
CorpusVis – Visualizing Software Metrics at Scale
Jack Slater∗, Craig Anslow∗, Jens Dietrich∗, Leonel Merino†,

∗Victoria University of Wellington, New Zealand
Email: {slaterjack,craig,jens}@ecs.vuw.ac.nz

†University of Stuttgart, Germany
Email: leonel.merino@visus.uni-stuttgart.de

Abstract—We do not know fully understand how software
violates metrics based principles, particularly in large systems.
Systems are restricted by structural and static deficiencies that
we can aim to reduce by providing developers with effective
visualizations of their code. We developed CorpusVis a widget-
based application to explore software metrics of Java software
systems from the Qualitas Corpus. Through an evaluation of the
visualization techniques we identified what visualizations were
effective and which ones did not scale well for large software
systems. Our application helps to reduce the structural and
static deficiencies in developers code which enables developers
to spend less time maintaining legacy systems and learn to
develop more effective code for future systems.

I. INTRODUCTION

Java is one of the most commonly used programming
languages, yet we still know surprisingly little about how
Java programs are structured in practice particularly in
large-scale systems [1]. Measuring software allows us to
determine the inner quality of a software system. We know
that software systems coded with a poor internal quality will
be harder to maintain and extend [2]. Understanding what
measures identify internal quality will help improve the
maintainability and extendibility of future software systems.

Software visualization aims to help understand the struc-
ture, behaviour, evolution, and quality of systems [3].
However, we don’t know what types of visualizations are
most effective for displaying metrics of large systems even
though many exist [4]. The goal of visualizing software and
what makes an effective visualization is providing a better
comprehension of software artefacts than we can gain from
seeing the source files alone [5].

This paper presents CorpusVis a widget-based dashboard
web application with multiple visualizations of different
software metrics to allow developers the ability to create
composite visualizations from the provided widgets. The
visualizations help illustrate how different systems violate
metrics-based principles and what trends occur in the
results. By displaying software metrics visualizations, de-
velopers can see the quality of a system, where the pain
points of their system occurs, and can identify the best
action points for future development. We have used the
Qualitas Corpus as the dataset for our case study of Java
software [6]. We conducted a user study of CorpusVis
with 31 software developers to determine the effectiveness
of each visualization for displaying metric data and the
developed prototype.

II. RELATED WORK

Software visualization is the development and investi-
gation of methods and use of computer graphical repre-
sentations of many software aspects [3]. These include the
structure of a program, the behaviour, and the evolution.
The structure refers to the static parts and relations of a
software system, the behaviour refers to the process execu-
tion, and the evolution refers to how software changes over
a period of time period. Diehl claims that developers rarely
use visualization as a tool for maintaining software [3].

Software metrics measure a property of software, an
example could be the number of lines of code, or the
number of methods [7]. Software metrics are used to
determine the quality of software. Static analysis computes
properties of a program which hold true for all executions
[8]. Properties which can’t be captured before the runtime
are referred to as being “dynamic" and exempt from static
analysis. McCabe refers to some typical software analysis
metrics for static structure as being, lines of code, number
of functions or classes, or complexity regarding graph-
theoretical measures, such as cyclomatic complexity [9].

Polymetric Views implements and evaluates the use of
polymetric visualizations [10]. A polymetric view is built
using the attributes of a square, with respect to height,
width, colour, and position, to represent an aspect of a
system. CodeCrawler is used for the reverse engineering of
software and implements Polymetric Views [11].

SourceVis provides a collaborative software visualization
tool for large multi-touch tables using the Qualitas Cor-
pus [12]. SourceVis supports multiple visualization types
(including some Polymetric Views) in order to give user’s
the ability to visualize aspects of a system from different
views. SourceVis was designed for multiple users by provid-
ing a single collaborative system. SourceVis provides three
distinct categories of visualization, exploration, structure,
and evolution.

Explora is a tool with the goal of scaling visualization
to the Corpora level [13]. Explora focuses on the process
of visualizing Corpora size data, this provides us with
examples of visualization techniques that can effectively be
applied to Corpora, such as the polymetric views that they
have implemented. Explora found that using polymetric
view charts was an effective way to communicate static
metrics within corpora.

