
A Study of the Effectiveness of Usage Examples in
REST API Documentation

S M Sohan, Frank Maurer∗
∗ Dept. of Computer Science

University of Calgary
Canada

{smsohan, frank.maurer}@ucalgary.ca

Craig Anslow
School of Eng. and Computer Science

Victoria University of Wellington
New Zealand

craig@ecs.vuw.ac.nz

Martin P. Robillard
School of Computer Science

McGill University
Canada

martin@cs.mcgill.ca

Abstract—Generating and maintaining REST API documenta-
tion with usage examples can be a time consuming and expensive
process for evolving APIs. Most REST API documentation tools
focus on automating the documentation of the API objects, but
require manual effort for capturing usage examples. Conse-
quently, REST API developers need to know the cost vs. benefit
of providing usage examples in the documentation to prioritize
the documentation efforts. To this end, we have performed
a controlled study with 26 experienced software engineers to
understand problems that REST API client developers face while
using an API without usage examples. We found that REST API
client developers face productivity problems with using correct
data types, data formats, required HTTP headers and request
body when documentation lacks usage examples. By following
the REST API documentation suggestions from this paper, REST
API developers can reduce the errors, improve success rate and
satisfaction of API client developers.

Index Terms—API; REST; Documentation; Usage Examples;
Empirical Study; Controlled Study; Productivity;

I. INTRODUCTION

REST APIs are used as the predominant application integra-
tion mechanism over the Internet. Generating and maintaining
REST API documentation with usage examples can be an
expensive process because most API documentation tools
do not support effective usage examples. Researchers have
emphasized API documentation as a key factor that impacts
API usability both positively and negatively. To improve API
documentation, researchers have recommended incorporating
usage examples in the API documentation.

In a resource constrained environment, it is important to
understand the value of usage examples on REST API usability
to allocate sufficient attention and efforts towards incorporat-
ing examples in the API documentation. While it is expected
that examples help API client developers, API developers need
to know what to include in the examples and why.

The documentation of REST APIs has distinctive features
compared to the documentation of local APIs such as Java
libraries. For example, local API documentation commonly
comprises the description of classes and interfaces with their
methods. In contrast, REST API documentation needs to
include information about HTTP headers, request and response
body and the data representation formats such as JSON, XML.
The existing research on API usability areas have primarily
focused on local APIs. In our work we have focused on

understanding the impact of usage examples within the realm
of the distinctive REST API features.

We designed and performed a controlled study with experi-
enced software engineers to understand how REST API client
developers are affected while using an API documentation
that describes the API elements but lacks usage examples.
Participants were divided into two groups and given the same
set of API tasks to complete. One group was given the official
WordPress REST API documentation and another group was
given an enhanced version of the documentation where three
usage examples were added. Using a novel technique, we
collected 539 API calls made by the participants. We ana-
lyzed the data and observed recurring obstacles faced by the
participants while performing the API tasks using the official
documentation that lacks usage examples. Our contributions
on this paper are as follows:

• We provide a list of obstacles that REST API client
developers face while performing API tasks using docu-
mentation that lacks usage examples.

• We provide a list of recommendations for REST devel-
opers to be used as a guideline to incorporate usage
examples in API documentation.

• We provide empirical evidence that usage examples in
REST API documentation help API client developers
perform API tasks with higher developer satisfaction, less
time, and better success rate.

The remainder of this paper is organized as follows: In
Section II we present our research question. In Section III we
discuss our methodology in terms of the study requirements,
the selected API of the study and the participant selection, the
study setup, data collection and analysis methods. In Section
IV we discuss the results of our analysis. We discuss the
threats to validity and provide a summary of the related work
in Sections V and VI respectively.

II. RESEARCH QUESTION

This research is aimed at answering the following question:

• RQ. What obstacles do API client developers face when
using a REST API documentation that lacks usage exam-
ples?

III. METHODOLOGY

To answer the aforementioned research question, the study
has the following requirements:

• R1. Representative API. We had to choose an existing
REST API that is currently used by API client developers.
Selecting a mature REST API for this study reduces
the possibility that the obstacles we observe in the
study are the results of insignificant accidental problems
symptomatic of an immature technology. We selected a
familiar domain so that participants are able to relate to
the API features without requiring upfront training. In
addition to selecting the API, we had to select tasks that
are related to the core features provided by the API to
represent a common usage area of the API.

