=1 j=l

mi,v mi,v,j

E7 fl H fl (si[V’ j’ k] -" -Pi[v’ j’ k]
i=1 j=l k=l
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The size of C" is bounded by IC’[ 2.
Claim 1. The circuit C" has weft t.
To see this, note first that since > 2, any input-output path beginning from a new

input variable (in V) that has at most two large gates as the expression for C" is essentially a
product-of-sums. In E5 and E7 the sums involve subexpressions of C’; any input-output path
from an original input variable (of C’) passes through one of these or gates. Observe that in
C these subexpressions have weft at most 1. The sums of E5 and E7 are small, so these
paths further encounter only the bottommost large And gate.

Claim 2. The circuit C" accepts an input vector of weight k" if and only if C’ accepts an
input vector of weight k.

First note that any input vector of weight k" accepted by C" must set exactly one variable
in each of the sets of variables V/ (for m) and Vi,j (for m and j

mi,v) to and all of the others in the set to 0 in order to satisfy E1 E2 E3 E4. It
follows that any such accepted input must set exactly k of the original variables of C’ to 1, by
the definition of k".

The role of the (new) variables set to in the sets of variables that represent inputs to or
gates is to indicate an accepting computation of C’ on the weight k input of old variables. The
expressions E5 E7 enforce the correctness of this representation in C" of the computation
of C’.

The expression E5 ensures that if the new variable vi[/x, j] is set to 1, indicating that the
subexpression si[/x, j] of C’ evaluates to 1, then every argument si[/x, j, k] must evaluate to 1.
(Note that subexpressions si[/x, j, k] appear in C" while the subexpressions si[/x, j] do not.
The computations performed in C’ by the latter are simply represented by the values of the
input variables in V.) The role of the variables n[i, j] is to represent that "none of the inputs"
to the or gate has the value 1. The expression E6 enforces that if this situation is represented,
then the output of the gate is not represented as having the value 1. The expression E7 ensures
that if the new variable vi[x/, j, k] has the value 1, indicating that the subexpression si[v, j, k]
of C’ evaluates to 1, then this subexpression must in fact evaluate to 1.

By the above, we may now assume that the circuit we are working with has a large output
gate (which may be of either denomination). Renaming for convenience, let C denote the
circuit we are working with under this assumption.

If g and g’ are gates in C of the same logical character (/x or x/) with the output of g going
to g’, then they can be consolidated into a single gate without increasing weft if g is small and
g’ is large. We term this a permitted contraction. Note that if g is large and g’ is small then
contraction may not preserve weft. We will assume that permitted contractions are performed
whenever possible, interleaved with the following two operations.

(1) Replacement ofbottommost small gate components.
As at the beginning of Step 3, let C Cm denote the bottommost connected compo-

nents of C induced by the set of small gates and having at least one large gate input. Since
the output gate of C is large, each Ci gives output to a large gate gio If gi is an And gate, then
Ci should be replaced with product-of-sums circuitry equivalent to Ci. If gi is an Or gate,
then Ci should be replaced with equivalent sum-of-products circuitry. Note that in either case
this immediately creates the opportunity for a permitted contraction. As per the discussion at
the beginning of Step 3, this replacement circuitry is small, and this operation may increase
the size of the circuit by a factor of 22h This step will be repeated at most h times, as we are
working from the bottom up in transforming C.

(2) Commuting small gates upward.
After (1), and after the permitted contractions, the bottommost small gate components

are each represented in the modified circuit C’ by a single small gate hi giving output to gi.
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Without loss of generality, all of the arguments to hi may be considered to come from large
gates. (The only other possibility is that an input argument to h; may be from the input level
of the circuit, but there is no increase in weft in treating this as an honorary large gate for
convenience.) Suppose that gi is an And gate and that hi is an or gate (the other possibility is
handled dually).

There are three possible cases:
(i) All of the arguments to hi are from Or gates.
(ii) All of the arguments to hi are from And gates.
(iii) The arguments to hi include both large Or gates and large And gates.

In case (i), we may consolidate hi and all of the gates giving input to hi into a single large
Or gate without increasing weft.

In case (ii), we replace the small x/(hi) of large/x’s with the equivalent (by distribution)
large/x of small x/’s. Since hi may have 2h inputs, this may entail a blow-up in the size of the

n2hcircuit from n to This does not increase weft, and creates the opportunity for a permitted
contraction.

In case (iii), we similarly replace hi and its argument gates with circuitry representing a
product-of-sums of the inputs to the arguments of hi. The difference is that in this case, the
replacement is a large/ of large (rather than small) /gates. Weft is preserved when we take
advantage of the contraction now permitted between the large/ gate and gi.

We may achieve our purpose in this step by repeating the cycle of (1) and (2). At most
h repetitions are required. The total blow-up in the size of the circuit in this step is crudely
bounded by n2hz

Step 4. Removing a bottommost Or gate.
By a Turing reduction, we can determine whether a tree circuit giving output from an Or

gate accepts a weight k input vector by simply making the same determination for each of the
input branches (subformulae) to the gate.

In order to accomplish this step by a many: reduction, we do the following. Let b be the
number of branches of the circuit C with bottommost Or gate that we receive at the beginning
of this step. We modify C by creating new inputs x x [b]. The purpose of these input
variables is to indicate which branch of C accepts a weight k input vector. Let C Ct, be
the branches of C, so that C is represented by the expression C + + Co. The modified
circuit C’ is represented by the expression

C’ (x[1] +...-i-x[b]). H (--,x[i] +--,x[j]) l-I (ci +’-’x[i]).
l<i<j<b l<i<b

The first two product terms of the above expression ensure that exactly one of the new
variables must have value in an accepted input vector. The modified circuit C’ accepts a
weight k / input vector if and only if C accepts a weight k input vector. For weft at least
two, the transformation is weft-preserving and yields a circuit C’ with bottommost And gate,
but possibly with not gates at the lower levels. Thus it may be necessary’ to repeat Steps 2 and
3 to obtain a homogenized circuit with bottommost And gate.

Step 5. Organizing the small gates.
The tree circuit C received from the previous step has the following properties: (i) the

output gate is an And gate, (ii) from the bottom, the circuit consists of layers which alternately
consist of only And gates or only Or gates, for up to layers, and (iii) above this, there are
branches B of height h’ h consisting only of small gates. Since a small gate branch B
has bounded depth, it has at most 2h’ gates, and thus in constant time (since h is fixed), we
can find either (1) an equivalent sum-of-products circuit with which to replace B, as required
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by Case of Step 6 below, or (2) an equivalent product-of-sums circuit, as required by Case
2 of Step 6.

In this step, all such small gate branches B of C are replaced in this way, appropriately
for the relevant case of Step 6. In Case 1, the depth 2 sum-of-products circuits replacing the

221,small gate branches B have a bottomost or gate go of fan-in at most and the and gates
feeding into go have fan-in at most 2h’, so the weft of the circuit has been preserved by this

transformation, which may increase the size of C by the constant factor 22h’ The topmost
level of large gates (to which the branches B are attached in C) consists of Or gates, in Case 1,
so that the gates go can be merged into this topmost level. Merging is performed similarly in
Case 2, where the replacing circuits are products-of-sums, and the topmost level of large gates
consists of And gates. For the next step we consider two cases, depending on whether the
topmost level of large gates consists of Or gates or And gates. (Essentially, this corresponds
to whether weft is even or odd.)

Step Ii. A monotone change of variables (two cases).
In this step (in both cases) we employ a "change of variables" based on the combinatorial

reduction of Theorem 2.1. The goal is to obtain an equivalent circuit that has the property
that either all the inputs are MONOTONE (Case 1) (i.e., no inverters in the circuit), or all the
inputs are negated with no other inverters in the circuit, which we call ANTIMONOTONE.
(Actually in this case we will have some of the inputs positive but these will only be enforcers
as we will see. So we should call this case NEARLY ANTIMONOTONE) (Case 2). The
point of this step becomes apparent in the next step when we use the special character of the
circuit thus constructed to enable us to eliminate the small gates.

Consider the reduction of Theorem 2.1, especially in the light of the remark following
the proof. This reduction consists of two parts. The first is the ring of selection gadgets which
allow variable choice, gap choice, and then gap enforcement; the second part is consistency
obtained by clause wiring. The idea is to "hard wire" the selection and consistency parts of the
construction into the circuit, the point being that we can replace positive instances of variable
fan-out in the original circuit by outputs corresponding to choice of that variable in the positive
selection component. We can replace negative fan-out in the original circuit by the appropriate
sets of gap variables. Finally we can wire in the fact that we need a dominating set and other
enforcements by using the facts that we will only look at a weight 2k input, and an And of
Or’s, which will not add to the weft of the circuit. We argue more precisely below, and also
prove in two parts that the whole process cn be accomplished without increasing weft, given
that the weft is > 2.

Suppose the inputs to the circuit C received at the beginning ofthis step are x[ x[n],
and suppose that the output gate of C is an And gate. Let Y denote the boolean expression
having 2n clauses, with each clause consisting of a single literal, and with one clause for each
of the 2n literals of the n input variables. The reduction of Theorem 2.1 allows us to translate
Y into a monotone formula via dominating set, thus capturing monotonically all the relevant
input settings. Thus, let Gr be the graph constructed for this expression as in the proof of
Theorem 2.1. Note that only part of Gv will actually be wired into C.