99

2019 Working Conference on Software Visualization (VISSOFT)

978-1-7281-4939-4/19/$31.00 ©2019 IEEE
DOI 10.1109/VISSOFT.2019.00020

Figure 1: CorpusVis: the user interface displaying a variety of widgets and visualizations that show the Ant 1.1 system for
usage context. Visualizations include (L to R): Dependency Chart, TreeMap, HotSpot View, ScatterPlot, & Toxicity Chart.

III. CORPUSVIS

CorpusVis is a novel widget-based dashboard web ap-
plication that supports multiple visualizations of different
metrics to allow developers the ability to create composite
visualizations from the provided widgets. The design of
the widget-based system was achieved through analysing
requirements and iterative progression. The visualizations
implemented as the system’s widgets were all based on
existing implementations but with a number of changes to
support the composite visualization structure of CorpusVis.
Based on the goals of our project we designed the following
requirements:

Req1: The application needs to support the composite
viewing of more than one visualization at any
given time to allow comparison.

Req2: The application must support the ability to change
between systems, and system versions.

Req3: The user must be able to change the layout and
visualizations.

A. User Interface

This section covers the core decisions made while de-
signing the overall interface that users would interact with
as well as the decisions surrounding which visualizations to
implement while linking back to the requirements defined.
One of the core ideas of the UI design was to support
extensibility and allow visualizations to be easily integrated.

One of the core requirements was to provide an appli-
cation for the composite viewing of visualizations (Req1).

Having the ability to view two visualizations both giving
information on a given system lets the user explore more
than one aspect of the system at any given time and
potentially find trends across the different visualization
sources. To allow for composite viewing we decided to
build a widget-based dashboard interface. Having a widget
interface means that we can let the user determine the level
of composition they want to use at any given time. For
example in Figure 1 there is an interface with a number of
widgets being shown compositely, however another option
would be to use one widget to take up the entire screen
allowing for viewing a particular chart more intensely.

We designed CorpusVis to include a way for developers
to select systems and version numbers for a given system
(Req2). The design was to have a simple drop down selec-
tion for the different systems, and then to let the developer
navigate through the versions with forward and backward
arrow buttons to show how the system changes over time
(see Figure 2).

Figure 2: System Selection: shows how a system can be
selected in the left hand drop down menu.

100

To customize the layout of the user interface we adopted
a movable widget-based approach (Req3). This was done as
it allows for developers to change the size of each widget
to the level they require it, and also to arrange the widgets
in the best way for comparing. Each widget can be resized
by dragging from the bottom right corner, and there is an
‘x’ place in the top left to allow removal of the widget. Both
of these decisions were made based on them being similar
to a windowing application. All widget types were able to
be moved via drag and drop and had an indicator showing
where the grid would snap the widget to.

B. Visualizations

One of the core goals of CorpusVis is to evaluate a
variety of existing visualizations when used to analyse large
Java systems. This goal requires that visualizations are both
selected and implemented that give a holistic view of the
current state of software visualization for large systems.

Figure 3: Toxicity Chart: showing the Javadoc system and
metrics the classes in the system violates.

1) Toxicity Chart Visualization: The Toxicity Chart was
built based upon an implementation which we extended
and modified (Figure 3) [2], [14]. The reason for selecting
this visualization is because it was effective at displaying
lots of metrics at once using basic charts. The technique
uses a stacked bar chart which are well understood. To
allow for the toxicity chart to function in a widget-based
dashboard we added a scrollbar for the X-axis as in the
majority of systems there are too many classes to be shown
on the widget without shrinking the individual bar width.

2) Dependency Chart Visualization: The Dependency
Chart was implemented with a chord diagram showing
dependency relations in the selected system (Figure 4). The
core reason for selecting this visualization was to explore
another area of visualization type, we already had a static
analysis metric based visualization, and deemed that it
would be useful to also have a visualization which gave
a view of the program’s class level relationships and system
structure. This visualization was designed to give the same
features of the Dependency Chart in SourceVis [12].

The Dependency Chart visualization was based on the
Dependency Wheel application built for visualizing PHP
packages [15]. This visualization in its first iteration did
not work due to the large amount of classes in most of
the Corpus systems. To account for this we implemented

Figure 4: Dependency Chart Visualization: illustrated as a
Chord Diagram.

a threshold the number of classes must be under in order
to produce a visualization. The thresh hold number was
made to be 150 classes, this number was the largest possible
number to show while still being able to read each class
name. After the threshold we also added in simple filtering
so a user can select a particular class in order to get under
the thresh hold in larger systems.

