

Joining	the	Mob	at	Clearlink	 	
TORREY	POWELL,	Clearlink	
CRAIG	ANSLOW,	Victoria	University	of	Wellington	

Software	engineers	historically	have	largely	worked	alone	and	in	a	vacuum	on	key	projects.	This	has	caused	problems	with	transparency,	
creates	knowledge	towers,	increases	technical	debt,	and	stifles	innovation.	Mob	Programming	has	given	Clearlink	solutions	to	all	of	those	
problems	and	created	benefits	that	have	been	unforeseen	during	our	first	two	years	of	adopting	the	practice.	From	our	experiences,	we	
outline	some	best	practices	that	will	be	beneficial	to	all	those	who	wish	to	also	adopt	this	technique.	

1. INTRODUCTION	

Clearlink—a	SYKES	company	headquartered	in	Salt	Lake	City,	Utah,	serves	many	of	the	world’s	leading	brands	
through	 intelligent	 marketing,	 sales,	 and	 data	 science	 solutions.	 In	 early	 2017,	 Clearlink	 adopted	 a	 new	
technique	called	mob	programming	[1,2]	to	improve	team	processes.	Almost	two	years	later,	Clearlink's	entire	
engineering	team	has	implemented	this	transformative	approach	to	software	development.	Other	departments	
and	 teams	outside	of	 software	 engineering	 are	 even	 catching	 collaboration	 fever	 and	are	 running	 their	 own	
experiments	with	mobbing.	

Mob	programming	 is	a	concept	 featuring	 the	driver/navigator	model	used	 in	pair	programming	 [6],	mob	
programming	evolved	from	a	commitment	to	quality	and	innovation.	Instead	of	two	engineers	working	side	by	
side,	 as	 is	 customary	 in	 pair	 programming,	 a	 larger	 group	 of	 developers,	 testers,	 product	 experts,	 coding	
experts,	 and	managers	 come	 together	on	a	 single	project.	They	communicate	and	collaborate	while	working	
collectively	on	a	product.		

The	results	of	the	experiment	have	been	undeniable:	Software	engineers	are	engaged,	the	code	is	clean,	and	
the	products	are	delivered	bug-free.	All	of	these	benefits	result	 in	a	major	reduction	in	technical	debt	and	an	
increase	in	innovation.	Other	benefits	include:	a	reduction	of	knowledge	towers,	higher	technical	expertise,	and	
cross-team	collaboration.	

In	the	words	of	Agile	coach	and	programming	consultant	Woody	Zuill,	Mob	programming	is	"a	whole	team	
approach"	where	"all	 the	brilliant	minds	work	on	 the	same	 thing	at	 the	same	 time	 in	 the	same	space	on	 the	
same	computer"	[1,2].	

2. MOB	PROGRAMMING	-	HOW	IT	WORKS	

At	 its	 core,	mob	 programming	 is	 a	 grassroots	movement	 that	 still	 hasn't	 garnered	 the	 industry	 attention	 it	
deserves—partly	because	of	its	unorthodox	nature.	It	is	easy	to	understand	why	some	software	engineers	and	
companies	might	hesitate	to	give	mob	programming	a	try,	and	easier	still	to	predict	the	questions	they	might	
ask.	Why	have	 three	 to	 five	developers	work	on	a	single	 task?	Can't	 they	accomplish	more	 if	 they	divide	 the	
task	between	 them?	Why	 shrink	 your	 resource	pool?	How	 is	 this	method	 cost	 effective?	These	 similar	 style	
questions	were	often	aimed	at	the	practice	of	pair	programming	[6,7].	

While	 it	 may	 seem	 counterintuitive	 to	 have	 an	 entire	 team	 dedicated	 to	 one	 task,	 research	 shows	 that	
having	 multiple	 developers	 working	 on	 a	 single	 task	 is	 effective.	 In	 1995,	 famed	 software	 engineer	 Larry	
Constantine	 noted	 in	 his	 book	Constantine	 on	 Peopleware	 that	 pair	 programmers	were	 developing	 bug-free	
code	more	quickly	than	ever	[3].		