Keeping this in mind, and using the variable (vertex) set obtained from Gr, the change
of variables is implemented for C as follows. (1) Create a new input for each vertex of G v
that is not a clause vertex. (2) Replace each positive input fan-out of x[i] in C with an Or
gate having k new input variable arguments corresponding to the vertices to which the clause
vertex for the clause (x[i]) of Y is adjacent in Gv. (3) Replace each negated fan-out line of
x[i] with an Or gate having O (n2) new input variable arguments corresponding to the vertices
to which the clause vertex for the clause (-x[i]) of Y is adjacent in Gr. (4) Merge with the
output And gate of C a new circuit branch corresponding to the product-of-sums expression,
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FIG. 2. A topmost layer oflarge Or gates.

where the product is taken over all nonclause vertices of G r, and the sum for a vertex u is the
sum of the new inputs corresponding to the nonclause vertices in N[u] (this is the dominating
set and other enforcements).

The modified circuit C’ obtained in this way accepts a weight 2k input vector if and only
if the original circuit C accepts a weight k input vector. The proof of this is essentially the
same as for Theorem 2.1. If all of the not gates of C are at the top, then the circuit C’ will
be MONOTONE. However, to see that this change of variables can be employed to obtain
a monotone or nearly antimonotone circuit without increasing weft, we must consider two
cases.

Case 1. The topmost large-gate level consists ofOr gates.
Let C denote the circuit obtained from Step 5 and perform a change of variables as

described above. The sequence of transformations of C for this step is shown schematically
in Fig. 2.
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The result is a circuit C’ with no not gates. The input weight we are now concerned with
is 2k, and the construction of C’ from C may involve quadratic blow-up.

Next, we move the small and gates on the second level upward past the Or gates introduced
by the change of variables, and then merge the Or gates down to the topmost large layer (of
Or gates).

Case 2. The topmost large-gate level consists ofAnd gates.
Here we use a similar argument, beginning with a trick. Below each gate of the topmost

large-gate level (of And gates), a double negation is introduced (equivalently). One of the
not gates is moved to the top of the circuit (by DeMorgan’s identities). This is followed by
a change of variables based on Theorem 2.1, as in Case 1o The second level and gates are
commuted upwards, and the Or gates of the second and third levels are merged, as in Case
1. So now the circuit has no negated inputs and no inverters except the residual ones below
the top layer of Or gates. Finally, these remaining not gates are commuted to the top. Note
that this means that all fanouts are negated except the ones to the enforcement Or gate added
during Step 4.

We are now in position for the last step.
Step 7. Eliminating the remaining small gates.
Ifwe regard the inputs to C as variables, this step consists ofanother"change of variables."

Let k be the relevant weight parameter value supplied by the last transformation. In this step
we will produce a circuit C’ corresponding directly to a t-normalized boolean expression (that
is, consisting only of alternating layers ofAnd and Or gates) such that C accepts a weight k
input vector if and only if C’ accepts a vector of weight k’ k 2k+ + 2ko

Suppose that C has m remaining small gates. In Case 1, these are and gates and the inputs
are all positive. In Case 2, these are or gates and the inputs to these gates are all negated. For

m we define the sets Ai of the inputs to C to be the sets of input variables to these
small gates. The central idea for this step is to create new inputs representing the sets Ai of
inputs to C.

For example, suppose (Case 1) that the output of the small and gate gi in C is the boolean
product (abcd) of the inputs a, b, c, d to C. Thus Ai {a, b, c, d}, The gate gi can be
eliminated by replacing it with an input line from a new variable v[i] which represents the
predicate a b c d 1. (This representation, of course, will need to be enforced by
additional circuit structure.) Similarly (Case 2) if gi computes the value ( + + + d) then
gi can be replaced by a negated input line from v[i].

Let x[j] for j s be the input variables to C. We introduce new input variables
of the following kinds"

(1) One new variable v[i for each set Ai for m to be used as indicated above
(2) For each x[j] we introduce 2k+l copies x[j, 0], x[j, 1], x[j, 2] x[j, 2k+l 1].
(3) "Padding" consisting of 2g meaningless variables (inputs not supplying output to any

gates) z[ z[2k].
We add to the circuit an enforcement mechanism for the change of variables. The nec-

essary requirements can be easily expressed in P-o-S form, and thus can be incorporated into
the bottom two levels of the circuit as additional Or gates attached to the bottommost (output)
And gate of the circuit.

We require the following implications concerning the new variables:
(1) The s 2+1 implications, for j s and r 0 2+ 1,

x[j, r] = x[j, r + (mod 2k+)].

(2) For each containment Ai Ai,, the implication

v[i’] = v[i].
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(3) For each membership x[j] Ai, the implication

v[i] := x[j, 01.

(4) For m the implication

H x[j,O]) = vii].
x[j]Ai

It may be seen that this transformation increases the size of the circuit by a linear factor
exponential in k. We make the following argument for the correctness of the transformation.

If C accepts a weight k input vector, then setting the corresponding copies x[i, j] among
the new input variables accordingly, together with appropriate settings for the new "collective"
variables v[i] yields a vector of weight between k 2+ and k 2+l + 2 that is accepted by
C’. The reason the weight of this corresponding vector may fall short of k’ k 2+ / 2k is
that not all of the subsets of the k input variables to C having value may occur among the
sets Aio An accepted vector of weight exactly k’ can be obtained by employing some of the
"padding" input variables z[i] to C’

Note that the seemingly simpler strategy of creating a new input variable for each set of at
most k inputs to C would not serve our purposes, since it would involve increasing the size n
of the circuit to possibly nk. (We are limited in our computational resources for the reduction
to f(k)n. The constant a can be an arbitrary function of the depth and weft bounds h and
but not k.)

For the other direction, suppose C’ accepts a vector of weight k’. Because of the implica-
tions in (1) above, exactly k sets ofcopies of inputs to C must have value in the accepted input
vector. Because of implications (2)-(4), the variables v[i] must have values in the accepted
input vector compatible with the values of the sets of copies. By the construction of C’, this
implies there is a weight k input vector accepted by C.

COROLLARY 3.8. (i) For > O, MONOTONE W[2t] W[2t].
(ii) For > 0 WEIGHTEDMONOTONE2t-NORMALIZED SATISFIABILITYis W[2t]-

complete.
(iii) For > O, MONOTONE 2t + 1-NORMALIZED SATISFIABILITY is in W[2t].
Proof (i) The proof come from the analysis of Step 6, Case 1.
(ii) After Step 7, we can apply Step 6, Case (again) to a 2t-normalized formula. The

result is a 2t normalized monotone formula. (This time all small gates go away by gluing the
DOMINATING SET reduction, or Theorem 2.1.)

(iii) This result follows by the transformations ofStep 7, applied to the a 2t+ 1-normalized
monotone formula.

We remark that Corollary 3.8 leads one to conjecture that MONOTONE W[2t + 1]
W[2t].

We also remark that in Downey and Fellows [56] we have proven the complementary result
for W[2t + by showing that W[2t + contains ANTIMONOTONE 2t +2-NORMALIZED
SATISFIABILITY. It is an open question whether ANTIMONOTONE CNFSAT is in W[ ].
The problem is that the relevant gadgets seem to need two levels to enact. Note that the
above theorem fails to identify a problem complete for W[ ]. In [56] we will also show that
INDEPENDENT SET and a number of other natural parameterized problems are complete
for W[ ]. There we show that W[ W[ 1, 2] where W[ 1, 2] is equivalent to the problem
of, given a formula X in conjunctive normal form and of clause size two, does X have a
satisfying assignment of weight k? While the unparameterized problem that considers (X, k)
is NP-complete (easy reduction from INDEPENDENT SET), variations of this are classically
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P-time or FPT. For instance the problem that asks if there is any satisfying assignment is
well known to be P-time, and the problem that asks if there is a satisfying assignment of
weight less than or equal to k is FPT as follows. Let X be the 2 CNF formula and let k
be given. If X has no clause without negated literals, we are done since the assignment with
all false works. Otherwise choose some clause C with only positive literals. One of these
must be made true so we begin a tree of possibilities. Continue inductively in this way. As
the clause size is bounded here by 2 this only gives a factor of 2k.

The W[t] hierarchy reflects, in a finely resolved way, the difficulty of"solution checking."
What happens if, more bluntly, we simply address fixed-parameter complexity for problems for
which solutions can be checked in polynomial time? To study this question, as we mentioned
earlier, it is natural to define the following complexity classes.

DEFINITION 3.9. A parameterizedproblem L belongs to W[P W[SAT]) (MONOTONE
W[P]) if L uniformly reduces to the parameterized circuit problem Lf for some family of
(Boolean) (monotone) circuits J.

Note that W[t] is contained in W[P] for every t, and that W[P] FPT if P NP.
With Karl Abrahamson, ], [2], we have been able to show that all of the problems identified
in Abrahamson et al. [3] as complete for PGT are uniformly complete for W[P]. (For the
reasons mentioned before, we would argue that the present theory offers a better framework
for those results and allows us to address much wider parameterized issues.) We have also
identified a number of further natural complete problems. These results and some aspects
of the structure of W[P] as well as parameterized PSPACE are reported in Abrahamson,
Downey, and Fellows [1], [2]. For PSPACE there are very interesting problems that seem
hard and are natural ones that relate to winning strategies for k-move games.

4. Summary and open problems. We have presented in this paper a basic framework
and fundamental completeness results for the study of fixed-parameter tractability. We view
the exploration of this topic as a large project, of which this constitutes only the initial step.
As can be seen from the appendix and the reference list, in the time that this paper has
been in the refereeing/publication process, there has already been quite a bit of work using
our classification. We believe that our techniques are of particular interest in the area of
molecular biology, and because of the fact that although problems may have no polynomial
time approximation scheme unless P NP, they can certainly still be in FPT.

In some ways, the study of fixed-parameter tractability and completeness addresses the
subject ofcomputational infeasibility inside of P. For related work from a different perspective
see Buss and Goldsmith [35] and the references cited there. Many ofthe approaches and issues
concerning the standard complexity classes have natural analogues in this setting that are thus
far unexplored.