• R2. Open source. To be able to understand the impact of
usage examples, we needed to select an open-source API
where we can add new examples to the documentation
for performing this study.

• R3. Time bound. We applied a maximum time constraint
for each participant to measure the rate of success within
a limited time frame. As a result, the study needs to
be setup such that participants are able to focus on
performing the tasks minimizing any overhead.

• R4. Participant Selection. Developers with prior ex-
perience on REST APIs need to be recruited as study
participants to perform the study within a limited amount
of time and in a realistic setup. Furthermore, to reduce
a learning bias, only participants with no prior experince
of using the WordPress REST API V2 are accepted for
this study.

A. Study API

We selected the WordPress REST API V2 for this study.
WordPress is a blog-like open-source (R2) framework used by
over 409 million people to visit 23.6 billion pages each month
1. The API allows programmatic access to list, create, update,
and delete WordPress data such as blog posts, comments,
users, images, and tags.

The WordPress REST API V2 has been published and
maintained since May 2015. Before January 2017, the Word-
Press REST API V2 was distributed as a plug-in where
WordPress users could optionally install the API component.
The following statistics are for the plug-in installation numbers
between May 2015 and October 2016:2

• Total installations: ≈ 248K installs of the plug-in.
• Average daily installations: ≈ 500.
Starting January 2017, the WordPress REST API V2 is no

longer required to be installed as a separate plug-in since it
is bundled with WordPress installation. According to the code
repository, there are a total of 99 and 46 contributors that
had at least one commit to the code repository of the API
and its documentation, respectively. These properties satisfy
R1 AND R2, our requirements for using a representative API.

1https://wordpress.com/activity/
2https://wordpress.org/plugins/rest-api/stats/

By selecting an open-source project we are able to access the
source-code to inspect the implementation and documentation
technique of the WordPress REST API. The API implements
a self-documenting feature where API developers expose API
endpoints over HTTP OPTIONS verb to explain the API ele-
ments. To implement this feature, the API developers describe
the API elements in the code. For example:

Listing 1: Example of self-documenting API Code in PHP
1 public function get_item_schema() {
2 $schema = array(
3 ’$schema’ => ’http://json-schema.org/draft

-04/schema#’,
4 ’title’ => $this->post_type,
5 ’type’ => ’object’,
6 /*
7 * Base properties for every Post.
8 */
9 ’properties’ => array(

10 ’date’ => array(
11 ’description’ => __("The date the

object was published, in the
site’s timezone."),

12 ’type’ => ’string’,
13 ’format’ => ’date-time’,
14 ’context’ => array(’view’, ’edit

’, ’embed’),
15),...

On Listing 1, line 4 specifies that this is a schema definition
for the API element Post 3. On Line 10, it defines date,
one of the properties of Post, followed by a human readable
description and type information. On line 14, the context of
this property is mentioned as view, edit, embed, meaning
that this property will be returned when the Post object is
returned, embedded, or can be used as an input for editing.

The WordPress team leverages this self-documenting feature
to generate and publish the official API documentation as an
HTML website. Fig. 1 shows a screenshot of the published
documentation for the date attribute of the Post API element.4

Fig. 1: Screenshot of documentation for Post/date

In addition to the auto-generated documentation of the the
schema and API actions, contributors add custom content to
provide prosaic overviews and usage examples.

B. Study Design

1) Tasks: The participants are requested to perform a total
of six tasks using the API including one practice task. All
of the tasks are related to a single API element, Post5. The

3https://github.com/WP-API/WP-API
4http://v2.wp-api.org/reference/posts/
5A Post identifies a blog post within WordPress

tasks get progressively more difficult, and all but the last task
can be performed independently of each other. Participants are
requested to limit the total time on the study to a maximum
of one hour (R3). Participants are encouraged to proceed to
the next task when they are either satisfied with their answer
or feel stuck and unable to make progress.

To use a REST API, the API client developers need to work
with the following four inputs over HTTP:

• I1. Request method
• I2. Request URL
• I3. Request headers
• I4. Request body
To verify the response of an API call, the API client

developers can use HTTP response headers and/or HTTP
response body. To perform the tasks, the participants are
required to use one or more of the inputs I1-4. In the following
paragraphs, we describe each task with its description and the
study observation goals against the aforementioned API input
and output information. For each of the tasks, the participants
are required to use the same WordPress REST API and one
of the two variants of accompanying documentation.