Author's	address:	Torrey	Powell,	Salt	Lake	City,	UT,	USA;	email:	torrey.a.powell@gmail.com	
Second	author's	address:	Craig	Anslow,	Wellington,	New	Zealand;	email:	craig@ecs.vuw.ac.nz	
Copyright	2019	is	held	by	the	authors.	

Joining	the	Mob	at	Clearlink:	Page	-	2	

A	few	years	later,	a	seminal	study	on	pair	programming	conducted	at	the	University	of	Utah	discovered	that	
while	 it	 took	 pair	 programmers	 an	 average	 of	 60%	more	 time	 to	 complete	 an	 assignment	 (compared	with	
developers	working	alone),	that	number	dropped	to	15%	after	an	adjustment	period	[4].	After	that	adjustment,	
"all	 students	 reported	 they	 had	 overcome	 the	 constant	 urge	 to	 grab	 the	 mouse	 or	 keyboard	 from	 their	
partner’s	 hands."	 Researchers	 also	 found	 that	 85%	 of	 students	 involved	 in	 the	 experiment	 "indicated	 a	
preference	 for	 pair	 programming,"	 and	 those	 same	 adjustments	 and	 preferences	 could	 apply	 to	 mob	
programming.	Knowing	this,	it	helps	to	think	of	mob	programming	as	a	long-term	investment	in	enhancing	the	
quality	of	a	software	product.		

For	far	too	long,	companies	have	judged	the	productivity	of	a	team	by	only	the	amount	of	development	time	
it	takes	to	create	a	feature.	Not	taking	into	account	the	total	lifecycle	of	the	feature.	The	time	to	develop,	test,	
and	fix	or	in	other	words	technical	debt.	Fixing,	especially	post-release	is	quite	expensive.	Mob	programming	
might	increase	initial	development	time,	especially	when	people	are	new	to	the	approach.	However,	the	total	
development	time,	including	testing	and	fixing	decreases	dramatically	with	the	reduction	or	even	elimination	
of	technical	debt.		

Mob	programming	empowers	individual	developers	to	work	more	efficiently	as	a	team.	When	they're	stuck,	
time	 is	 not	 wasted	 looking	 for	 answers.	 The	 collaboration	 of	 a	 team	 effort	 solves	 problems	 faster	 and	
progresses	the	development	past	any	individual	hurdles.	

Developers	 working	 in	 this	 way	 can	 bond	 with	 each	 other,	 learn	 together,	 grow	 as	 a	 team,	 and	 watch	
massive	projects	take	shape	in	real	time.	What's	more,	mob	programming	dovetails	with	agile	frameworks	and	
in	particular	Scrum	and	XP	methodologies	many	companies	now	rely	on	[8].	Sprint	planning,	sprint	reviews,	
and	 daily	 stand-up	 meetings	 can	 all	 be	 applied	 to	 mob	 programming	 if	 you	 operate	 in	 teams	 of	 mobs.	
Otherwise,	these	rituals	are	self-managed	and	are	not	even	needed.	

The	 value	 of	mob	 programming	 helps	 to	 accelerate	 software	 delivery	while	 keeping	 software	 engineers	
firmly	on	track	makes	it	indispensable	in	an	agile	office	environment.	

3. IMPLEMENTING	A	MOB	PROGRAMMING	MODEL	

At	Clearlink,	our	adoption	of	mob	programming	was	somewhat	serendipitous.	Our	team	was	collaborating	on	a	
project	when	one	of	our	software	engineers	suggested	we	work	together	to	make	sure	we	were	all	on	the	same	
page.	Instead	of	everyone	retreating	to	their	individual	workstations	with	plans	to	regroup	later,	we	set	up	a	
big	screen	TV	and	took	turns	driving	and	navigating	through	the	task.		

At	the	same	time,	our	Marketing	Technology	Department	had	a	project	in	the	works	that	was	taking	longer	
than	expected.	Director	of	Marketing	Technology,	Nate	Wixom,	had	brought	in	a	consultant	to	help	refine	their	
programming	process.	This	client	had	heard	of	mob	programming,	 looked	at	 the	way	we	were	working,	and	
pointed	out	that	we’d	inadvertently	become	mob	programmers	ourselves.		