Figure 5: Polymetric Views: HotSpot View and ScatterPlot.

3) Polymetric Views: The final three visualization we
implemented were Polymetric Views. These visualizations
were chosen as they have already been evaluated and found
to work for smaller scale systems [10], [16]. Knowing that
these visualizations were effective allows us to compare how
effective they are at a larger scale. We chose to implement
the HotSpot View, ScatterPlot, and TreeMap diagram as
they are three different techniques that potentially will scale
differently. The HotSpot View has no overlaps of rectangles
suggests that it won’t scale as well as we increase the num-
ber of classes in a system, similar to the TreeMap, however
the ScatterPlot may support more room for scalability as
having items overlap is built in by-design. We extended and
improved an existing implementation of these Polymetric
Views for CorpusVis [17].

101

C. Implementation

CorpusVis utilized a client-server architecture in order to
provide functionality over many devices at once [18]. The
architecture for the overall system was designed to repre-
sent the structure of the client-server architecture (Figure
6). This diagram describes the high-level architecture for
the system, showing how we used technologies in order to
fulfill our client-server architecture model.

Figure 6: CorpusVis Web-based Architecture, consisting of
a client server model and different components.

We used Node.js as the core server technology [19] due
to it being written in Javascript, making it easy to extend
and only requiring knowledge of one JavaScript framework.
The server was used for two core purposes, the first was to
serve the CorpusVis public facing application. The other
functionality of the server was to host an API for the
generated CorpusVis data, including the JSON files storing
all of the generated metrics and dependency information.
The API hosted by the Node.js server allows for these files to
be accessed via REST requests and parsed into data objects
at runtime.

For the widget based framework we used JavaScript for
inserting and moving objects around the screen and the
Gridstack framework [20]. We created features for dynam-
ically resizing, dragging, and deleting widgets. The visual-
izations were added as their own elements within a widget.
For each widget data was loaded from the server only
once and stored in the front-end, each widget was then
given an id, and would parse the stored data each time it
needed updating. We also used JQuery and Bootstrap for
user interface components and styling.

For the front-end we used D3 to build the visualiza-
tions [21]. D3 was chosen based on two reasons. The first
was that there were already some software visualizations
implemented in D3 such as the Toxicity Chart visualization
which we extended. The second core reason for using D3
was the lack of competitors offering graphics libraries in the
web space. One alternative for the front-end visualizations
that was considered was JavaFX, however, Oracle has begun
deprecating web deployment technologies [22].

D. Data Generation

For the Toxicity Chart date was generated using Check-
style which is a tool for describing coding standards [23].
By default Checkstyle will use Java style guides, similar to
Google [24]. We have used custom guides for CheckStyle to
gather information on those classes which violate metrics.
For the Toxicity Chart, we used predefined metric values
set as inputs to our Checkstyle script (see Table I), which
then checks for any classes that break the given metric and
generates an XML document including all of the violations.
Each metric has a threshold value, which when violated
by any given class, the amount gone over by becomes the
toxicity value for that metric. For example if a given class
file had a file length of 550 lines, the toxicity value for ‘File
Length’ would be 50. In order to generate a toxicity score for
each file we developed a script which would run the above
Checkstyle process over every version of every system.

Metric Level Threshold

File Length File 500
Class Fan-Out Complexity Class 30
Class Data Abstraction Coupling Class 10
Anon Inner Length Inner Class 35
Method Length Method 30
Parameter Number Method 6
Cyclomatic Complexity Method 10
Nested If Depth Statement 3
Nested Try Depth Statement 2
Boolean Expression Complexity Statement 3
Missing Switch Default Statement 1

Table I: Software metrics for the Toxicity Chart visualization.

The dependency relationship generation was done sim-
ilar to the Toxicity scores where we used Dependen-
cyFinder [25]. The process generated an XML files with an
element listed for every other class in the system with a
value stating whether or not the given class has a depen-
dency or not. For the Chord Layout we built dependency
matrices, every class name would be stored in an ordered
array, then a matrix would be built specifying which classes
had dependencies on each other.