T1: List all posts task. We asked the participants to use
the WordPress REST API to get a list of the blog posts from a
given WordPress site. This is the practice task, and the inputs
to answer this task are pre-filled for the participants. It allows
the participants to understand the tools used for this study as
well as get familiarity with the Post API. The answer for this
task makes use of I1 and I2.

T2: Filter posts by author task. The participants are asked
to use the API to filter the list of posts obtained in T1 by an
author given the author’s user name. To answer this correctly,
the participants are required to first make an API call to get
the numeric ID of the author given the string based user name.
Then, the ID needs to be used on the Post API to filter posts
by the author. This task allows us to understand the impact of
usage examples on API client developers when multiple API
calls need to be made to perform a task using the API. Inputs
I1-2 are required to complete this task successfully.

T3: Exclude posts by IDs task. We ask the participants
to use the API to get a list of all posts excluding posts with
IDs 1 and 4. Participants need to use the inputs I1-2, and use
a desired format on I2 to pass an array of IDs as a parameter.
This task allows us to understand how API client developers
identify the format for using an array within the URL with
respect to the usage examples in the API documentation.

T4: Find total posts task. This task requires the par-
ticipants to use the API to find a total number of posts.
Participants need to use the inputs I1-2 and inspect the HTTP
response headers to successfully complete this task. This task
allows us to understand how API client developer productivity
is affected with respect to missing examples about HTTP
response headers in the API documentation.

T5: Publish post task. We ask the participants to use
the API to publish a blog post with a specific title, content,
and a published date. To successfully complete this task,
the participants are required to use all four input types and

inspect both the HTTP response header and the response body.
Additionally, the participants are required to use a specific
date format that the API accepts as a valid format for date
specification. Answers to this task allows us to study API client
developer productivity with respect to the usage examples
lacking details about the inputs I3-4.

T6: Update post task. We ask the participants to use the
API to update a blog Post that they published in T5 with
a new excerpt. Similar to T5, this task requires the use of
inputs I1-4, but with different values for the inputs. This task
allows us to understand API client developer productivity on
inter-dependent tasks with respect to usage examples.

To summarize, the tasks allow us to understand how REST
API client developers approach API tasks of different com-
plexity levels involving various input types and available
output information with respect to the usage examples in the
API documentation.

2) Participant Selection: To satisfy the requirement of
developers with REST API experience (R4), we used the
following criteria for recruiting the study participants:

• Currently working as a software engineer.
• At least 1 year of industry experience as a developer.
• At least 1 year of industry experience with REST APIs.
• No prior experience with WordPress REST API.
We recruited a total of 26 participants from sixteen dif-

ferent companies and six different countries (Canada, USA,
Germany, Ireland, Brazil, and, Bangladesh) through online
announcements posted on Twitter, Facebook, and software
developer focused mailing lists. Table I shows a summary of
the experience level of the participants in each group.

TABLE I: Participant Profile

Group 1 Group 2
Number of Participants 16 (P1.1-

P1.16)
10 (P2.1-
P2.10)

Industry Experience
1-5 years 5 1
5-10 years 6 5
10+ years 5 4
Average 9.1 10.6

REST API Experience
1-3 years 5 3
3-5 years 7 4
5+ years 4 3
Average 4.5 4

Number of Companies 10 8

3) Pilot Studies: We conducted two pilot studies to develop
a process for performing this study. The first pilot study
involved four participants that joined the first author in-person
or over video conferencing. The study involved tasks using
the WordPress REST API V2 and the GMail REST API.
Each participant was given one of the two APIs and and a
set of API tasks and online answer forms to complete using
the API within an hour. The primary findings from this pilot
are as follows: 1) participants required significant overhead
time to setup a development environment with the proper API
credentials, 2) the intermediate trial attempts of using the API
are potentially more valuable than the final answer as it allows

Fig. 2: Screenshot of the Custom-built Web-based REST API Explorer Used by Study Participants

us to study what obstacles the participants face, 3) the number
of tasks for the study had to be reduced to fit within the one
hour limit, and 4) for the GMail API, participants used up
a large portion of their time on learning about how to use
OAuth.

