
Towards End-User Web Software Visualization

Craig Anslow, James Noble, and Stuart Marshall
School of Mathematics, Statistics,

and Computer Science
Victoria University of Wellington, New Zealand

{craig, kjx, stuart}@mcs.vuw.ac.nz

Ewan Tempero
Department of Computer Science

University of Auckland, New Zealand
ewan@cs.auckland.ac.nz

Abstract

Software visualization has always been expensive, spe-
cial purpose, and hard to program. Most of the existing
software visualization tools require too much time for end-
user developers to learn and make effective use of. We are
currently building a web software visualization application
that allows end-user to create, view, save, and share visual-
izations. In this abstract we introduce our software corpus
visualization project and summarize our results thus far.

1. Introduction

We are interested in understanding what software looks
like to help with software reuse, software maintenance, and
software re-engineering. We believe creating software visu-
alizations will help to assist end-user developers to under-
stand the structure and behaviour of software. We want to
create visualizations of object-oriented programs over the
web cheap, portable, easy, and usable for end-user soft-
ware developers. We have a corpus of Java software1 that
contains 94 open-source Java applications, 22 applications
with multiple versions, with 233 versions total. The corpus
is used for conducting empirical studies to help understand
how software engineers create code and the relationship be-
tween the code structure and quality attributes such as mod-
ifiability, reusability, maintainability, and testability. Our
project requires tools for visualizing the software.

Software visualization has always been expensive, spe-
cial purpose, and hard to program. Our previous work
in developing a web-based software visualization architec-
ture [5] has explored creating visualizations with Scalable
Vector Graphics (SVG) [3] and Extensible 3D Graphics
(X3D) [1]. We are building a web software visualization
application that makes uses of these technologies, and al-
lows end-users to upload Java files and then create different

1http://www.cs.auckland.ac.nz/˜ewan/corpus/

visualizations. The rest of this abstract looks at existing
software visualization tools, characterizes web information
visualization tools, and discusses implications for our re-
search.

2. Web Software Visualization

In a recent survey [4] based on questionnaires com-
pleted by 111 researchers from software maintenance, re-
engineering and reverse engineering, 40% found software
visualisation absolutely necessary for their work and an-
other 42% found it important but not critical. The majority
of the researchers are primarily using or integrating existing
software visualizations tools developed by others (33%).
The survey did not ask what kind of software visualization
tools were used.

We want software visualization to be an easy task for
end-users without the need for downloading and installing
separate applications. However, it is not clear what a good
software visualization system looks like. We believe the
web is an excellent platform for creating a software vi-
sualization application. Web based software visualization
allows end-users to independently create, view, save, and
share visualizations with others.

We have explored the 43 software visualization tools
listed by Diehl [2] and found that only one of the tools was
web-based, the SHriMP2 application for visualizing depen-
dencies in hierarchically structured data as nested graphs.
The rest of the applications require a separate download,
plug-in to an IDE such as Eclipse, or are proprietary soft-
ware. Since there is a lack of freely available web software
visualization tools we have decided to explore existing in-
formation visualization web tools. We want to see if any of
these tools have useful features that we could incorporate
into our software corpus visualization project.

Many Eyes3 is a web site that provides collaborative vi-

2http://www.thechiselgroup.org/shrimp
3http://www.many-eyes.com



sualization services. Figure 1 shows two visualizations we
created. The visualizations show the words used in the
classnames from the Java Standard API specification ver-
sion 6. For example AbstractColorChooserPanel becomes
Abstract (position one), Color (two), Chooser (three), and
Panel (four). The tag cloud shows the most common words
used in Java classnames are Basic (75 occurrences), Metal
(54), Default (51), Invalid (50). There are 1217 unique
words in position one, 761 in position two, 409 in three,
186 in four, and 70 in five. The treemap shows the order of
the words in the Java classnames and the most prominent
word in position one is Metal followed by Basic, Default,
Order, and Key.

Other information visualization web tools include
Swivel4, Data3605, and DataPlace6. These other tools op-
erate similar to Many Eyes but provide less sophisticated
visualizations. There are some key characteristics of all of
these web visualization tools. First, they require end-users
to register with the web site. Second, an end-user can up-
load data in ASCII or spreadsheet format. Third, end-users
can modify their data online. Fourth, multiple visualiza-
tions can be created from the data and at any time. Finally,
end-users can comment on the visualizations.

Instead of uploading ASCII text we want to be able to
upload Java source code and .jar files from our corpus. We
would like to incorporate some of the information visu-
alization techniques used in web visualization tools (e.g.
tag cloud and treemaps) and specific software visualiza-
tion techniques including: UML diagrams, algorithm ani-
mations, metric visualizations (e.g. class blueprints, poly-
metric views), and software evolution (e.g. Seesoft-like,
software archives). Including social features such as end-
user registration and commenting would be useful assets of
the application for supporting open-source development.

There are some implications for our research. We need
to determine what visualization types to implement. De-
pending on the visualization type different methods will be
required to parse the source code or reverse engineer the .jar
files. We intend to make our software visualization system
public facing so we will need to consider how we handle
proprietary software and how the system scales once there
are lots of software uploaded and many visualizations cre-
ated. Once our application is in production we intend to
conduct user evaluations (user testing and interviews) to see
how effective the system is.

In summary, there is a lack of easy to use web software
visualization systems. We are working towards a web based
application that will help end-users to upload their Java soft-
ware applications, create visualizations, and share their vi-
sualizations with other users.

4http://www.swivel.com
5http://www.data360.org
6http://www.dataplace.org

(a) Tag Cloud

(b) Treemap

Figure 1. Many Eyes - visualizations of the
words used in the classnames from the Java
API Specification.

References

[1] C. Anslow. Evaluating X3D for use in software visualisation.
Master’s thesis, VUW, 2007.

[2] S. Diehl. Software Visualization. Springer Verlag, 2007.
[3] M. Duignan, R. Biddle, and E. Tempero. Evaluating scalable

vector graphics for use in software visualisation. In Proc. of
INVIS, 2003.

[4] R. Koschke. Software visualization for reverse engineering.
In Revised Lectures on Software Visualization, pages 138–
150. Springer Verlag, 2002.

[5] S. Marshall, K. Jackson, R. Biddle, M. McGavin, E. Tempero,
and M. Duignan. Visualising reusable software over the web.
In Proc. of INVIS, 2001.