Consider, for example, the issue of parallel complexity. Trivially, there is a parallel
algorithm running in time O (log n) and using nk processors to determine if a graph G on n
vertices has a dominating set of size k, for each fixed k. For a contrasting result, Lagergren [95]
has shown that for each fixed k, it can be determined in time O(log3 n) with O(n) processors
whether a graph has treewidth at most k. This suggests a natural fixed-parameter analogue of
NC. Similar remarks apply to randomized complexity. With Ken Regan, the authors have
made a little progress with randomized complexity [64].

For another example, consider approximation algorithms. One of the fundamental results
ofRobertson and Seymour (apart from their work on graph minors) is that there is an algorithm
that in time f(k) n2 finds, for a graph G of order n, either (1) a tree decomposition of width
at most 5k, or (2) evidence that the treeewidth of G is greater than k. (Of course this is now
replaced by Bodlaender’s linear time algorithm [23].) An analogous result for DOMINATING
SET might be an algorithm running in time f(k) nc that finds either (1) a dominating set
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of size O(k), or (2) evidence that the minimum size of a dominating set for G is greater
than k. Such an algorithm is presently unknown. It may even be that the existence of such
an algorithm would imply the collapse of the W-Hierarchy, much as the existence of a P-
time relative approximation algorithm for the TRAVELING SALESPERSON problem would
imply P NP (Garey and Johnson [81 ]).

Many interesting structural questions concerning the W-Hierarchy remain to be explored.
For instance we have established some connections between classical classes and our parame-
terized classes. Thus if W[2t] FPT, then 2t-NORMALIZED SATISFIABILITY is soluable
in time p(n)2(), where n is the size of the input, p is a polynomial, and v is the number
of variables. For this result and other structural results along these lines, see Abrahamson,
Downey, and Fellows [2]. Nevertheless, the precise relationship between classical classes
and the parameterized one is still unclear. We also are not aware of an oracle separating the
W-Hierarchy, nor do we know if collapse propogates upwards. (That is, if FPT W[t]
implies FPT W[t + ], for instance.)

From a concrete point of view, we also do not know if a problem such as the following
belongs to W[t] for any t.

TWO PLAYER DOMINATING SET
Instance: A graph G (V, E) and a positive integer k.
Question: Is it true that for every k-element subset V’

___
V, there is a k-element subset

V" V such that V’ tO V" is a 2k-element dominating set for G?

We have been able to prove the following density theorem.
THEOREM 4.1. For the strong uniform reduction hierarchy, ifany ofthe containments

FPT C_C_ W[I] c__ W[2] c

is proper, then there are infinitely many intervening equivalence classes of parameterized
problems with respect to strong uniform reductions.

Actually, we can prove a much stronger result along the lines of the full Ladner [94]
theorem. Also Downey and Fellows [58] contains quite a number of other structural and
relativization results. For instance we know that there is an oracle with P - NP yet the W-
Hierarchy collapses. It is an open question whether an analogue of Theorem 4.1 holds in the
uniform case. We remark that the setting of parameterized problems introduces some technical
challenges for density results. Our proof of Theorem 4.1 [58] employs techniques from the
infinite-injury priority method. Technically while the standard polynomial time reductions
are E2 (on recursive languages), the fact is that strong uniform reducibility is E3-complete,
and the other two reductions are En-complete [61 ]. (The last result needs a tree of strategies
infinite injury priority argument.)

Finally, we think the primary value ofour theory offixed-parameter tractability is that there
is, for many parameterized problems, a compelling practical interest. There are many natural
parameterized problems that may well be complete for various levels of the W-Hierarchy.
Demonstrations of such completeness would provide an explanation of why, although they are
soluable in polynomial time for each fixed parameter value, these problems resist attempts to
show fixed-parameter tractability.

5. Appendix: A problem compendium and guide to W-Hierarchy completeness,
hardness, and classification, and some open questions. This appendix contains problem
definitions and summaries of most of the presently known completeness and hardness results,
and information concerning fixed-parameter tractability for restrictions of problem instances.
References are given where appropriate. The problems discussed are grouped (more or less)
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according to level in the W-Hierarchy. Our list for FPT is obviously incomplete, but the
given examples should provide the reader with the flavour of such results.

5.1. In FPT.
Remark. The following is only a small list of the known FPT problems. Many more can

be obtained by Courcelle’s theorem applied to classes of bounded tree width, in conjunction
with Bodlaender’s theorem on Treewidth k recognition. (See e.g., Abrahamson and Fellows
[4], [5], Courcelle [49], Downey and Fellows [61 ], or Van Leeuwen 115].)

CROSSING NUMBER FOR MAX DEGREE 3 GRAPHS
Instance: A graph G all of whose vertices have max degree 3.
Parameter: A positive integer k.
Question: Does G have a an embedding with crossing number < k?

This is O(n3) by [69] via [106] [107].

ALTERNATING HITTING SET
Instance: A collection C of subsets of a set B with Icl _< kl for all c 6 C, an integer k2.
Parameter: A positive integer kkl, k2o
Question: Does player one have a forced win in < k2 moves in the following game played on
C and B? Players alternate choosing a new element of B until, for each c 6 C, some member
of c has been chosen. The player whose choice causes this to happen loses.

The general version of this problem is PSPACE-complete by a reduction from QBF (see
Garey and Johnson [81, Bp7]). This problem is in FPT by Abrahamson, Downey, and Fellows
[2]. Soluable in O(n) time for fixed kl and k2.
CUTWIDTH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is the cutwidth of G < k?

The general version of this problem is NP-complete by a reduction from SIMPLE MAX
CUT (see Garey and Johnson [81, GT44]). This problem is in FPT by Fellows and Langston
[75]. Soluable in O(n) time for fixed k (Bodlaender [17]).

DIAMETER IMPROVEMENT FOR PLANAR GRAPHS
Instance: A planar graph G (V, E).
Parameter: A positive integer k.
Question: Can G be augmented with additional edges in such a way that the resulting graph
G’ remains planar and the diameter of G’ is at most k?

This problem is in FPT by Downey and Fellows [59] after Robertson and Seymour 106].
Soluable in O (n) time for fixed k (Bodlaender 17]).

MINIMUM FILL-IN
Input: A graph G.
Parameter: A positive integer k.
Question: Can we add < k edges to G and cause G to become chordal?

The general problem is NP complete by Yannakakis [119]. Soluable in time O(ck.lEI)
and O(kSIEIIVI / f(k)) by Kaplan, Shamir, and Tarjan [91].

DISJOINT PATHS
Instance: A graph G (V, E), s sk V start vertices, t tk V erd vertices.
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Parameter: k
Question: Do there exist vertex disjoint paths P1 ek such that Pi starts at vertex Si and
ends at vertex ti for k?

The general version of this problem is NP-complete by a reduction from 3SAT (see Garey
and Johnson [81, ND40]). This problem is in FPT by Robertson and Seymour 106]. Soluable
in O(n3) time for fixed k.

FEEDBACK VERTEX SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set U of k vertices of G such that each cycle of G passes through some
vertex of U?

The general version ofthis problem is NP-complete by a reduction fromVERTEXCOVER
(see Garey and Johnson [81, GT7]). This problem is in FPT by Downey and Fellows [59]
and Bodlaender 16]. Soluable in O (n) time for fixed k.

GATE MATRIX LAYOUT
Instance: A boolean matrix M.
Parameter: A positive integer k.
Question: Is there a permutation of the columns of M so that, if in each row we change to
every 0 lying between the row’s leftmost and rightmost 1, then no column contains more than
k l’s and ,’s?

This problem is in FPT by Fellows and Langston [77]. Soluable in O (n) time for fixed
k Bodlaender [17]. Equivalent to GRAPH PATHWIDTH.

GRAPH GENUS
Instance: A graph G (V, E).
Parameter: A positive integer ko
Question: Does G have genus k?

The general version of this problem is NP-complete. This problem is in FPT by Fellows
and Langston [74] via Robertson and Seymour [106]. Soluable in time O(n3) for fixed k by
the results of Robertson and Seymour.

LONG CYCLE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a cycle of length > k?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, ND28]). This problem is in FPT by Fellows and
Langston [74]. Soluable in O(n) time for fixed k.

MAX LEAF SPANNING TREE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a spanning tree with k or more leaves?

The general version of this problem is NP-complete by a reduction from DOMINATING
SET (see Garey and Johnson [81, ND2]). This problem is in FPT by Downey, and Fellows
[59] and Bodlaender [16]. In LOGSPACE + Advice by Cai et al. [41]o Soluable in O(n)
for fixed k.
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MINIMUM DISJUNCTIVE NORMAL FORM
Instance: A set X {x, X2 Xn of variables, a set A

_
{0, }n of implicants, a positive

interger m.
Parameter: AI.
Question: Is there a DNF expression E over X, having no more than m disjuncts, such that
E is true for precisely those truth assignments in A and no others?

The general version of this problem is NP-complete by a reduction from SET COVER
(see Garey and Johnson [81, LO9]). This problem is in FPT by [66]. Soluable in O(21aln)
time for fixed A.

MINOR ORDER TEST
Instance: Graphs G (V, E) and H (V’, E’).
Parameter: H
Question: Is H minor G?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, OPEN2]) This problem is in FPT by Robertson and
Seymour 106]. Soluable in O (n3) time for fixed k.

PLANAR FACE COVER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Can G be embedded in the plane so that there are k faces which cover all vertices?

The general version ofthis problem is NP-complete by a reduction fromVERTEXCOVER
(Fellows [70]). This problem is in FPT by Bienstock and Monma [15]. Soluable in O(n)
time for fixed k.

SEARCH NUMBER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Are k searchers sufficient to ensure the capture of a fugitive who is free to move
with arbitrary speed about the edges of G?

The general version of this problem is NP-complete. This problem is in FPT by Fellows
and Langston [75]. Soluable in O(n) time for fixed k (Bodlaender [17]).