Intrigued	and	eager	to	maximize	our	involvement,	Wixom	and	I	decided	to	investigate	the	concept	further.	
We	attended	a	small	mob	programming	conference	in	Boston—the	only	one	of	its	kind	at	the	time—where	we	
met	several	developers	 from	Hunter	Industries,	where	mob	programming	was	first	conceived	 in	2011	under	
the	guidance	of	Woody	Zuill	[1].		

That	meeting	 led	 us	 to	 San	Marcos,	 California,	where	Hunter	 Industries	 is	 based.	We	 gleaned	 additional	
information	about	mob	programming,	its	methodology,	and	its	benefits.	We	were	already	practicing	an	adapted	
version	 of	 mob	 programming	 at	 Clearlink	 at	 that	 point,	 but	 knowing	 it	 had	 a	 formal	 name	 and	 industry	
backing—and	seeing	how	it	could	work	when	refined	to	a	sophisticated	degree—	gave	us	the	vision	to	propel	it	
forward	at	Clearlink.	

3.1 How	We	Got	Buy-In	
When	we	returned	from	Hunter	Industries	and	based	on	our	new	garnered	knowledge,	Wixom	and	I	went	to	
our	Chief	Technology	Officer,	Bruce	Westenskow,	with	 a	 proposal:	we	would	 try	mob	programming	 for	 one	
year	to	demonstrate	the	benefits	of	this	approach	and	prove	its	value	to	the	company.	Twelve	months	would	
give	us	enough	time	to	get	our	engineers	comfortable	with	the	idea,	prove	the	return	on	investment	in	the	back	
end,	and	illustrate	the	positive	impact	that	mob	programming	could	have	on	our	products.	

The	developers	outside	our	small	test	team	had	not	yet	been	exposed	to	mob	programming.	Naturally,	they	
were	 still	 unsure	 and	 a	 bit	 unreceptive	 at	 applying	 it.	 Our	 challenge	wasn’t	 just	 to	 get	 buy-in	 from	 our	 top	
executives	but	also	to	persuade	these	software	engineers	into	adopting	a	collaborative	development	process.	
We	knew	they	needed	to	experience	mob	programming	fully	to	appreciate	the	efficiency	and	to	catch	the	vision	

Joining	the	Mob	at	Clearlink:	Page	-	3	

the	way	we	did.	So,	we	went	to	an	electronics	store,	bought	a	TV	that	became	our	mob	programming	screen,	set	
up	a	few	desks	across	from	it,	and	put	our	engineers	to	work.	

3.2 Making	Our	Case	
The	attitude	at	Clearlink	was	that	we	needed	to	come	into	the	new	age	and	undergo	a	renaissance	of	sorts	in	
our	technology	department.	Our	stakeholders	were	open	to	the	idea	of	mob	programming.	They	were	hopeful	
it	would	 improve	our	 team	processes.	With	 a	 little	persuasion	and	encouragement,	 our	 engineers	were	 also	
willing	to	try	it.	However,	getting	full	buy-in	wasn’t	easy.	Because	mob	programming	is	often	broached	by	IT	or	
by	 the	 engineers	 themselves,	 it’s	 up	 to	 those	 individuals	 to	 convince	 the	 executive	 team	 that	we	 needed	 to	
implement	this	new	process.		

Getting	managers	 on	board	helped,	 and	because	we	proposed	 testing	 the	 concept	 for	 a	 year	 to	prove	 its	
worth,	we	felt	like	we	had	a	better	chance	of	converting	upper	management.	It	simply	wasn’t	possible	for	us	to	
fully	experience	the	efficiencies	mob	programming	can	create	in	a	matter	of	weeks	or	even	months.	We	needed	
time	 to	 build	 a	 project	 from	 start	 to	 finish	 and	 time	 for	 our	 developers	 to	 grow	 comfortable	with	 this	 new	
model.		