The HotSpot View, and ScatterPlot chart used the same
data format as in the original [10]. This data format was
a JSON object for each class in a system, with the object
containing the specified metric values and class identifying
information. We used Checkstyle to generate the data, but
instead of checking for violations we set the violations for
the metrics we wanted to output to 0 in order to ensure
data would always appear rather than only when passed
the thresholds (like in Toxicity scores).

The data for the TreeMap visualization is very similar
to the that of the HotSpot and ScatterPlot. The difference
is that the JSON objects are contained within a nested
hierarchy based on packages. So each packages will hold
an array of JSON class objects, as well as any packages that
are nested within. Using these we can use the same metrics
as above, but also visualize the system’s class hierarchy.

102

IV. USER STUDY

To evaluate CorpusVis we conducted a user study to
assess the effectiveness in providing a dashboard widget
based application for visualization, and to evaluate the
effectiveness of the individual visualization techniques.

A. Design

One fundamental goal of performing user studies is to
seek insight into how effective a particular technique is [26].
The aim of our user study is to seek insight into how effec-
tive each of the chosen visualization techniques performs
with large systems based on qualitative user experience
feedback. User studies can be used to evaluate the strengths
and weaknesses of techniques [26].

To enable comparison of software visualization evalua-
tions, we adopted the benchmarks framework introduce by
Maletic and Markus [27] and extended by Merino et al. [28]
to describe the context of the evaluation: (i) Medium. The
user study was conducted through Google Forms. For the
10 user studies performed in the lab under observation the
study was conducted on a Dell Optiplex 9010 Intel i7-3770
CPU @ 3.40GHz computer with a quad core processor and
8 GB of RAM, with Arch Linux and Google Chrome web-
browser. The hardware and browser choice was optional
for remote participants. (ii) Technique and Interaction. The
details of the implemented techniques are described in
Section III. (iii) Tasks. Table II shows the user study tasks.

B. Participants

The study was conducted with 31 participants. The
participants consisted of students with at least 3 years
computer science experience, and ex-students or academics
contacted through person connections. 10 experimental
sessions of the study were performed under observation
and the remaining 21 were performed remotely. All partic-
ipants had basic knowledge of Java system structure.

C. Procedure

Participants were directed to a short web tutorial to read
through and were encouraged to figure out the basics of
the system before commencing the study. The evaluation
for CorpusVis used a questionnaire that contains four types
of questions that relate to: (i) performing small-tasks with
each visualization and followed a task-orientated evaluation
theory [3], (ii) Likert scale questions in order to evalu-
ate the effectiveness of the different visualizations by the
user’s opinion, (iii) gaining feedback on the design of the
application by asking open ended questions regarding the
positive and negative aspects of each visualization and the
application, and (iv) The System Usability Score, which we
added as a way to evaluate the usability of the system
without requiring a laborious process or extending the user
study length [29]. The following are the steps that were
carried out during each session in the user study:

1) The participant was given a copy of the information
sheet and consent form (i.e., hard copy for observed
studies, electronic copy for remote).

2) The participant was directed to the CorpusVis intro-
duction page containing links to the CorpusVis tutorial,
application, and user study.

3) The participant was encouraged to read through the
tutorial to gain an understanding of how to use the
system and get a brief overview of each visualization.

4) The participant had each of the different sections of
the user study explained, including each visualization
type, overall system, and the questionnaires.

5) The participant then completed the questionnaire
while using CorpusVis.

D. Data Collection

Table II shows the 3 types of questions asked: 5-step Lik-
ert scale questions, small-task questions, and short-answer
questions. For each visualization we first collected their
response to a small-task question aimed at ensuring they
had some experience with using the visualization before
evaluating the effectiveness. We then collected a Likert
scale rating on the effectiveness on each visualization, then
finally offered them an opportunity to share any further
thoughts on the visualization. For the overall application
Likert scales and short answers were collected to capture
the effectiveness of the application, and the participants
thoughts on how it could be improved. Last we performed
a System Usability Scoring (SUS) questionnaire [29] using a
5-step Likert scale. The System Usability Scale is a Likert
scale method, that allows for us to perform a usability
assessment at a low cost and with little effort [29]. We have
used the SUS to evaluate the usability for CorpusVis as it
is a proven method of evaluating the appropriateness of
computer systems [29].