STEINER TREE
Instance: A graph G (V, E), a set S of at most k vertices in V, an integer m.
Parameter: k
Question: Is there aset of vertices T _c V S such that ITI _< m and G[StA T] is connected?

The general version of this problem is NP-complete by a reduction from EXACT COVER
(see Garey and Johnson [81, ND12]) [82]. This problem is in FPT by Dreyfus and Wagner
[65]. Soluable in time o(3kn + 2kn2 + n3) by the Dreyfus-Wagner algorithm (Wareham
[117]).

TREEWIDTH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have treewidth k?

The general version of this problem is NP-complete [8]. Soluable in O(n) time for fixed
k (Bodlaender [23]).
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VERTEX COVER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a vertex cover of size < k?

The general version of this problem is NP-complete by a reduction from 3SAT (see Garey
and Johnson [81, GT1 ]). This problem is in FPT by Downey and Fellows [59] and Buss [34];
and in fact in LOGSPACE + Adoice by Cai et al. [41]. Soluable in O(2n) or O(n + k)
time.

k-PERFECT MATCHINGS
Input: A graph G.
Parameter: A positive integer k.
Question: Does G have at least (or exactly) k perfect matchings?

The general problem offinding the maximum number ofperfect matchings is #P complete
(in the size of G) even for bipartite graphs by Valiant [113]. For k 1, the problem is in P
for bipartite graphs by the old work of Ford and Fulkerson, and for general graphs by the work
of Edmonds. The problem is O (k.e), where e denotes the number of edges, for any fixed k
by Itai, Rodeh, and Tanimoto [89]. For weighted graphs one finding the best k matchings is
FPT by, for instance, Chegireddy and Hamacher [46].

SHORT 3DIMENSIONAL MATCHING
Input: A graph G _c X Y Z with IXl IYI IZI
Parameter: A positive integer k.
Question: Does there exista subset G’

_
G such that IG’I k and for all (x, y, z) # (x’, y’, z’

both in G’, we have x :fix’, y :fi y’, and z # z’?
The general problem with k varying is NP complete and is one of Garey and Johnson’s

six basic problems. For k fixed the problem is FPT by Downey and Fellows [61 ].

5.2. In FPT(nonuniform).

GRAPH LINKING NUMBER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Can G be embedded into 3-space such that the maximum size of a collection of
topologically linked disjoint cycles is bounded by k?

This problem is in FPT(nonuniform) by Fellows and Langston [74] after Robertson and
Seymour 106]. Soluable in O (n3) time for fixed k.

5.3. In randomized FPT.

BOUNDED FACTOR FACTORIZATION
Instance: An n-bit positive integer N.
Parameter: A positive integer k.
Question: Is there a prime factor p of N such that p < n ?

This problem is in randomized FPT by Fellows and Koblitz [72], [73].

LINEAR EXTENSION COUNT
Instance: A poser (P, _<).
Parameter: A positive integer k.
Question: Does P have at least k linear extensions?
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This problem is in randomized FPT by Brightwell and Winkler [32], [33]. Not known
to be in FP T.

POLYNOMIALLY SMOOTH NUMBER
Instance: An n-bit positive integer N.
Parameter: A positive integer k.
Question: Is N nk-smooth, i.e., is every prime divisor of N bounded by n’ ?

This problem is in randomized FPT by Fellows and Koblitz [72], [73]. nk-smoothness of
n-digit numbers is a natural number-theoretic property that arises in the study of polynomial-
time complexity. For example, the concept plays a central role in the demonstration that
primality is in UP f co-UP.

SMALL PRIME DIVISOR
Instance: An n-bit positive integer N.
Parameter: A positive integer k.
Question: Does N have a nontrivial divisor less than n’?

This problem is in randomized FPT by Fellows and Koblitz [72], [73]

5.4. W[l]-complete.

THRESHOLD STABLE SET
Instance: A directed graph G (V, A).
Parameter: A positive integer k.
Question: Does G have a stable set of size k? (A stable set is a set of vertices V

___
V such

that for every vertex v of V V’, there are fewer than vertices u 6 V’ with uv A.)

This problem is W[ ]-complete by a reduction from INDEPENDENT SET. Complete for
W[ 1] by Downey and Fellows [61 ].

BINARY CLADISTIC CHARACTER COMPATIBILITY
Instance: A set C of n binary cladistic characters over m objects.
Parameter: A positive integer k.
Question: Is there a subset C’ c_ C, C’l k, such that all pairs of characters in C’ are
compatible?

The general version ofthis problem is NP-complete by a reduction from CLIQUE (Day and
Sankoff [52]). This problem is W[ ]-complete by the same reduction (Wareham 117]). The
unconstrained-character version of this problem is also W[1]-complete (Wareham
[117]). If k ICI, one obtains the problem TRIANGULATING COLORED GRAPHS
(PERFECT PHYLOGENY).

BINARY QUALITATIVE CHARACTER COMPATIBILITY
Instance: A set C of n binary qualitative characters over m objects.
Parameter: A positive integer k.
Question: Is there a subset C’

___
C, C’l k, such that all pairs of characters in C’ are

compatible?

The general version of this problem is NP-complete by a reduction from BINARY
CLADISTIC CHARACTER COMPATIBILITY (Day and Sankoff [52], Wareham [117]).
This problem is W[ ]-complete by the same reduction. The unconstrained-character version
of this problem is W[ ]-hard (Wareham 117]).
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CLIQUE
Instance: A graph G (V, E), a positive integer k.
Parameter: A positive integer k.

uestion: Is there a set of k vertices V’ __. V that forms a complete subgraph of G (that is, a
clique of size k)?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT19]). This problem is W[1]-complete by a reduction from
INDEPENDENT SET by Downey and Fellows [56]. Fixed-parameter tractable for planar
graphs and for graphs of maximum degree f (k) for any fixed function f.
INDEPENDENT SET
Instance: A graph G (V, E), a positive integer k.
Parameter: A positive integer k.
Question: Is there a set V’

___
V of cardinality k, such that Yu, v V’, uv E?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT20]). This problem is W[ ]-complete by a reduction from
ANTIMONOTONE W[1, 2] by Downey and Fellows [56]. Fixed-parameter tractable for
planar graphs.

LONGEST COMMON SUBSEQUENCE (I)
Instance: A set of k strings X1 X, over an alphabet E, a positive integer m.
Parameter: k, m
Question: Is there a string X E* of length at least m that is a subsequence of Xi for
i=1 k?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[1]-complete by a reduction from
CLIQUE by Bodlaender et al. [25].

d-RED/BLUE NONBLOCKER
Instance: A graph G (V, E) of maximum degree d where V is partitioned into two color
classes V Vred U Vblue.
Parameter: A positive integer k.
Question: Is there is a set of red vertices V’

___
Vred of cardinality k such that every blue vertex

has at least one neighbor that does not belong to V’?

This problem is W[ ]-complete by a reduction from W[ 1, s] (Downey and Fellows [56]).

SEMIGROUP EMBEDDING
Instance: A semigroup (S, .).
Parameter: A positive integer k and a semigroup (H, x).
Question: Can H be embedded into S?

This problem is W[ ]-complete by a reduction from CLIQUE (Downey and Fellows [61 ]).

SEMILATTICE EMBEDDING
Instance: A semilattice L.
Parameter: A positive integer k and a semilattice H.
Question: Is H embeddable into L?

This problem is W[ ]-complete by a reduction from CLIQUE (Downey and Fellows [61 ]).
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SET PACKING
Instance: A finite family of sets S S Sn, an integer k.
Parameter: k
Question: Does S contain a subset R of k mutually disjoint sets?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, SP3]). This problem is W[ ]-complete by a reduction from INDEPENDENT
SET (Ausiello, D’Atri, and Protasi 11 ], Wareham 117]).

SHORT CONTEXT SENSITIVE DERIVATION
Instance: A context-sensitive grammar G (N, E, I7, S), a word x
Parameter: A positive integer k.
Question: Is there a G-derivation of x of length at most k?

The general version of this problem is PSPACE-complete by a reduction from LINEAR
BOUNDED AUTOMATON ACCEPTANCE (see Garey and Johnson [81, AL20]). This
problem is W[ ]-complete by a reduction from CLIQUE (Downey et al. [62], [63].)

SHORT TURING MACHINE ACCEPTANCE
Instance: A nondeterministic Turing machine M operating on alphabet E, a word x E*.
Parameter: A positive integer k.
Question: Is there a computation of M on input x that reaches an accept state in at most k
steps?

The general version of this problem is undecidable (see for example Hopcroft and Ullman
[88]). This problem is W[1]-complete by a reduction from CLIQUE (Downey et al. [63],
Cesati [44]). In FPT if either the size of the alphabet or the number of nondeterministic
transition possibilities out of a given state is bounded.

SHORT POST CORRESPONDENCE
Instance: A Post system 17.
Parameter: A positive integer k.
Question: Is there a length k solution for I-I ?

The classical POST CORRESPONDENCE problem is a well-known undecidable prob-
lem. This problem is W[ ]-complete by a reduction from SHORT UNRESTRICTED GRAM-
MAR DERIVATION (Cai et al. [40].)

SHORT UNRESTRICTED GRAMMAR DERIVATION
Instance: An unrestricted phrase-structure grammar G, a word x.
Parameter: A positive integer k.
Question: Is there a G-derivation of x of length at most k?

The general version of this problem is undecidable (see for example Hopcroft and Ullman
[88]. This problem is W[ ]-complete by a reduction from CLIQUE (Cai et al. [40]).