To overcome the shortcomings found from the first pilot
study, we decided to develop a web-based REST API explorer
as shown on Fig. 2 that allows participants to use their browser
to make the API calls without setting up any development
environment. The web-based API explorer records the inputs
I1-4, and displays the API response on the click of a button.
Thus the participants could focus on using the right input and
verifying the output without writing code. The web-base REST
API explorer also allowed us to automatically collect all the
trial API calls that the participants make for each API task.
A second pilot study involving seven new participants was
performed to collect usability related feedback about the web-
based REST API explorer. We only used WordPress since it
did not require knowledge about OAuth. From this study, we
observed patterns of mistakes that API client developers make
that can be reduced by adding usage examples in the API
documentation.

4) Protocol: Learning from the pilot studies, we designed
the main study protocol as follows: we enhanced the original

WordPress REST API documentation and added a total of 3
API usage examples to show listing of blog posts with query
parameters for filtering, a request to create a blog post and
a request to update a blog post. We used the WordPress API
unit tests to find relevant data for these examples. Fig. 3a
shows a screenshot of the original API documentation related
to T4 where the API client developers are provided with a
reference table describing the different properties that can be
used to create a Post object6. Fig. 3b shows a screenshot
of the enhanced API documentation with a cURL7 based
usage example. cURL is used because it is used elsewhere
in the original API documentation. In the enhanced API
documentation, the example shows one possible API call with
realistic values for the data that is described in the reference
table and associated API response headers and body.

We divided the participants into two groups, G1 and G2.
The participants in the pilot are not counted towards G1 and
G2 for the study. G1 participants were provided with a link to
the official API documentation on the web-based API explorer,
and G2 participants were provided with a link to the enhanced
API documentation with usage examples. We designed the
the web-based API explorer to allocate more participants to

6http://v2.wp-api.org/reference/posts/
7https://curl.haxx.se/

(a) Original API Documentation (b) API Documentation Enhanced with an Example

Fig. 3: Screenshots of Original vs. Enhanced API Documentation

G1 compared to G2 because we wanted to better understand
the impact of the lack of usage examples on API client
developer productivity. However, each individual participant
was randomly assigned to a group by the web-based API
explorer. All participants were given the same set of API
tasks and were requested to limit their participation time to a
maximum of one hour. No task specific time limit was imposed
except an overall limit of one hour for the entire study because
we wanted participants to spend sufficient time on each task
without forcing them to move to the next one. Participants
were allowed to access the internet and external resources
alongside the provided API documentation to perform the
tasks as they would normally use on a typical work day. We
used the web-based API explorer to also collect an experience
rating on a scale of 0-10, 10 being the best possible, of using
the given REST API documentation and a free-form feedback
from each participant as an exit survey.

5) Data Collection: The data collected by the web-based
REST API explorer for each participant is exported into a text
file as the raw data artifact. For each API task and each par-
ticipant that attempted the task, the exported text file contains
the request inputs I1-4 and associated API response headers
and body for each API call made by the participant. For each
participant, we recorded all trial API calls with timestamps.
Additionally, the demographic information, experience rating
and the free-form feedback for each participant is also included
in the artifact.

6) Data Analysis: We analyzed the data artifact quali-
tatively to understand the obstacles that REST API client
developers face when using an API documentation that lacks
usage examples. We exported a table of data from the web-
based REST API explorer. For each row, the table contains the
following columns: API task, participant identifier, timestamp,
API trial number, I1-4, response headers and body. The values
for I1-4 used by the participants were manually coded to group
the participant responses into categories. The categories help
us determine the information type that API client developers
need in the API documentation to perform API tasks. The

analysis started with an empty set of codes and new codes were
introduced to describe scenarios that did not fall under existing
codes. The first author applied the codes on the raw data
artifact and provided a coding scheme comprising 11 codes
to a co-author. The co-author applied the codes to 82/539 API
calls (10% confidence interval with 95% confidence level).
The two authors validated the codes against each other to
evaluate consistency. The initial coding from the co-author had
discrepancies in 4 / 11 codes for 27 / 82 API call samples.
After discussing the coding scheme, the discrepancies were
resolved as the definition of the terms became clearer.