After	a	month	or	two	with	four	engineers	completely	working	in	a	mob,	which	consisted	of	a	daily	routine	
of	seven	hours	in	a	mob	and	one	hour	of	personal	learning,	they	reported	that	they	enjoyed	mob	programming	
and	they	realized	 it	was	helping	 them	hone	their	skills	and	perfect	 their	craft	by	allowing	them	to	 learn	and	
grow.		

4. RESULTS	

Implementing	mob	programming	wasn’t	about	having	a	shiny	new	toy	or	going	outside	the	box	simply	for	the	
sake	of	trying	something	new.	We	knew	there	was	tangible	research	to	support	this	way	of	working	and	that	
the	benefits	we’d	experience	would	be	tangible,	too.		

The	intellectual	level	of	our	team	has	risen	exponentially	since	implementing	mob	programming.	Engineers	
know	 new	 languages	 and	 are	 practicing	 coding	 techniques	 that	 they	 have	 learned	 from	 their	 peers.	 Our	
engineers	 are	 constantly	 learning	 from	 each	 other.	 Their	 skills	 are	 sharper	 than	 ever,	 projects	 are	 being	
completed	more	quickly,	the	quality	of	the	end	product	is	superior,	and	the	team	has	increased	its	efficiency.	
Instead	of	releasing	products	built	in	silos	and	backtracking	to	fix	issues	or	make	improvements,	we	are	able	to	
test	 new	 iterations	 seamlessly	 and	 quickly	 complete	 products.	 This	 allows	 us	 to	 move	 on	 to	 others	 with	
confidence	and	provides	freedom	to	innovate.	

Implementing	mob	programming	requires	communication,	open	minds,	and	patience	on	the	front	end.	But	
the	outcome	 is	worth	 the	exertion.	Over	 the	past	 two	years,	our	 team	has	completely	 rewritten	our	 flagship	
application	 from	 the	ground	up.	This	application	supports	our	entire	 sales	organization.	The	application	has	
been	solid	and	effective	with	very	few	known	issues	and	nearly	zero	technical	debt.	

4.1 What	Worked	and	What	Needed	to	Change	
Because	of	mob	programming,	we’ve	streamlined	our	development	work	to	become	more	productive,	produce	
fewer	bugs,	and	remain	more	focused	on	the	project	at	hand.	Our	new	workflow	uses	the	Scrum	framework—
the	product	owner	works	with	a	team	of	developers	collaborating	on	a	single	project.	We’re	seeing	less	waste,	
fewer	delays,	increased	communication,	enhanced	trust	among	team	members,	and	more	knowledge	overall.		

Prior	to	adopting	mob	programming	some	of	our	products	and	projects,	which	consisted	of	3rd	party	API’s	
and	 our	 internal	 CRM,	were	 being	 developed	 by	 individual	 engineers	 in	 a	 silo,	 isolated	 from	 the	 rest	 of	 the	
team.	 This	 created	 knowledge	 towers	 that	 prohibited	 scalability	within	 the	 team	 and	 knowledge	 loss	when	
attrition	occurred	or	when	engineers	went	on	vacations.	While	our	reliance	on	a	siloed,	waterfall	project	model	
provided	a	structured	approach	to	software	development,	it	also	led	to	wasted	resources	if	developers	moved	
in	 a	 direction	 that	 didn’t	 meet	 the	 stakeholders’	 needs.	 With	 so	 many	 means	 of	 communication	 and	
collaboration	at	our	disposal	today,	the	value	of	working	in	the	same	room	is	sometimes	forgotten.		

Our	 use	 of	 agile	 software	 development,	 specifically	 Scrum,	 combats	 issues	 like	 lack	 of	 direction	 with	
feedback,	 iterations,	 and	 accountability.	 But	 there	was	 a	 point	where	we	were	making	 so	many	 changes	 to	
address	those	issues	that	our	team	became	fatigued.	With	mob	programming,	they	felt	better.	They	responded	
positively	to	the	social	stimulus	it	provided,	the	opportunity	for	learning,	and	the	ability	to	work	without	being	
tied	down.	