SQUARE TILING
Instance: A set C of "colors," a collection T

___
C4 of "tiles" (where (a, b, c, d) denotes a

tile whose top, right, bottom, and left sides are colored a, b, c, and d, respectively), a positive
integer k < C.
Parameter: k
Question: Is there a tiling of an k x k square using the tiles in T, i.e., an assignment of a
tile A(i, j) T to each ordered pair i, j, < < k, < j < k, such that (1) if f(i, j)
(a, b, c, d) and f(i + 1, j) (a’, b’, c’, d’), then a c’, and (2) if f (i, j) (a, b, c, d) and
f(i, j + 1) (a’, b’, c’, d’), then b d’.
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The general version of this problem is NP-complete by a reduction from DIRECTED
HAMILTON PATH (see Garey and Johnson [81, GP13]). This problem is W[ 1]-complete by
Cai et al. [40], Downey and Fellows [61].

VAPNIK-CHERVONENKIS (VC) DIMENSION
Instance: A family of subsets F of a base set X.
Parameter: A positive integer k.
Question: Is the VC dimension of F at least k? (The VC dimension of a family of subsets F
of a base set X is the maximum cardinality of a set S _c X such that for each subset S’ _c S,
3Y F such that S f3 Y S’.)

The general version of this problem is LOGSNP-complete (Papadimitriou and Yan-
nakakis [100]). This problem is W[1]-complete by a reduction from CLIQUE (Downey,
Evans, and Fellows [54]). Membership of W[ 1] is proven by a generic reduction in [59].

WEIGHTED q-CNF SATISFIABILITY
Instance: A q-CNF formula X, i.e., a CNF formula such that each clause has no more than q
literals.
Parameter: A positive integer k.
Question: Does X have a satisfying assignment of weight k?

This problem is W[ ]-complete by a reduction from INDEPENDENT SET (Downey and
Fellows [56]).

5.5. W[1]-hard, in W[2].

PERFECT CODE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a k-element perfect code? (A perfect code is a set of vertices V’ c_ V
with the property that for each vertex v V there is precisely one vertex in N[v] N V’.)

This problem is W[ ]-hard by a reduction from INDEPENDENT SET and in W[2] by
(Downey and Fellows [56]). We believe that it may be difficult intermediate between W[ 1]
and W[2].

WEIGHTED EXACT CNF SATISFIABILITY
Instance: A boolean expression E in conjunctive normal form.
Parameter: A positive integer k.
Question: Is there a troth assignment of weight k to the variables of E that makes exactly one
literal in each clause of E true?

This problem is W[ ]-hard by a reduction from PERFECTCODE and in W[2] by (Downey
and Fellows [56]). Equivalent to PERFECT CODE (Downey and Fellows [56]). A related
problem is UNIQUE WEIGHTED CNF SATISFIABILITY below

UNIQUE WEIGHTED CNF SATISFIABILITY
Instance: A boolean CNF formula X.
Parameter: A positive integer k.
Question: Is there a unique weight k satisfying assignment for X?

Clearly this is in W[2]. There are obvious versions of the above for normalized satisfia-
bility at any level of the W-Hierarchy. For the CNF situation above, the problem is clearly in
the natural analogue of Dp. The reader should recall that Dp consists of the class of languages
L that can be expressed as the interchapter of a language in NP and one in co-NP. Clearly we
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can similarly define Dp[2] (or, more generally Dp[t]) as for Dp but with W[2] in place of NP.
Then this problem is in Dp[2], as we see below. Before we prove this we remark that using the
Valiant-Vazirani technique 114] we can show that UNIQUE WEIGHTED CNF SATISFIA-
BILITY for arbitary boolean formulae is the same as WEIGHTED CNF SATISFIABILITY
for boolean formulae under randomized reductions. However, on the face of it, it is not clear
if this is true for any finite level of the W-Hierarchy since for instance weight is lost in the
[VV] proof. Nevertheless using a new argument based on coding theory (Hadamard codes)
together with Ken Regan the authors [64] have shown that a weighted version of [114] holds
for all > 2. This seems a very fruitful area to analyse.

UNIQUE WEIGHTED CNF SATISFIABILITY is in Dp[2]

It suffices to describe how to say that a CNF expression has at least two satisfying expres-
sions in W[2]. Let C be the circuit corresponding to X. Take two copies of C. Add oIxI
many gates to express the fact that the first copy of C has a satisfying assignment different
from the second. Now for k choose q and r appropriately and take q copies of the the left
circuit and r copies of the right. Add new gates to express the fact that the inputs of the left q
must all be equal and the fact that the inputs of the right r must all be equal. Now accept C if
the new circuit has a weight (q / r)k accepting input. Then for the correct choice of (q, r),
depending only on k, C has two or more accepting inputs if and only if the new circuit has
one of weight (q + r)k.

We remark that this seems to be where UNIQUE DOMINATING SET would lie. We do
not at present know if there are Dp[t] complete problems.

5.6. W[l]-hard, in W[P].

PERMUTATION GROUP FACTORIZATION
Instance: A set A of permutations A Sn, x Sn.
Parameter: A positive integer k.
Question: Does x have a factorization of length k over A?

This problem is W[ 1]-hard by a reduction from PERFECT CODE and in W[P] by Cai
et al. [40].

SUBSET SUM
Instance: A set of integers X {xl Xn}, integers s, k.
Parameter: k
Question: Is there a subset X’ __c X of cardinality k such that the sum of the integers in X’
equals s ?

The general version of this problem is NP-complete by a reduction from Partition (see
Garey and Johnson [81, SP13]). This problem is W[1]-hard by a reduction from PERFECT
CODE Downey and Fellows [56] and in W[P] by Fellows and Koblitz [73]. Not known to
belong to W[t] for any t.

5.7. W[1]-hard.

c-BALANCED SEPARATOR
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does there exist a set of vertices S, SI _< k, such that every component of G[ V S]
has at most otl V vertices?

This problem is W[ 1]-hard by a reduction from CLIQUE by Kaplan and Shamir [90].
This problem is W[ ]-hard for every fixed c.
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COLORED PROPER INTERVAL GRAPH COMPLETION
Instance: A graph G (V, E), a vertex coloring c V k}.
Parameter: k
Question: Does there exist a proper interval supergraph of G which respects c?

This problem is W[1 ]-hard by a reduction from INDEPENDENT SET by Kaplan and
Shamir [90].

COLORED UNIT INTERVAL GRAPH COMPLETION
Instance: A graph G (V, E), a vertex coloring c V k}.
Parameter: k
Question: Does there exist a graph G’ (V, E’) such that E’

_
E, G’ is a unit interval graph

and G’ is properly colored by c?

The general version of this problem is NP-complete by Kaplan and Shamir [90]. This
problem is W[ ]-hard by Kaplan and Shamir [90].

EXACT CHEAP TOUR
Instance: A weighted graph G (V, E), a weight function w E Z.
Parameter: A positive integer k.
Question: Is there a tour through at least k nodes of G of cost exactly S?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, ND22]). This problem is W[ ]-hard by [56]. See the
related SHORT CHEAP TOUR problem.

INVMAX
Instance: A circuit C, an initial configuration conf0 describing the placing of inverters on
connections between gates in G.
Parameter: A positive integer k.
Question: Is there a subset A of the gates in G to which DeMorgan’s rules can be applied
such that the resulting circuit will have at least k gates without any inverters attached to their
output lines?

The general version of this problem is NP-complete by a reduction from INDEPENDENT
SET (Simon 109]). This problem is W[ ]-hard by the same reduction.

PROPER INTERVAL SANDWICH WITH BOUNDED CLIQUE SIZE
Instance: A sandwich instance S (V, E l, E3).
Parameter: A positive integer k.
Question: Does there exist a sandwich G for S which is a proper interval graph such that the
size of largest clique is at most k?

The general version of this problem is NP-complete by Kaplan and Shamir [90]. This
problem is W[ ]-hard by a reduction from COLORED INTERVAL GRAPH COMPLETION
by Kaplan and Shamir [90].

REACHABILITY DISTANCE FOR VECTOR ADDITION SYSTEMS (PETRI NETS)
Instance: Aset T ofm lengthn integer-valued vectors T {x (x Xn) 1, < < m},
a nonnegative starting vector s (s Sn), a nonnegative target vector (t tn).
Parameter: A positive integer k.
Question: Is there a choice of k indices i ik, < ij < m for j k such that

s + Y’= xij and such that every intermediate sum is nonnegative in each component,

that is, Sr + q ij
j_..iXr >0forq kandr n?

This problem is W[1]-hard by a reduction from CLIQUE (Downey et al. [63]).
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SHORT TAPE NDTM COMPUTATION (I)
Instance: An/-tape nondeterministic Turing machine M operating on alphabet E, a word
xEE*.
Parameter: A positive integer k.
Question: Is there a computation of M on input x that reaches an accept state in at most k
steps?

The general version of this problem is undecidable (see Hopcroft and Ullman [88]). This
problem is W[1]-hard by a reduction from SHORT TURING MACHINE COMPUTATION
(Cesati [44]).

SHORT TAPE NDTM COMPUTATION (II)
Instance: An/-tape nondeterministic Turing machine M operating on alphabet E, a word
x E E*, a positive integer k.
Parameter: k,
Question: Is there a computation of M on input x that reaches an accept state in at most k
steps?

The general version of this problem is undecidable (see Hopcroft and Ullman [88]). This
problem is W[ ]-hard by a reduction from SHORT TURING MACHINE COMPUTATION
(Cesati[44]).

SUBSET PRODUCT
Instance: A set of integers X {x Xn }, integers a m, k.
Parameter: k
Question: Is there a subset X’

_
X of cardinality k such that the product of the integers in X’

is congruent to a mod m?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, SP14]). This problem is W[l]-hard by a reduction from PERFECT CODE
by Fellows and Koblitz [72], [73].