For each API task attempted by each participant, we anno-
tated the artifact with one of the following labels: successful,
partially successful, and unsuccessful. Task participations are
marked successful when I1-4 matches the required values for
performing the given task. If a participant is able to use the
correct I1-4 for one of the two tasks required to complete a
single task (T2), we marked it as partially successful. Other-
wise, it’s marked as unsuccessful. Based on these annotations,
the following formulas were used to compute the quantitative
results:

Success Rate (Task, Group) = (No. of participants that
successfully completed Task) / (No. of participants in Group)

Average Trial API Calls (Task, Group) = (No. of API calls
made by Group on Task) / (No. of participants in Group).

Average Time Spent (Task, Group) = (Time spent by
Group on Task) / (No. of participants in Group)

IV. RESULTS

A. Quantitative Analysis

We present a summary of the quantitative results as found
by analyzing a total of 539 API calls (385 from G1, 152 from
G2) made by the participants from this study in Fig. 4. Fig.
4a juxtaposes the average number of trial API calls made by
each group against their rate of success in performing the given
tasks T2-T6. The average number of trial API calls and success
rate for each group is computed using the aforementioned
formulas.

T2 T3 T4 T5 T6

2

4

6

8
A

vg
.T

ri
al

A
PI

C
al

ls
(F

re
qu

en
cy

)

G1 Avg. Trial API Calls G2 Avg. Trial API Calls

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

G1 Success Rate
G2 Success Rate

(a) Trial vs. Successful API Calls

T2 T3 T4 T5 T6
0

5

10

A
vg

.T
im

e
Sp

en
t

(m
in

ut
es

)

G1 Avg. Time Spent G2 Avg. Time Spent

(b) Average Time Spent

Fig. 4: Quantitative Comparison between G1 and G2

Even though it is expected that G2 would outperform G1
with an enhanced documentation, we were surprised to see
the extent of the difference in effort vs. success of the two
groups. In Fig. 4a and 4b we see that, for the simpler tasks,
T2 and T3, G1 required more time and more trial API calls and
reached successful answers with a lower percentage compared
to G2. For T4, where the participants are required to inspect
an HTTP response header, G2 executed more API calls on
average due to P2.7 who made 11 API calls even though
reached the successful call on the 3rd attempt. For the more
complex tasks T5 and T6, we see that participants in G1 had
very low success rate and very high number of average API
trials compared to G2. We observed a p-value of 0.0003 for the
success rates using Fisher test, and p-values of 0.017 and 0.051
for the trial API calls and time spent using Wilcoxon rank
sum test. The data here confirms that without usage examples
developers spend more time and execute more trial attempts
yet have lower success rates.

2 4 6 8

G1
G2

Fig. 5: Participation Satisfaction Ratings on a Scale of 0-10

In Fig. 5, we see that the G2 participants provided higher
satisfaction rating compared to G1 participants (with a p-value
of 0.003 using Wilcoxon rank sum test). P1.1 provided a
satisfaction rating of 9, and analyzing the participant feedback
against the success, we see a false positive case, where the par-
ticipant perceived that the tasks were successfully completed
even though only 2 of the 5 tasks were correctly answered.
Other than this case, the satisfaction ratings provided by
G1 participants consistently fall behind the G2 participants’
ratings.

These results support using a more qualitative approach due
to our limited number of participants. The results provide an
initial quantification of the impact of examples for typical
REST-API usage tasks. This quantification is preliminary
evidence that can help justify future investment in API docu-
mentation.

B. Qualitative Analysis Results

In their free-form feedback, 11 of the 16 G1 participants
mentioned the lack of examples with HTTP headers, request
and response as the primary problem with the API documen-
tation. On the other hand, 7 out of the 10 G2 participants
mentioned the examples being helpful from the enhanced
documentation. We identify usage examples as the most fre-
quent and central topic of interest from our participants as
per their feedback. This is also supported by our quantitative
analysis results. In the remainder of this section, we provide
our observations related to each task and their implications.

Observation 1. Use of Data Type. Without usage examples,
we observed 10 of the 16 G1 participants used incorrect data
type of String instead of Integer. To successfully complete
T1, participants had to use an integer ID representing an
Author object given the author name. In the original API
documentation, the following is mentioned about the author
parameter: “author: Limit result set to posts assigned to
specific authors.” The documentation does not mention that
the data type required is the numeric author ID, not the author
name. P1.12 mentioned the following: “...to find posts for
the author, I had to inspect the response to see that indeed
the author id was in there”. The enhanced documentation
showed one example of using numeric ID. 3 of the 10
participants from G2 ran into the same error. When faced
with this error, participants used trial and error to eventually
complete the task.