V. RESULTS

Now we present and discuss the results from the user
study. We present the results by the evaluation of the
visualization and then the application.

A. Software Visualization Evaluation

The following sections describes the different questions
asked for each of the visualizations and the results attained.

Toxicity Chart.

Q2: Using the toxicity chart visualization, what would you
say is the most prevalent negative metric in the Weka
system? This question was a small task to answer
“does the system solve the user’s problem" and to
ensure the participant had a basic understanding of
the visualizations functionality. Among the answers 25
were correct, 3 incorrect, and 3 were invalid.

Q3 & Q4: Likert Scales for Toxicity Effectiveness. To evaluate
the effectiveness we wanted to look at two aspects,
the effectiveness of showing metrics for individual
classes, and then the effectiveness of evaluating an

103

Question Question Type

Q1 Do you agree to the collection and analysis of your given responses? Consent
Q2 Using the toxicity chart visualization, what would you say is the most prevalent negative metric in the system Weka in its first version? Small-Task
Q3 Please rate how well the visualization shows negative metrics at a system level Likert Scale
Q4 Please rate how effective the visualization displays class-level metrics Likert Scale
Q5 Please list any other thoughts you have regarding this visualization Short-Answer
Q6 Using the Dependency Chart, for the system Ant-1.1, in the com package, which class has the greatest number of dependencies? Small-Task
Q7 Please rate how effective this visualization is for viewing system dependencies Likert Scale
Q8 Please list any other thoughts you have regarding this visualization Short-Answer
Q9 Using the HotSpot View, for the system freemind-0.0.2, which class has the highest number of public methods (NOPUBM)? Small-Task
Q10 Please rate how effective this visualization is for viewing class information Likert Scale
Q11 Using the scatter chart, for the system Weka-3.6.8, which class has the highest number of attributes/fields (NOA)? Small-Task
Q12 Please rate how effective this visualization is for viewing class information Likert Scale
Q13 Please list any other thoughts you have regarding these visualizations Short-Answer
Q14 Which class in the TreeMap for jgraph-5.10.0.0 has the highest lines of code (LOC)? Small-Task
Q15 Please rate how effective this visualization is for viewing class information Likert Scale
Q16 Please list any other thoughts you have regarding this visualization Short-Answer
Q17 As an overall assessment, how effective is the application for understanding and visualising software metrics in a large codebase? Likert Scale
Q18 Please list any reasons for your answer to the previous question Short-Answer
Q19 As an overall assessment, how effective is the system for analysing changes to a system over time? Likert Scale
Q20 Please list any improvements or changes you would like to see in the system? Short-Answer
Q21 Please list any observations you had regarding how the visualizations handled large scale systems Short-Answer
Q22 Do you think a tool like this would be better suited for small or large teams, why? Short-Answer
Q23 I think that I would like to use this system frequently Likert Scale
Q24 I found the system unnecessarily complex Likert Scale
Q25 I thought the system was easy to use Likert Scale
Q26 I think that I would need the support of a technical person to be able to use this system Likert Scale
Q27 I found the various functions in this system were well integrated Likert Scale
Q28 I thought there was too much inconsistency in this system Likert Scale
Q29 I would imagine that most people would learn to use this system very quickly Likert Scale
Q30 I found the system very cumbersome to use Likert Scale
Q31 I felt very confident using the system Likert Scale
Q32 I needed to learn a lot of things before I could get going within this system Likert Scale

Table II: User study tasks with the questions and question type for answering by participants.

entire system with the chart. In Figure 7 we present
the results of the Likert ratings for the toxicity chart.
The results for the effectiveness at the class level shows
a higher effectiveness on the scale. For the class level
response, one participant did not answer the question.

Q5: Qualitative Responses. The final question for the Tox-
icity Chart was to request any other thoughts on the
toxicity chart from the user. 24 participants responded
to this question with a range of answers. (i) Overview
of System. 5 participants stated that the visualization
does not currently give a view of the system overall,
or it is hard to capture the entire system’s “level of
toxicity" when the entire data set does not fit on a
single widget in most of the systems. A suggested
improvement for this issue was to display another bar
showing the total value for the metrics in the system
overall (aggregated values for each class). (ii) Filtering
& Comparison. 5 participants made a reference to
the inability to compare classes easily or filter the
visualization in order to select specific classes. One
improvement suggested was to implement an “on-
click" function that would save a classes information
when clicking on a bar in the chart that would then be
shown when hovering over other class bars. Another
suggestion was to implement a "topn" filtering to
show only a selection of classes. (iii) Other Responses.
The rest of the responses were compliments on the
visualization, small implementation errors, and have a
tutorial for this visualization.