COLORED GRAPH AUTOMORPHISM
Instance: A 2-colored (bipartite) graph Go
Parameter: A positive integer k.
Question: Is there an automorphism preserving colors moving exactly k blue vertices?

W[ ]-hard by a reduction from ANTIMONOTONE 2SAT (Downey and Fellows [61 ]).

5.8. W[2]-complete.

DOMINATING SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’ _c V with the property that every vertex of G either
belongs to V’ or has a neighbor in V’?

The general version of this problem is NP-complete by a reduction from VERTEX
COVER (see Garey and Johnson [81, GT2]). This problem is W[2]-complete by a reduction
from WEIGHTED CNF SATISFIABILITY (Downey and Fellows [55], this paper). Fixed-
parameter tractable for planar graphs (Downey and Fellows [59]). Problem is W[2]-hard if
the dominating set V’ is required to be either connected or total, i.e., for each vertex in V there
is an edge to some vertex in V’ (Bodlaender and Kratsch [30].
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HITTING SET
Instance: A finite family of sets S S Sn comprised ofelements from U {u blm }.
Parameter: A positive integer k.
Question: Is there a subset T

___
U of size k such that for all Si S, Si A T 7 0?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SP8]). This problem is W[2]-complete by a reduction from SET
COVER (Ausiello, D’Atri, and Protasi 11 ], Wareham 117]).

INDEPENDENT DOMINATING SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’

___
V that is both an independent set and a dominating

set in G?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT2]). This problem is W[2]-complete by Downey and Fellows
[55]. Fixed-parameter tractable for planar graphs (Downey and Fellows [59]).

SET COVER
Instance: A finite family of sets S S1 Sn.
Parameter: A positive integer k.
Question: Is there a subset R c__ S whose union is all elements in the union of S?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, SP5]). This problem is W[2]-complete by a reduction from DOMINATING
SET by Paz and Moran 101 ], Wareham 117].

TOURNAMENT DOMINATING SET
Instance: A toumament T.
Parameter: A positive integer k.
Question: Does T have a dominating set of cardinality at most k?

The general version of this problem is LOGSNP-complete (Papadimitriou and Yan-
nakakis [100]). This problem is W[2]-complete by a reduction from DOMINATING SET
(Downey and Fellows [59]).

WEIGHTED BINARY INTEGER PROGRAMMING
Instance: A binary matrix A, a binary vector b.
Parameter: A positive integer k.
Question: Does A x > b have a binary solution of weight k?

The general version of this problem is NP-complete by a reduction from 3SAT (see
Garey and Johnson [81, MP1 ]). This problem is W[2]-complete by a reduction from MONO-
TONEWEIGHTED CNF SATISFIABILITY (Downey and Fellows, this paper). The problem
WEIGHTED EXACT BINARY INTEGER PROGRAMMING asks that equality hold is hard
for WIll.

5.9. W[2]-hard, in W[P].

MONOCHROME CYCLE COVER
Instance: An edge-colored graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’

___
V with the property that every monochrome cycle

in G contains a vertex in V’?
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This problem is W[2]-hard and in W[P] by Downey and Fellows [61]. Not known to
belong to W[t] for any t, but easily shown to be in W[P].

MONOID FACTORIZATION
Instance: A set A of self-maps on [n], a self-map h.
Parameter: A positive integer k.
Question: Is there a factorization of h of length k over A?

This problem is W[2]-hard by a reduction from DOMINATING SET and in W[P by Cai
et al. [40].

5.10. W[2]-harfl.

DOMINATING CLIQUE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’ _c V that forms a complete subgraph of G and is also
a dominating set for G?

This problem is W[2]-hard by a reduction from DOMINATING SET (Bodlaender and
Kratsch [30]). Problem is in FPT if V’ is also required to be efficient, i.e., each vertex not in
V’ is dominated by exactly one vertex in V’ (Bodlaender and Kratsch [30]).

LONGEST COMMON SUBSEQUENCE II
Instance: A set of k strings X1 Xk over an alphabet , a positive integer m.
Parameter: k, m
Question: Is there a string X 6 * of length at least m that is a subsequence of Xi for
i=l

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[2]-hard by a reduction from DOM-
INATING SET (Bodlaender, et al. [25]).

MAXIMAL IRREDUNDANT SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set V’ __. V of cardinality k such that (1) each vertex u 6 V’ has a private
neighbor and (2) V’ is not a proper subset of any V"

_
V which also has this property? (A

private neighbor of a vertex u 6 V’ is a vertex u’ (possibly u’ u) with the property that for
every vertex v V’, u v, u’ N[v].)

This problem is W[2]-hard by a reduction from DOMINATING SET (Bodlaender and
Kratsch [30]). Originally proven to be W[ 1] hard by Downey and Fellows (see [61 ]).

PRECEDENCE CONSTRAINED k-PROCESSOR SCHEDULING
Instance: A set T of unit-length tasks, a partial order -< on T, a positive integer deadline D,
a number of processors k.
Parameter: k
Question: Is there a map f T -+ {1 D}, such that for all t, t’ T, -< t’ implies
f(t) < f(t’), and for all i, < _< D, if-1 (i)[ < k?

The general version of this problem is Open (Garey and Johnson [81, OPENS]). This
problem is W[2]-hard by a reduction from DOMINATING SET (Bodlaender, Fellows, and
Hallett [28]).
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STEINER TREE
Instance: A graph G (V, E), a set S of at most k vertices in V, an integer m.
Parameter: k, m
Question: Is there aset of vertices T c_ V S such that ITI _< m and G[StA T] is connected?

The general version of this problem is NP-complete by a reduction from EXACT COVER
(see Garey and Johnson [81, ND 12, GKR]). This problem is W[2]-hard by a reduction from
DOMINATING SET (Bodlaender and Kratsch [30]).

5.11. W[3]-hard, in W[4].

DOMINATING THRESHOLD SET
Instance: A graph G (V, E).
Parameter: Positive integers k, r.
Question: Is there a set V’ _c V of at most k vertices such that for every vertex u, N[u]
contains at least r elements of V’?

This problem is W[3]-hard and in W[4] by Fellows [69].

5.12. W[t]-complete.

WEIGHTED t-NORMALIZED SATISFIABILITY
Instance: A t-normalized boolean expression X.
Parameter: A positive integer k.
Question: Does X have a satisfying truth assignment of weight k?

This problem is W[t]-complete by Downey and Fellows (this paper).

< k WEIGHTED t-NORMALIZED SATISFIABILITY
Instance: A boolean formula X.
Parameter: A positive integer k.
Question." Does X have a satisfying assignment of weight < k?

For >_ 2 this problem is W[t]-complete by Cai and Chen [37]-[39] This fact also
follows by the main lemma of this paper. For the problem is in FPT.

5.13. W[t]-hard, for all t, in W[P].

SHORT PHONOLOGICAL SEGMENTAL DECODING
Instance: An integer k, a simplified segmental grammar s (F, S, D, R, cp, C) such that
the number of mutually exclusive rule sets in R, [Rm.e. 1, is at most k, string s S+.
Parameter: k
Question: Is there a string u D such that g (u) s?

The general version of this problem is NP-complete by a reduction from CLIQUE Ristad
105]. This problem is W[t]-hard by a reduction from WEIGHTED t-NORMALIZED SATIS-
FIABILITY and in W[P] by Downey et al. [63]. See Downey et al. [63] and Ristad 105] for
definitions of simplified segmental grammars. The same proof also implies the W[t]-hardness
and membership in W[P] of SHORT PHONOLOGICAL SEGMENTAL ENCODING.

5.14. W[t]-hard, for all t.

BANDWIDTH
Instance: A graph G (V, E)o
Parameter: A positive integer k.
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Question: Is there a 1"1 linear layout f V {1 IV I} such that u v E implies
If(u)- f(v)l < k?

The general version ofthis problem is NP-complete by areduction from 3PARTITION (see
Garey and Johnson [81, ND40]). This problem is W[t]-hard by a reduction from UNIFORM
EMULATION ON A PATH (Bodlaender, Fellows, and Hallett [28]). Remains W[t]-hard for
all when given graph is directed and layout must respect arc direction, or when given graph
is a tree ([28]). The related problem CUTWlDTH is FPT (Fellows and Langston [74]).

COLORED CUTWIDTH
Instance: A graph G = (V, E), an edge coloring c E --+ {1 r }o
Parameter: A positive integer k.
Question: Is there a 1" linear layout f V {1 vI} such that for each color j
{1 k} and for each i, < _< IVI 1, we have I{uv c(uv) j and f(u) < and

f(v) > + 1}1 _< r?

This problem is W[t]-hard by a reduction from LONGESTCOMMON SUBSEQUENCE
II (Bodlaender, Fellows, and Hallett [28]).

DOMINO TREEWIDTH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is the domino treewidth of G at most k?

The general version of this problem is NP-complete by a reduction from LONGEST
COMMON SUBSEQUENCE II by Bodlaender and Engelfriet [27]. This problem is W[t]-
hard by the same reduction.

FEASIBLE REGISTER ASSIGNMENT
Instance: A directed acyclic graph G (V, E), a positive integer k, a register assignment
r" V {R1 Rk}.
Parameter: k
Question: Is there a linear ordering f of G, and a sequence So, Sl Siv of subsets of V,
such that So 0, Sly contains all vertices of in-degree 0 in G, and for all i, < < IVI,
f-l (i) Si, Si {f-l(/)} c_ Si-i and Si-i contains all vertices u for which (f-l (i), u) E,
and for all j, < j _< k, there is at most one vertex u Si with r(u) Rj ?

The general version of this problem is NP-complete by a reduction from 3SAT (see
Garey and Johnson [81, PO2]). This problem is W[t]-hard by a reduction from LONGEST
COMMON SUBSEQUENCE II (Bodlaender, Fellows, and Hallett [28].)