Recommendation 1. REST API documentation needs to
include examples of data types such as Integer, String, and
Array for each API field to satisfy API client developer
information need.

Observation 2. Use of Data Format. We observed partici-
pants in G1 faced obstacles using correct data formats for Date
and Array type data in API requests without usage examples.
Tasks T3 required the use of a correct format to represent
an array of numeric post IDs to be excluded using the API.
The original documentation mentions the following about this
API query parameter: “exclude: Ensure result set excludes
specific IDs.” Participants attempted to solve this task using
multiple different formats for specifying the array. For exam-
ple: they tried with exclude=[1,4], exclude=1&4, exclude

=4&&exclude=1, id!=1&id!=4 and other alternatives before
eventually finding the right format as follows exclude=1,4.
Participant P1.6 mentioned the following: “It was difficult to
figure out whether some of the inputs needed to be arrays or
just a comma-separated list.”. Seven of the 16 participants in
G1 faced this error. The enhanced documentation showed one
example of using multiple IDs and all G2 participants could
use the right format.

Task T5 also required the participants to use an the ISO8601
formatted date for publishing a post with a specific date.
Even though the original documentation mentions ISO8601
format, it does not provide an example. Instead of us-
ing 2016-01-01T00:00:00-00:00, participants from G1 used
date formats as follows: January 1, 2016, 2016-01-01T12

:00:00, 20160101. P1.8 mentioned the following: “Got hung
up trying to figure out the formatting of the date (which doesn’t
appear to be ISO8601, despite what it says)”. After analyzing
the response, we found that P1.8 used the ISO8601 formatted
date in the API calls, but did not provide the required second

portion of the time. Eight of the 16 participants in G1 had
an error in the date formats. With an example, 1 of the 10
participants had the same error from G2.

Recommendation 2. REST API developers need to include
examples showing the valid data format for the API ele-
ments.

Observation 3. Use of Request Headers. We were sur-
prised to see that 14 of the 15 G1 participants that tried T5
and T6 faced problem using correct request headers without
usage examples. Tasks T5 and T6 required the use of a
HTTP request header named Content-Type. In the original
API documentation, the following was mentioned: “The API
uses JSON exclusively as the request and response format,
including error responses.”. Experienced software engineers
still had problem using this HTTP header as we found from the
participants in G1. P1.12 mentioned the following: “I didn’t
know how to specify application/json so that I could send
POST data via the body instead in the URL parameters...
Examples would really help - with a sample request and a
sample response.” Even though G1 participants have years
of experience with REST APIs, only one of them could
use the Content-Type header correctly without example. In

contrast, 2 out of the 10 participants from G2 failed to use this
header correctly as indicated in the example in the enhanced
documentation. Moreover, 1 of the 2 G2 participants that did
not use the header the first time, later used it correctly on a
subsequent attempt.

Recommendation 3. If API requests need to use HTTP
Request headers, in addition to the request method and
body, REST API develpers need to include examples of
the HTTP headers.

Observation 4. Use of Interdependent API Calls. We
observed the G1 participants had problem completing API
tasks that require multiple API calls without usage examples.
Tasks T2 and T6 required the use of multiple API calls to
complete successfully. Both tasks require an initial API call
to find data using the API that is needed make a second API
call. For example, P1.5 mentioned the following about T6,
“The post I created is not visible and not editable, though
I got 201. Not sure why”. After analyzing the response, we
observed that P1.5 was able to create a blog post, but failed
to publish it because it did not have the publish status. As
a result, the post was not returned via the API for T6. P2.2
mentioned the following about T2: “In case of search posts
by author, it’s not clear how to find the author id. Although,
I realized that users and authors are same in this case.”

Recommendation 4. If there are prerequisites for making
an API call, REST API developers need to provide ex-
amples showing how to get the prerequisites in the API
documentation.