Figure 7: Results from questions 3 & 4, rating the effective-
ness of the Toxicity Chart for system level and class level
metrics respectively.

Dependency Chart.

Q6: Using the Dependency Chart, for the system Ant-1.1,
in the com package, which class has the greatest number
of dependencies? This small task question aimed at
evaluating how easy the visualization was to use for
the basic tasks it is intended. This question required
the user to determine which class in a system had the
most dependencies in a system. Among the answers
28 participants were correct, and 3 gave a wrong
class name or no class name as an answer when

104

XmlDocument was the class with the greatest number
of dependencies.

Q7: Please rate how effective this visualization is for view-
ing system dependencies. This question uses a Likert
scale to evaluate the effectiveness of the dependency
visualization for viewing system dependencies. Figure 8
shows the distribution of responses for the Likert scale
rating the effectiveness of the Dependency Chart. Half
of the scores are between 3.5 and 4.5, which seems very
high considering the high level of negative responses
to the open-ended questions that we present next.

Figure 8: Results from question 7 which used a Likert scale
in order to rate the effectiveness of the Dependency Chart
visualization.

Q8: Qualitative Responses. 23 participants responded to
this question.
(i) Scalability. 10 of the participants cited scalability
as an issue for this chart. One participant says “Too
many things within the screen at once", with others
referring to the overlapping of text when looking at
the larger systems in the Corpus. (ii) Other Responses.
The remaining responses had a large spread, some par-
ticipants requested that the filtering be more selective
having the ability to step further down than the top
level package. A number of participants had questions
around how colors were chosen. 3 participants also
commented on the hover-ability of the chart stating
that the chart was a lot simpler when they noticed it.

HotSpot View & ScatterPlot.

Q9 & Q11: Small-Task Questions. These questions were a
small task questions aimed at assuring a participant
could use the visualizations to a basic degree. In the
HotSpot View participants were required to perform
a basic filtering by the Number of Public Methods
(NOPUBM). All 31 participants answered correctly. In
the ScatterPlot visualization participants were required
to perform a filtering by the Number of Attributes/-
Fields (NOA). We later found there were two possible
correct answers therefore in the chart both answers

have been considered as correct. Among the answers
25 participants were correct, and 6 gave an incorrect
answer to the task.

Q10 & 12: Effectiveness Questions. The results of these
questions are shown in Figure 9. We observe that the
HotSpot View scored much higher than the Scatter-
Plot. HotSpot scores concentrate between 3 and 5,
compared to the more spread and lower middle 50%
between 2 and 4.5 for the ScatterPlot. It is interesting to
see the significantly large difference in the effectiveness
considering the perceived similarity in the design of
these visualization types.

Figure 9: Results from question 10 & 12 which used a Likert
scales in order to rate the effectiveness of the HotSpot View
& ScatterPlot visualization.

Q13: Qualitative Responses. For the HotSpot View and Scat-
terPlot the responses to the question regarding any
further thoughts were much more concise. (i) Out-
liers. There were 3 responses that complimented these
visualization types, one stated that they were good
due to being able to “target attributes and make
them the target classes with negative metrics stand
out”. (ii) Other responses. These included, complaints
around the labelling of parameters (NOA, NOPUBM)
and claims of the number of available parameters
being redundant due to only needing to use 1 to
answer the given questions.

TreeMap.
Q14: Which class in the TreeMap for jgraph-5.10.0.0

has the highest Lines Of Code (LOC)? This question was
used as a small task question in order to ensure the
participant has a basic understanding of how to use
the TreeMap visualization. All 31 participants gave the
correct answer: EdgeRenderer.java.

Q15: TreeMap Visualization Effectiveness rating. This ques-
tion was evaluated using a Likert scale to determine the
effectiveness. Figure 10 shows the TreeMap effective-
ness results where there was a large spread across the
data range, however the median value was 4, and the
middle 50% of the data was between 3 and 5.