The	 software	 engineers	 also	 felt	 a	 new	 found	 freedom.	 They	 could	 go	 on	 vacation	 without	 taking	 their	
laptop.	They	also	became	aware	that	this	freedom	was	also	an	insurance	policy	of	sorts.	We	have	an	engineer	

Joining	the	Mob	at	Clearlink:	Page	-	4	

whose	 wife	 was	 expecting	 twins.	 She	 gave	 birth	 to	 them	 prematurely	 and	 they	 ended	 up	 needing	 to	 be	
hospitalized	 for	 several	 weeks.	 It	 was	 very	 reassuring	 to	 him	 to	 be	 able	 to	 leave	 and	 spend	 considerable	
amounts	of	time	away	from	work	and	to	be	with	his	family.	Nate	Wixom,	his	manager	at	the	time,	was	able	to	
just	say	“Go,	we	have	you	covered.”	This	was	a	tremendous	lesson	that	all	of	the	team,	managers	and	engineers	
alike,	learned.	With	mob	programming,	flexibility	is	gained.	But	it	is	not	the	only	benefit.	In	just	a	short	period	
of	 time,	 we	 had	 completely	 cross	 trained	 the	 team.	 Siloed	 roles	 could	 now	 be	 filled	 by	 various	 individuals.	
Liberating	is	the	word	that	I	feel	summarizes	the	feelings	of	both	the	engineering	team	and	the	business.	

We	 also	 implemented	 Hunter’s	 suggestion	 to	 have	 the	 junior	 software	 engineers	 lead	 the	 technical	
discussions	to	really	get	them	thinking	about	the	problem	that	needed	solving.	They	may	not	have	known	the	
right	answer,	but	putting	those	junior	developers	in	the	spotlight	gave	them	an	opportunity	to	write	the	code	
that	 produced	 a	 solution.	More	 senior	 software	 engineers	made	 suggestions	 for	modifications,	 allowing	 the	
junior	developers	to	observe	another	way	of	addressing	the	problem.	In	the	end,	the	whole	team	came	up	with	
the	best	possible	solution,	which	increased	team	member	engagement.		

Our	junior	developers	are	now	more	comfortable	in	the	spotlight	because	of	this	approach.	One	of	the	core	
characteristics	of	mob	programming	that	worked	for	us	is	that	it’s	a	safe	and	open	atmosphere	built	on	respect	
for	where	everyone	 is	 in	 their	careers.	Our	senior	developers	know	they’re	 teachers,	while	 the	 juniors	know	
they’re	 learners.	However,	 there	are	plenty	of	 instances	where	the	senior	developers	can	also	 learn	from	the	
juniors.	

We	 feel	our	 team	has	done	an	excellent	 job	of	maintaining	 this	 characteristic.	When	we	have	brought	on	
new	employees,	it	has	been	interesting	to	see	how	they	adapt	to	our	culture,	as	many	aren’t	used	to	working	
with	their	peers	in	a	mob	programming	approach	or	even	in	a	culture	of	respecting	your	peers.	

There	 are	 some	 aspects	 of	 mob	 programming,	 though,	 that	 we	 now	 know	 we	 should	 have	 handled	
differently.	Among	the	takeaways	we	got	 from	Hunter	Industries	was	that	we	shouldn’t	 immediately	convert	
everyone	to	a	mob	way	of	working—that	we	should	do	it	over	time	instead	as	a	gradual	approach.	

When	we	 looked	at	our	department’s	makeup	early	 in	 this	 transition,	 it	made	sense	 to	merge	 two	 teams	
into	one.	My	team	was	initially	part	of	the	Data	Science	Department,	but	we	combined	it	with	the	Development	
Operators	team,	including	the	engineers	that	worked	on	our	legacy	systems,	and	suddenly,	my	five	developers	
grew	into	a	group	of	12.	Instead	of	rolling	out	the	new	approach	little	by	little	to	give	our	developers	more	time	
to	adjust,	we	ended	up	jumping	in	with	both	feet.	