To summarize, we recommend API developers to consider
usage examples as an essential requirement for REST API
documentation. As such, sufficient resources and a high pri-
ority should be devoted to generate and maintain the usage
examples. Based on our observations, we recommend REST
API documentation tools to provide first-class support for
including usage examples with realistic data.

V. THREATS TO VALIDITY

The selection of the API, the tasks, and the participants may
introduce selection bias. It is possible that there are obstacles
we do not know about that could be more severe, but were not
observed because of our task selection. The analysis of the raw
data may introduce a bias. To reduce this, we have involved
multiple researchers and a repeatable coding scheme. A more
complete API documentation without adding usage examples
may provide insights from our findings.

VI. RELATED WORK

In this section, we discuss the existing research on the
relationship between API usability and usage examples. To
this regard, we summarize the related work on APIs from the
sub-areas of API learning obstacles, using crowd-sourced API
examples, measuring API usability, and controlled studies on
the impact of usage examples on API usability.

1) API Learning Obstacles: Robillard et al. used a mixed
approach of surveys and in-person interviews with profes-
sional software engineers to understand the API learning
obstacles [1] [2]. They found that many obstacles for API
learnabilty were related to API documentation. They iden-
tified five impactful factors for API documentation as fol-
lows: documentation of intent, code examples, matching APIs
with scenarios, penetrability of the API, and format and
presentation. Uddin and Robillard surveyed 323 professional
software engineers to understand the different ways in which
a piece of documentation can be unfit for purpose [3]. They
identified ambiguity, incompleteness, and incorrectness as the
three severest problems that lead API documentations to fail
to answer the information needs of developers. Duala-Ekoko
and Robillard performed a study with 20 programmers to
understand the types of questions that developers have while
using an unfamiliar API [4]. They categorized the API related
information needs into twenty generic questions that can be
used to analyze the quality of API documentation. Myers et al.
found that participants had limited success finding the relevant
API elements to perform an API task using an enterprise
API [5]. Among other factors, they recommended providing
code examples in the API documentation to help API client
developers. Our work fits in the general space of studies of
API documentation obstacles. We focus on problems related
to the absence of examples within the area of REST APIs.

2) Crowd-Sourced API Usage Examples: Wang et al. per-
formed an exploratory study to understand the current state
of API related knowledge available on the Internet [6]. They
searched the web for usage examples related to the API of five
popular Java libraries and found that on average API examples
could be found for 77% of the 4,637 APIs from the libraries.
Moreover, they found that the crowd-sourcing sites accounted
for 93.7% of the usage examples compared to 6.13% that
were officially published. An evaluation of Jadite showed that
developers were three times faster to complete API tasks with
access to auto-referred crowd-sourced usage examples [7].
Nasehi et al. analyzed StackOverflow threads to understand the
characteristics of good and bad code examples [8]. They found
that commonly down-voted API related answers lacked code
examples, explanations, and shortcoming of solutions. Treude
et al. proposed a machine learning based approach to find rel-
evant API documentation from StackOverflow using both the
text and metadata found from the questions and answers [9].
Kim et al. presented a technique to automatically augment
code examples from the web using code search tools to Java
APIs [10]. Jiau et al. observed a severe inequality within the
context of crowd-sourced API usage examples where most
of the content were related to the popular APIs [11]. Existing
research on crowd-sourced API documentation mostly focused
on finding usage examples of local APIs. In this paper, we
focused on REST APIs, where the API client development
programming language is agnostic to API implementation
language. This distinction with local APIs makes it hard to
use the techniques proposed in the aforementioned papers for
finding crowd-sourced REST API usage examples.

3) Measuring API Usability: Rama et al. presented a set
of formulas for computing a measure of API usability based
on the API’s structural components such as classes, methods,
parameters, return values, thread-safety [12]. Scheller et al.
presented a framework for automatically measuring the com-
plexity of an API [13]. They identified a list of measurable
API properties and provided formulas to compute complexities
related to the interfaces, implementation and setup of an API.
Grill et al. suggested using a combination of expert opinion
and developer workshops to identify and collect feedback
about API and its documentation related problems [14]. Farooq
et al. recommended using peer reviews of API code in addition
to API usability studies to uncover API related bugs and
incorporate feedback [15]. In our work, instead of measuring
API usability, we have focused specifically on the relationship
of REST API usability with respect to usage examples.