105

Figure 10: Results from question 15 which used Likert scales
in order to rate effectiveness of the TreeMap visualization.

Q16: Qualitative Results for TreeMap. We asked
participants to elaborate.
(i) Scaling. The most commonly mentioned response
(6 responses) for the TreeMap was when using larger
systems it becomes impossible to compare the rectan-
gles. For scaling in terms of the package boundaries
one user stated, “The grey lines are useful for showing
the boundaries of packages, but they can be distracting
at times, especially when there are a large number of
packages. In this case they can take up a large portion
of the graph." (ii) Parameter Values. Another trend in
responses was regarding the available parameters. 3
participants mentioned that either they only found use
from the shade parameter as is was easy to notice the
difference it produced, and the ordering pattern was
not intuitive.

B. CorpusVis Application Evaluation

Effectiveness. Participants were asked to rate the overall
effectiveness of CorpusVis when viewing metric based visu-
alizations for large code bases as well as the effectiveness
of showing changes in a system over time. In Figure 11
we present the resulting scores of both visualizing changes
in a system over time and visualizing metrics in a system
(median of 4.0). The Likert ratings for visualizing metrics,
however, is much more concentrated towards the upper end
of the scale. All responses were between 2 and 5, and the
middle 50% of the data was situated between 3 and 4 on
the scale. In contrast, for changes over the time the middle
50% of the data was between 2.5 and 4, and the minimum
value was 1. Figure 12 shows the median value for the
System Usability Scores, which was 72.5. According to a
previous study [29], this score can be interpreted as Good.
What is interesting in the System Usability Score chart is
the minimum value, CorpusVis has a ’Good’ median SUS
value, however, the minimum score given is 7 which would
suggest an Awful rating from that participant.

Figure 11: Results from questions 17 & 19 evaluating the
CorpusVis application’s overall effectiveness.

Figure 12: Results from questions 23–32, fitted to the System
Usability Score (SUS) model in order to produce an overall
score of 72.5 for the CorpusVis [29].

Qualitative Results. Following the effectiveness ratings a
few open-ended questions (Q20-Q22) were asked regarding
the participants opinions on the system and it’s potential
uses. These questions were all intended to find out what
the participants thought the core areas for future work are
for this application. The final question regarding team size
was also included to test the hypothesis that large teams
have larger scale codebases meaning this tool is better in
smaller teams.

Q20: Improvements. The first area of improvement recom-
mended for CorpusVis was with regard to changes over
time and the switching between data sets. Participants
asked for the ability to have individual widget datasets,
so instead of the system being set for all of the widgets,
being able to individually chose the system and version
level for each widget. They also requested that it
be clearer where the differences are when changing
between versions. In fact, 3 participants suggested that
a good way to do this would be through the usage of

106

animations to get a more fluid image of which metrics
values have changed.

Q21: Handling of Large Systems. In this section the core
observations were as follows:

– The application suffers from a noticeable lag when
there are a number of visualizations on the screen
and when changing between versions.

– The tutorial does not give a clear enough guide
on using the system and UX design is the major
restricting factor.

– Being able to scroll is good in most of the widgets,
but it would be nicer to see the whole widget.

While this question did not intend for user’s to give
opinions on individual visualizations, a number of
times they were cited as examples. Only one visualiza-
tion received more negative comments than positive, 3
participants cited the Dependency Chart as being hard
to use due to losing the ability to discern classes.

Q22: Small Teams vs. Large Teams. This question asked
participants whether they thought the tool was better
suited for small or large teams. There was a mixed
response to this question. 11 participants stated large
teams would be best with the main reason being that
visualizing smaller data sets is not as useful and this
tool helps with breaking down large systems due to
being metric based. 6 participants stated that the tool
would be useful for any size team without any reasons
cited. Finally, 8 participants thought the tool would be
best suited to small teams due to the limitations in the
individual visualizations currently implemented.

C. Comparison Between Visualizations

In the previous section we looked individually at the ef-
fectiveness of the visualizations implemented in CorpusVis.
While we can individually evaluate them, the subjective
nature of Likert questions means it will be more effective
to compare the visualization scores against each other.
Figure 13 shows a comparison of the effectiveness of all
visualizations. It is interesting that of all the visualizations
the one with the lowest median Likert rating is the Scat-
terPlot visualization with 3. All of the other visualizations
have a median score of 4, however with varying levels of
spread in the data range.