With	this	 jumping	in	with	both	feet	approach,	we	learned	some	valuable	 lessons	very	quickly.	One	lesson	
that	has	constantly	remained	in	my	thoughts	is	the	experience	of	one	engineer.	He	was	hesitant	at	first	to	the	
thought	of	working	side	by	side	with	others	all	day	long.	However,	he	was	open	to	giving	it	a	shot.	I	placed	him	
on	a	very	mature	mob	that	consisted	of	mostly	senior	engineers.	After	a	couple	of	weeks	his	response	was	one	
of	pure	excitement	for	mob	programming.	He	was	completely	engaged	with	the	product	and	his	mob.	Shortly	
thereafter,	we	 had	 the	 need	 to	 adjust	 the	mobs.	With	 his	 excitement	 and	 energy,	 I	 decided	 to	 give	 him	 the	
opportunity	 to	 mentor	 a	 couple	 of	 less	 experienced	 engineers.	 He	 now	 found	 himself	 as	 the	 only	 senior	
engineer	in	the	mob	and	the	great	opportunity	to	shape	how	that	mob	functioned.	He	performed	at	a	very	high	
level	 for	 the	 first	 few	 weeks	 but	 he	 began	 to	 feel	 fatigued	 and	 lost	 his	 excitement	 as	 he	 felt	 he	 wasn’t	
progressing	past	 the	storming	phase.	He	 felt	 like	he	was	carrying	 the	 load,	solely	responsible	 for	completing	
tasks	in	a	timely	fashion,	and	responsible	to	teach	the	engineers	that	were	less	experienced.	Ultimately	he	lost	
his	enthusiasm	for	mob	programming	and	left	the	team.	We	quickly	learned	that	the	composition	of	the	mob	
needed	to	have	a	balance.	

In	 hindsight,	 I	 wish	 we	 could	 have	 implemented	 mob	 programming	 more	 slowly,	 because	 some	 of	 my	
developers	 felt	 unsure	 about	 this	 new	method.	 As	 is	 the	 case	 in	most	 office	 environments,	 we	 knew	 some	
individuals	were	more	introverted	and	others	more	comfortable	 in	a	mob	dynamic	where	their	actions	were	
more	visible	to	their	colleagues.	Not	everyone	was	content	with	our	new	method	of	developing	software,	but	I	
met	 with	 my	 team	 of	 12	 engineers	 one-on-one	 to	 identify	 and	 address	 their	 concerns	 so	 we	 could	 move	
forward	with	projects.	

5. BEST	PRACTICES	

Our	 experience	 implementing	 mob	 programming	 at	 Clearlink	 has	 led	 us	 to	 many	 conclusions.	 The	 best	
practices	we	developed	through	our	experimentation	made	the	integration	process	as	smooth	as	possible.	

Joining	the	Mob	at	Clearlink:	Page	-	5	

5.1 Mob	Research	
At	Clearlink,	we	made	a	point	of	learning	as	much	as	we	could	about	mob	programming	before	putting	it	into	
practice.	Attending	conferences,	networking,	reading	mob	programming	experience	reports	[9,10,11,12,13,14],	
and	 speaking	 with	 those	 who’ve	 successfully	 implemented	 the	 approach	 was	 crucial	 because	 it	 helped	
strengthen	our	argument	for	implementing	the	process	and	prepared	us	for	what	lay	ahead.	

5.2 Teamwork	–	Whole	Team	Approach	
For	mob	programming	to	be	effective,	each	member	of	the	team	has	to	be	willing	to	work	together	toward	that	
common	goal.	Ultimately,	focusing	our	team’s	power	on	each	project	produced	better	outcomes,	faster	delivery	
on	projects,	and	a	better	customer	experience	overall.	

We	established	a	rule	 that	nobody	could	be	on	their	phones	at	a	mob	station,	as	 this	was	distracting	and	
disheartening	to	the	team;	in	a	mob,	everyone	has	to	pull	their	weight.	If	someone	needs	to	make	a	phone	call	
or	step	away	to	answer	a	text	message,	they	temporarily	remove	themselves	and	pick	up	again	once	they	get	
back.		