4) Controlled Studies: Nasehi et al. performed a controlled
study to understand if API unit tests can be used to provide as
usage examples to facilitate API client developers [16]. The
researchers found that the examples from the unit tests helped
understanding the API concepts better but it was challenging
for the participants to locate relevant examples. Endrikat et al.
performed a controlled study with four groups of participants
to understand the impact of API documentation on APIs that
are implemented using programming languages with static and
dynamic type systems [17]. Participants were given a set of
failing unit tests and were asked to make them pass by writing
code using the studied API. They found that the participant
group using a statically typed API with explicit documentation
could get the tests to pass in less time than the other groups.
Our work in this paper is based on a controlled study and
shares part of the setup that were used by the aforementioned
controlled studies with the following differences: our goal is
to understand the obstacles faced by API client developers
without usage examples; we focus on REST APIs instead of
local APIs; and, the participants are all professional software
engineers.

VII. CONCLUSION

In this paper, we presented a set of problems that experi-
enced REST API client developers face while performing API
tasks using API documentation that lacks usage examples. We
identified that, without examples, REST API client developers
have trouble using the correct data types, correct data formats,
and required HTTP headers and request body. We’ve also
presented empirical evidence that by adding usage examples
makes it possible to reduce mistakes, improve success rate and
developer satisfaction of using the API. REST API developers
can follow our recommendation as a set of guidelines while
documenting REST APIs to improve API usability. REST API
documentation tool developers can leverage our findings to
improve reusable tool support for software developers.

ACKNOWLEDGMENT

We are grateful to our participants for their valuable time on
this study. We thank our university for funding this research.

REFERENCES

[1] M. Robillard, “What makes APIs hard to learn? the answers of devel-
opers,” Software, IEEE, vol. PP, no. 99, pp. 1–1, 2011.

[2] M. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[3] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, July 2015.

[4] E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: An exploratory study,” in Proc. of the Interna-
tional Conference on Software Engineering. IEEE Press, 2012, pp.
266–276.

[5] B. Myers, S. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens,
A. Efeoglu, and D. K. Busse, “Studying the documentation of an API for
enterprise service-oriented architecture,” J. Organ. End User Comput.,
vol. 22, no. 1, pp. 23–51, 2010.

[6] L. Wang, Y. Zou, L. Fang, B. Xie, and F. Yang, “An exploratory study
of API usage examples on the web,” in 2012 19th Asia-Pacific Software
Engineering Conference, vol. 1, Dec 2012, pp. 396–405.

[7] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving api
documentation using API usage information,” in 2009 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), Sept
2009, pp. 119–126.

[8] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
Proc of. IEEE International Conference on Software Maintenance, 2012,
pp. 25–34.

[9] C. Treude and M. Robillard, “Augmenting api documentation with
insights from stack overflow,” in Proc. of ACM International Conference
on Software Engineering, ser. ICSE ’16, New York, NY, USA, 2016, pp.
392–403.

[10] J. Kim, S. Lee, S.-w. Hwang, and S. Kim, “Adding examples into java
documents,” in Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 540–544.

[11] H. Jiau and F.-P. Yang, “Facing up to the inequality of crowdsourced API
documentation,” ACM SIGSOFT Software Engineering Notes, vol. 37,
no. 1, pp. 1–9, 2012.

[12] G. M. Rama and A. Kak, “Some structural measures of API usability,”
Software: Practice and Experience, vol. 45, no. 1, pp. 75–110, 2015.

[13] T. Scheller and E. Kühn, “Automated measurement of API usability:
The API concepts framework,” Information and Software Technology,
vol. 61, pp. 145–162, 2015.

[14] T. Grill, O. Polacek, and M. Tscheligi, Methods towards API Usabil-
ity: A Structural Analysis of Usability Problem Categories. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 164–180.

[15] U. Farooq, L. Welicki, and D. Zirkler, “API usability peer reviews:
A method for evaluating the usability of application programming
interfaces,” in Proc. of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2010, pp. 2327–2336.

[16] S. M. Nasehi and F. Maurer, “Unit tests as API usage examples,” in
Proc. of International Conference on Software Maintenance. IEEE,
Sept 2010, pp. 1–10.

[17] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do API
documentation and static typing affect api usability?” in Proc. of the
International Conference on Software Engineering. ACM, 2014, pp.
632–642.