INTERVALIZING COLORED GRAPHS (DNA PHYSICAL MAPPING)
Instance: A graph G (V, E), vertex coloring c V {1 k}.
Parameter: k
Question: Does there exist a supergraph G’ (V, E’) where E _c E’ and G’ is properly
colored by c and is an interval graph?

The general version of this problem is NP-complete by a reduction from BETWEEN-
NESS (Golumbic, Kaplan, and Shamir [85]) and INDEPENDENT SET (Fellows, Hallett, and
Wareham [71]). This problem is W[t]-hard by a reduction from COLORED CUTWIDTH
(Bodlaender, Fellows, and Hallett [28]). No polynomial time algorithm is known for fixed k.

LONGEST COMMON SUBSEQUENCE II
Instance: A set of k strings X1 X, over an alphabet E, a positive integer m.



FIXED PARAMETER TRACTABILITY 909

Parameter: k
Question: Is there a string X 6 E* of length at least m that is a subsequence of Xi for
i=1 k?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[t]-hard by a reduction from MONO-
TONE WEIGHTED t-NORMALIZED SATISFIABILITY (Bodlaender, Fellows, and Hallett
[28]).

LONGEST COMMON SUBSEQUENCE III
Instance: A set of k strings XI Xk over an alphabet E, a positive integer m.
Parameter: k, E[
Question: Is there a string X 6 E* of length at least m that is a subsequence of Xi for
i=1 k?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[t]-hard by a reduction from Bod-
laender et al. [24].

PROPER INTERVAL GRAPH COMPLETION PROBLEM WITH MINIMUM
CLIQUE SIZE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does there exist a graph G’ (V, E’), E’

___
E, such that G’ is an interval graph

and has minimum clique size k?

The general version of this problem is NP-complete by Kaplan and Shamir [90]. This
problem is W[t]-hard by Kaplan and Shamir [90]. Equivalent to the BANDWIDTH problem
by Kaplan and Shamir [90] (also Hallett [87]).

PROPER INTERVAL GRAPH COMPLETION WITH BOUNDED CLIQUE SIZE
Input: A graph G.
Parameter: A positive integer k.
Question: Is there a G’

_
G which is a proper interval graph and has clique size at most k?

The general problem is NP-complete and the parameterized problem hard for W[t] for
all by Kaplan, Shamir, and Tarjan [91 ].

RESTRICTED COMPLETION TO A PROPER INTERVAL GRAPH WITH BOUNDED
CLIQUE SIZE
Input: A graph G together with a set E of edges prohibited from G’ below.
Parameter: A positive integer k.
Question: Is there a G’ D G which is a proper interval graph and has clique size at most k,
and G’ has no edges from E?

TRIANGULATING COLORED GRAPHS
Instance: A graph G (V, E), vertex coloring c V -- {1 k}o
Parameter: k
Question: Does there exist a supergraph G’ (V, E’) where E __G_ E’ and G’ is properly
colored by c and G’ is triangulated?

The general version of this problem is NP-complete by a reduction from INDEPENDENT
SET (Bodlaender, Fellows, and Hallett [28]). This problem is W[t]-hard by a reduction from
LONGEST COMMON SUBSEQUENCE II [28]
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UNIFORM EMULATION ON A PATH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does there exist a function f V {1 Vl!k} such that for all u v E
implies If(u) f(v)l < and for all i, If-l(i)l < k?

This problem is W[t]-hard by a reduction from MONOTONE WEIGHTED t-NORMAL-
IZED SATISFIABILITY (Bodlaender, Fellows, and Hallett [28]). Remains W[t]-hard for all
when given graph is a tree [28].

5.15. W[P]-complete.

k-BASED TILING
Instance: A tiling system with distinguished tiles
Parameter: A positive integer
Question: Is there a tiling of the n n plane using the tiling system and starting with exactly
k distinguished tiles in a line ?

Reduction consists of a generic simulation of a Turing machine (see Downey and Fellows
[611).

k-INDUCED 3CNF SATISFIABILITY
Instance: A 3CNF formula
Parameter: A positive integer k.
Question: Is there a set of k variables and a truth table assignment to those variables that
causes o to unravel?

This problem is W[P]-complete by a reduction from CHAIN REACTION CLOSURE
(Abrahamson, Downey, and Fellows [2]) (also Abrahamson et al. [3]).

k-INDUCED SATISFIABILITY
Instance: A boolean formula
Parameter: A positive integer k.
Question: Is there a set of k variables and a truth table assignment to those variables that
causes q) to unravel?

This problem is W[P]-complete by a reduction from k-INDUCED 3CNF SATISFIABIL-
ITY (Abrahamson, Downey, and Fellows [2]).

CHAIN REACTION CLOSURE
Instance: A directed graph D (V, A).
Parameter: A positive integer k.
Question: Does there exist a set V’ of k vertices of D whose chain reaction closure is D? (A
chain reaction closure of V’ is the smallest superset S of V’ such that if u, u’ S and arcs ux,
u’x are in D then x S.)

This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY (Abrahamson, Downey, and Fellows [2]).

DEGREE 3 SUBGRAPH ANNIHILATOR
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’

_
V such that G V’ has no subgraph of minimum

degree 3?
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This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY (Abrahamson, Downey, and Fellows [2]).

LINEAR INEQUALITIES
Instance: A system of linear inequalities.
Parameter: A positive integer k.
Question: Can we delete k of the equalities and get a system that is consistent over the
rationals?

This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY taken from Abrahamson et al. [3] (Abrahamson, Downey, and
Fellows [2]).

MINIMUM AXIOM SET
Instance: A finite set S of sentences, an implication relation R consisiting of pairs (A, t)
whereAC Sandt S.
Parameter: A positive integer k.
Question: Is there a set So __c S with IS01 _< k and a positive integer n such that if we define
Si, < < n, to consist of exactly those 6 S for which either Si- or there exists a set
U c_ Si- such that if (U, t) R then Sn S?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, L017]). This problem is W[P]-complete by a reduction from WEIGHTED
CIRCUIT SATISFIABILITY (Downey et al. [63] and Abrahamson, Downey, and Fellows
[2]).

SHORT CIRCUIT SATISFIABILITY
Instance: A boolean circuit C with n gates and at most k log n inputs and one output.
Parameter: k
Question: Is there a setting of the inputs that cause C to output 1 ?

This problem is W[P]-complete by a reduction from WEIGHTED CIRCUIT SATISFI-
ABILITY (Abrahamson et al. [3], also Abrahamson, Downey, and Fellows [2]).

SHORT SATISFIABILITY
Instance: A formula o on n variables, a list of at most k log n variables of
Parameter: k
Question: Is there any setting of the distinguished varaibles that causes o to unravel?

This problem is W[P]-complete by a reduction from SHORT CIRCUIT SATISFIABIL-
ITY (Abrahamson, Downey, and Fellows [2]).

THRESHOLD STARTING SET
Instance: A directed graph D (V, A).
Parameter: A positive integer k.
Question: Does G have astarting set of size k? (A starting setis a set of vertices V’ _c V with
the property that if we begin with a pebble on each of the vertices in V’ and subsequently place
pebbles on any vertex having at least incoming arcs from pebbled vertices then eventually
every vertex of the graph is pebbled.)

This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY (Abrahamson, Downey, and Fellows [2]).

WEIGHTED MONOTONE CIRCUIT SATISFIABILITY
Instance: A boolean monotone circuit C.
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Parameter: A positive integer k.
Question: Is there a weight k input vector accepted by C?

This problem is W[P]-complete by a reduction from MINIMUM AXIOM SET (Downey
et al. [63] and Abrahamson, Downey, and Fellows [2]).

WEIGHTED PLANAR CIRCUIT SATISAFIABILITY
Instance: A planar decision circuit C.
Parameter: A positive integer k.
Question: Does C have a satisfying assignment of weight k?

This problem is W[P]-complete by a reduction from WEIGHTED CIRCUIT SATISFI-
ABILITY (Abrahamson, Downey, and Fellows [2]).

Comment. The following classes are not discussed in this paper but are listed for com-
pleteness. They are analogues of the QBFSAT and PSPACE in some sense and correspond as
we see to the complexity of k-move games. They are discussed at length in ], [2]. In each
case the first problem defines the class.

5.16. AW[SAT]-complete.

PARAMETERIZED QBFSAT
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables a
boolean formula X involving the variables s tO tO Sr, integers k kr.
Parameter: k kr
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of s2 there exists a size k3 subset t3 of s3 such that (alternating quantifiers) such
that, when the variables in t tO to tr are made true and all other variables are made false,
formula X is true?

PARAMETERIZED MONOTONE QBFSAT
This is the same as PARAMETERIZED QBFSAT except that the formulae are monotone

(Abrahamson, Downey, and Fellows [2]).

PARAMETERIZED ANTIMONOTONE QBFSAT

This is the same as PARAMETERIZED QBFSAT except that the formulae are antimono-
tome (Abrahamson, Downey, and Fellows [2]).

5.17. AW[SATl-hard.

COMPACT DTM COMPUTATION I
Instance: A deterministic Turing machine M operating on tape alphabet E, a word x 6 E*.
Parameter: A positive integer k.
Question: Does M on input x accept after visiting at most k work tape squares?

This problem is A W[SAT]-hard by a reduction from PARAMETERIZED QBFSAT (r,
kl kr) (Cesati [44]).

COMPACT DTM COMPUTATION II
Instance: A deterministic Turing machine M operating on tape alphabet E, a word x 6 E*.
Parameter: A positive integer k, Ix [.
Question: Does M on input x accept after visiting at most k work tape squares?

This problem is A W[SAT]-hard by a reduction from PARAMETERIZED QBFSAT (r,
kl kr) (Cesati [44]).
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5.18. AW[Pl-complete.