Likewise,	 if	a	developer	needs	to	take	a	break	from	the	intensity	of	the	experience	and	reset	their	mental	
and	social	muscles,	they’re	free	to	do	so.	We	encourage	individuals	to	take	frequent	breaks	to	combat	burnout	
and	fatigue.	With	practice,	though,	handling	the	process	becomes	much	easier	for	everyone.	

During	mob	programming	sessions,	each	developer	has	anywhere	 from	4	 to	15	minutes	at	 the	keyboard.	
For	engineers	that	are	new	to	mobbing	this	time	is	shorter,	before	rotating	to	another	driver	so	each	engineer	
can	contribute.	We	rotate	to	ensure	each	driver	and	navigator	experiences	every	part	of	the	process.	To	further	
build	 camaraderie	 and	 an	 effective	work	 rhythm,	 our	 engineers	 stay	 on	 their	 teams	 for	 at	 least	 six	months.	
However,	after	that	time,	they	can	request	an	assignment	change.	

5.3 Recruitment	-	Mob	Sessions	
Once	 our	mob	 programming	model	was	 in	 place,	we	 knew	 it	was	 vital	 to	work	 closely	with	 our	 company’s	
recruiter	to	prepare	new	hires	for	the	work	they	could	do	with	us.	Our	interview	process	now	includes	having	
candidates	sit	in	on	an	active	mob	for	an	hour,	ensuring	there	are	no	surprises	after	they’re	hired.	

Without	the	need	to	set	up	a	new	developer’s	environment,	train	them,	and	get	them	up	to	speed	on	current	
projects,	 onboarding	 new	 engineers	 is	 far	 quicker	 and	 easier.	 New	 hires	 are	 welcomed	 into	 the	 mob	 and	
immediately	contribute	to	the	best	of	their	abilities.	They	learn	on	the	job	by	watching	others	and	doing	their	
part	alongside	our	most	senior	engineers.		

5.4 Giving	Credit	
The	idea	with	mob	programming	is	that	the	focus	shifts	from	giving	and	taking	credit	for	development	work	to	
concentrating	on	producing	better	work	for	the	good	of	the	company.	That	said,	individual	team	members	still	
need	to	be	recognized	for	their	contributions;	their	job	satisfaction	and	career	progression	demands	this	kind	
of	acknowledgment	on	a	regular	basis.		

Effectively	recognizing	our	developers’'	good	work	was	 important	 to	us.	We	hosted	 internal	contests	and	
award	competitions	to	keep	our	team	motivated	over	time.	Sprint	retrospective	meetings	were	opportunities	
to	recognize	specific	achievements,	look	back	on	the	week,	and	share	what	we	learned	as	a	group.	

6. DISCUSSION	

At	Clearlink,	we’ve	fully	adopted	mob	programming,	and	we	always	have	a	seat	available	for	anyone	who	wants	
to	 join	 in.	Our	mob	spaces	 involve	more	people	 in	each	project	 than	before,	 and	everyone	brings	 something	
unique	to	the	keyboard.	It’s	part	of	our	culture	now,	and	that’s	only	going	to	continue.		

Today,	we	have	one	mob	member	who	works	remotely,	and	we’re	exploring	the	possibility	of	adding	more.	
The	key	will	be	finding	a	way	for	spontaneous	conversations—the	kind	in	the	breakroom	after	everyone	has	
walked	away	from	the	mob	station—to	occur	even	if	multiple	team	members	work	outside	the	office.		

We’re	now	up	to	11	mobs,	averaging	3	to	5	people	per	group.	Other	departments	within	Clearlink,	including	
our	 digital	 PR/outreach	 team,	 have	 taken	 notice	 and	 incorporated	 the	 principles	 of	 mob	 programming	
techniques	into	their	work.	

Our	advice	 to	companies	 interested	 in	pursuing	 this	method	of	software	development	 is	 to	be	persistent.	
Even	if	you’re	given	the	autonomy	you	need	to	set	up	your	first	mob	station,	success	will	take	time—but	don’t	
be	afraid	to	experiment	with	mob	programming.	Give	your	developers	the	opportunity	to	increase	knowledge	

Joining	the	Mob	at	Clearlink:	Page	-	6	

while	 improving	 the	 quality	 of	 your	 products.	 At	 Clearlink,	 we	 wouldn’t	 have	 it	 any	 other	 way	 as	 mob	
programming	has	increased	productivity	and	team	morale.	