PARAMETERIZED QCSAT
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
circuit X with the variables s tO tO sr as inputs, integers k kr.
Parameter: r, k kr.
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of s there exists a size k3 subset t3 of s3 such that (alternating quantifiers) such
that, when the inputs in t tO tO tr are set to and all other inputs are set to 0, circuit X
outputs ?

PARAMETERIZED MONOTONE QCSAT
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
montone circuit X with the variables s tO tO Sr as inputs, integers k kr.
Parameter: r, k kr.
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of s2 there exists a size k3 subset t3 of s3 such that (altemating quantifiers) such
that, when the inputs in t tO tO tr are set to and all other inputs are set to 0, circuit X
outputs ?

This problem is A W[P]-complete by a reduction from PARAMETERIZED QCSAT
(Abrahamson, Downey, Fellows, [2]) and MINIMUM AXIOM SET (Downey et al. [63]).

PARAMETERIZED ANTIMONOTONE QCSAT

This is the same as PARAMETERIZED QCSAT except the circuit must be antimono-
tone. A W[P] complete by a reduction from PARAMETERIZED MONOTONE QCSAT.
(Abrahamson, Downey, and Fellows [2]).

5.19. AW[P]-hard.

COMPACT TURING MACHINE COMPUTATION
Instance: A nondeterministic Turing machine M operating on tape alphabet E, a wordx 6 E*.
Parameter: A positive integer k.
Question: Is there an accepting computation of M on input x that visits at most k work tape
squares?

This problem is AW P]-hard by a reduction fromPARAMETERIZEDQCSAT (r, k
kr) (Abrahamson, Downey, and Fellows [2]).

COMPACT TURING MACHINE COMPUTATION II
Instance: A nondeterministic Turing machine M operating on tape alphabet E, a wordx 6 E*.
Parameter: A positive integer k, Ix 1.
Question: Is there an accepting computation of M on input x that visits at most k work tape
squares?

This problem is AW[P]-hardby a reduction fromPARAMETERIZED QCSAT (r; k
kr) (Abrahamson, Downey, and Fellows [2]).

5.20. AW[*]=AW[1] -----AW[t]-complete. Note that Abrahamson, Downey, and Fellows
proved that A W[.] A W[2] in [1 ], [2]. This was recently improved to show that AW[.]
AW[ 1] (and in fact N[.] N[ ]) by Downey, Fellows, and Regan [64].
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PARAMETERIZED QBFSATt
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
boolean formula X involving the variables s tA tA Sr which consists of altemating layers
of conjunctions and disjunctions with negations applied only to variables, integers k kr.
Parameter: r, k kr.
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of se there exists a size k3 subset t3 of s3 such that (alternating quantifiers) such
that, when the variables in t tA U tr are made true and all other variables are made false,
formula X is true?

UNITARY PARAMETERIZED QBFSAT/
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
boolean formula X involving the variables s tA tA Sr which consists of alternating layers
of conjunctions and disjunctions with negations applied only to variables.
Parameter: A positive integer k.
Question: Is it the case that there exists a variable t of s such that for every variable t of

se there exists a variable t3 of s3 such that (alternating quantifiers) such that, when the
variables in t tr are made true and all other variables are made false, formula X is true?

This problem is A W[t]-complete by Abrahamson, Downey, and Fellows ], [2].

SHORT GENERALIZED GEOGRAPHY
Instance: A directed graph D (V, A), a specified vertex v0 V.
Parameter: A positive integer k.
Question: Does player one have a winning strategy in k moves for the following game?
Players altemately choose a new arc from A. The first arc chosen must have its tail at o0 and
each subsequently chosen arc must have its tail at the vertex that was the head of the previous
arc. The first player unable to choose a new arc loses.

The general version of this problem is P SPACE-complete by a reduction from QBFSAT
(see Garey and Johnson [81, GP2]). This problem is A W[.]-complete by a reduction from
UNITARY PARAMETERIZED QBFSAT/(Abrahamson, Downey, and Fellows [2]).

SHORT NODE KAYLES
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does player one have a winning k-move strategy in the following game? That is,
players pebble a vertex not adjacent to any pebbled vertex. The first player with no play loses.
Player one plays first.

The general version of this problem is P SPACE-complete by a reduction from QBFSAT
(see Garey and Johnson [81, GP3]). This problem is A W[.]-complete by a reduction from
UNITARY PARAMETERIZED QBFSAT/(Abrahamson, Downey, and Fellows [2]).

5.21. In W[1].

IRREDUNDANT SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set V’

___
V of cardinality k having the property that each vertex u V’

has a private neighbor? (A private neighbor of a vertex u 6 V’ is a vertex u’ (possibly u’ u)
with the property that for every vertex v 6 V’, u # v, u’ N[v].)

IRREDUNDANT SET is in W[ 1] by Downey and Fellows [55].
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5.22. Open problems.

BOUNDED HAMMING WEIGHT DISCRETE LOGARITHM
Instance: An n-bit prime, a generator g of F;, an element a
Parameter: A positive integer k.
Question: Is there a positive integer x whose binary representation has at most k l’s (that is,
x has a Hamming weight of k) such that a g?

Candidate for membership in randomized FPT (Fellows and Koblitz [72], [73]). This
problem is of practical significance because the use of exponents of fairly small Hamming
weight has been suggested in order to speed up cryptosystems based on discrete log (see [72],
[73], and references).

DIRECTED FEEDBACK VERTEX SET
Instance: A directed graph D (V, A).
Parameter: A positive integer k.
Question: Is there a set S of k vertices such that each directed cycle of G contains a member
of S?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT8]). This can be solved in O(n+) by brute force for each
fixed k. A related problem DIRECTED FEEDBACK ARC SET asks for a set A of at most k
arcs such that every directed cycle contains at least one arc from A. These problems can be
shown to have the same <m-degree. The undirected version of this problem is in FPT.

IMMERSION ORDER TEST
Instance: A graph G (V, E).
Parameter: A graph H (V’, E’).
Question: Is H _<i G where _<i denotes the immersion ordering?

JUMP NUMBER
Instance: A poset P (P, <).
Parameter: A positive integer k.
Question: Is the jump number of P < k?

The general version of this problem is NP-complete (See Pulleybank 103]). By E1-Zahar
and Schmerl [67], there is an O(n+) algorithm.

PLANAR t-NORMALIZED WEIGHTED SATISFIABILITY
Instance: A planar t-normalized formula X.
Parameter: A positive integer k.
Question: Does X have a satisfying assignment of weight k?

This question is of some interest for since it might be a candidate for an intractable
problem that is not W[ 1] hard.

PLANAR MULTIWAY CUT
Instance: A weighted planar graph G (V, E) with terminals {x x }.
Parameter: k
Question: Is there a set of edges of total weight < k’ whose removal disconnects each terminal
from all the others?

The general version of this problem is NP-complete (Dalhaus et al. [50]). Best known
complexity is O((4)n2- logn) by [50] where it is asked if the problem is FPT.
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POLYMATROID RECOGNITION
Instance: A k-polymatroid M.
Parameter: A positive integer k.
Question: Is M hypergraphic?

See Vertigan and Whittle [116].

RESTRICTED VALENCE ISOMORPHISM
Instance: Two graphs G (V, E) and H (V’, E’).
Parameter: A positive integer k.
Question: Are G and H isomorphic graphs such that the valences of the vertices of both G
and H are bounded by k?

Luks [97] has shown that there is an O(rt f(k)) algorithm to decide the parameterized
version. The question is whether the problem is FPT. If this problem is W[1]-hard then
GRAPH ISOMORPHISM is not in P unless the W-Hierarchy collapses. The reader should
note that this may give an ingress into the GRAPH ISOMORPHISM problem, in the sense
one might be able to demonstrate intractability (i.e., assuming that W[1]# FPT) of the
unparameterized version by considering some parameterized version instead. The point is
that we have already seen many instances where the "complexity" of the unparameterized
version is quite different than the parameterized one.

SHORT CHEAP TOUR
Instance: A graph G (V, E), an edge weighting w E Z.
Parameter: A positive integer k.
Question: Is there a tour through at least k nodes of G of cost at most S?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, ND22]). Known to be hard for W[1] if we ask that
the tour cost exactly S (Downey and Fellows [56]).

SHORT GENERALIZED HEX
Instance: A graph G (V, E) with two distinguished vertices Vl and 02.
Parameter: A positive integer k.
Question: Does player one have a winning strategy of at most k moves in the following game?
Player one plays with white pebbles and player two with black ones. Pebbles are placed on
nondistinguished vertices alternately by player one then player two. Player one wins if he can
construct a path of white vertices from Vl to v2.

The general version of this problem is P SPACE-complete by a reduction from QBF (see
Garey and Johnson [81, GP1]). Candidate for A W[.]-completeness (Abrahamson, Downey,
and Fellows [2]).

SMALL MINIMUM DEGREE 4 SUBGRAPH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a subgraph of G of minimum degree at least 4 and of cardinality at most k?

TOPOLOGICAL CONTAINMENT
Instance: A graph G (V, E).
Parameter: A graph H.
Question: Is H topologically contained in G?

This can be solved in O(n(le’l) time by brute force together with the k-DISJOINT
PATHS algorithm of Robertson and Seymour 106].
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WEIGHTED MONOTONE PLANAR BOOLEAN CIRCUIT SATISFIABILITY
Instance: A monotone planar decision circuit C.
Parameter: A positive integer k.
Question: Does C have a satisfying assignment of weight k?

Candidate for W[SAT]-completeness (Abrahamson, Downey, and Fellows [2]).

Acknowledgments. Thanks to Karl Abrahamson for useful early discussions about this
work, and for suggestions on improving the exposition. Special thanks to Mike Hallett and
H. Todd Wareham, who prepared the final version of the appendix.
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