7. ACKNOWLEDGEMENTS	

I	would	like	to	give	my	sincere	appreciation	to	my	team	at	Clearlink	that	has	been	extremely	patient	with	the	
process	 of	 adopting	mob	 programming.	We	 have	 constantly	 iterated	 on	 our	 processes	 and	will	 continue	 to	
iterate	so	we	can	become	the	best	that	we	can	be.	Thank	you	for	your	patience	and	excitement	toward	change.	
Likewise,	I	would	like	to	express	gratitude	to	the	senior	management	at	Clearlink	for	giving	me	the	opportunity	
of	making	drastic	change	and	supporting	it	to	the	point	of	making	it	successful.	Everyone	at	Clearlink	has	been	
supportive	and	excited	for	the	opportunity	to	become	better	and	mob	programming	has	accomplished	that.	

I	want	to	give	a	big	thank	you	to	my	shepherd,	Johanna	Rothman,	for	her	knowledge	and	insights.	I	could	
not	have	completed	this	report	without	you.	

Lastly	 my	 wife	 Jennifer.	 Thank	 you	 for	 always	 being	 supportive	 and	 for	 giving	 me	 extremely	 valuable	
feedback	and	suggestions.	I	can	always	count	on	you.	
REFERENCES		
[1]	Zuill,	Woody,	“Mob	Programming	–	A	Whole	Team	Approach”	Agile	2014.	https://www.agilealliance.org/resources/experience-
reports/mob-programming-agile2014/		
[2]	Zuill,	Woody,	"Mob	Programming	–	a	Whole	Team	Approach"	GOTO	Copenhagen	2017,	
https://www.youtube.com/watch?v=SHOVVnRB4h0	
[3]	Constantine,	Larry	(1995),	"Constantine	on	Peopleware,"	Yourdon	Press	Computing	Series	
[4]	Williams,	Laurie,	Kessler,	Robert,	Cunningham,	Ward,	Jeffries,	Ron,	"Strengthening	the	Case	for	Pair	Programming,"	IEEE	Software	
2000.	
[5]	Ashkenas,	Ron,	"Jack	Welch's	Approach	to	Breaking	Down	Silos	Still	Works,"	Harvard	Business	Review,	https://hbr.org/2015/09/jack-
welchs-approach-to-breaking-down-silos-still-works	
[6]	Williams,	Laurie,	Kessler,	Robert,	(2002)	“Pair	Programming	Illuminated”,	Addison-Wesley	
[7]	Cockburn,	Alistair	and	Williams,	Laurie,	“The	Costs	and	Benefits	of	Pair	Programming,”	XP	2000.	
[8]	Kropp,	Martin,	Meier,	Andreas,	Anslow,	Craig,	and	Biddle,	Robert.	“Satisfaction,	Practices,	and	Influences	in	Agile	Software	
Development.”	In	Proceedings	of	the	International	Conference	on	Evaluation	and	Assessment	in	Software	Engineering	(EASE),	2018.		
[9]	Boekhout,	Karel.	“Mob	Programming:	Find	Fun	Faster.”	In	Proceedings	of	the	International	Conference	on	Agile	Software	Development	
(XP),	2016.	
[10]	Wilson,	Alexander.	“Mob	Programming	-	what	works,	what	doesn’t”	In	Proceedings	of	the	International	Conference	on	Agile	Software	
Development	(XP),	2015.	
[11]	Buchan,	Jim,	and	Pearl,	Mark,	“Leveraging	the	Mob	Mentality:	An	Experience	Report	on	Mob	Programming.”	In	Proceedings	of	the	
International	Conference	on	Evaluation	and	Assessment	in	Software	Engineering	(EASE),	2018.		
[12]	Kerney,	Jason,	“Mob	Programming	–	My	first	team”,	In	Proceedings	of	Agile	2015.	