VI. DISCUSSION

We now discuss the results of the user study and elabo-
rate on what we can learn from CorpusVis.

A. Software Visualizations Evaluation

The first research question for this project was “How
effective are currently used software metrics visualizations
when applied to a large code bases?" This section discusses
what we have found and how that question has been
answered by our study.

Visualization Effectiveness Scores. In Figure 13 we have
shown all of the effectiveness scores rated by 31 users for all

Figure 13: Combined Likert scores for all visualization types
by all participants.

of the visualizations. What we can see in these scores is that
by median value, the ScatterPlot is considerably worse than
the other visualizations. This data is interesting because in
the questions evaluating the visualizations qualitatively, it
was the Dependency Chart that received the highest levels
of negative feedback with 10 people sighting scalability as
a a major issue for this visualization type.

From the effectiveness scores we have learned that all
of the visualization types were capable of performing their
given tasks effectively. This is one potential limitation of
the study as all of the systems were selected randomly for
the tasks and based on ensuring each tasks had the data
required to perform the visualization task. So if we had
chosen the largest systems for the user study maybe we
would have got different results. To more effectively test this
aspect it would have been better to get a greater number of
tasks performed for each visualization to ensure the scores
are representative of the whole Corpus data set.

Based upon the perceived effectiveness scores we have
received, the Dependency Chart, HotSpot View, and Toxicity
Chart can all be considered equally effective, with the
ScatterPlot being the worst. However, without more data it
is hard to determine of the other four visualizations which
is the most effective technique.

Qualitative Responses. For the qualitative responses, all
of the chart types received comments regarding their scal-
ability. Because the tasks involved in the questionnaire did
not always use the biggest systems from the Corpus, so the
information given may have been different if we had. For all
of the charts, there was a one-to-one relationship of chart
object to class of the system. What we’ve learned through
the qualitative responses is that for every chart, there is a
limit to how far the visualization can be extended while
still remaining effective at a granular level. One particpant
stated that the application overall is “decent for seeing an
holistic view of changes, though it still struggles to see

107

specific bits", this supports the idea that the visualizations
are being extended to a point where we can see an overview
of the system but it has become too hard specifically to
examine smaller parts of the system.

Taking into account the qualitative responses, it becomes
clear that the ScatterPlot, Dependency Chart, and TreeMap
were perceived by users to be less scalable. The HotSpot
and Toxicity Chart interestingly were the two charts that
had scroll bars implemented, when implementing the ap-
plication, having scroll bars on the individual widgets was
deemed as a bad UX decision and it would be better if the
visualizations fitted to the widget size, however participant
responses suggest that scroll bars were an effective solution
and make this a potentially usable for future work.

B. CorpusVis Application Evaluation

The second research question we aimed to answer was
“How can we use a web-based application displaying com-
posite visualizations to effectively convey static errors in
large Java systems?" This section discusses what we have
found and challenge by implementing CorpusVis.

Widget-based Application. One of the core parts of the
implementation of CorpusVis was using a widget-based
dashboard as the main user interface component. What we
found is that using a widget-based dashboard made it easy
for users to find the information that they required as they
could dynamically change the dashboard at any point to
give one widget more or less space. One participant stated
that “The widgets really helped to change the visualization
to look for the metrics I was interested in. When things
looked convoluted, the widgets helped to drill down and
find the answer." The qualitative feedback received along
with the ‘Good’ system usability score of 72.5 suggests
that we have succeeded in providing a usable and scalable
software visualization application.

One learning from the user study was that the quality
of the tutorial given and the overall UX design did hinder
our application. One participant stated that, “It was not
obvious that the mouse could be used to stretch the charts.
discovered this feature by accident." This suggests the
user interface perhaps could benefit from an on-screen
tutorial, tool tips, or a more clear design scheme to ensure
participants can pick up the functions intuitively.

Developing the application specifically for the web
brought it’s own challenges, and it became apparent that
once more than 5 widgets were added to the dashboard
changing between systems began to show noticeable lag
and participants cited this in their responses.

Future Improvements. CorpusVis was found to be least
effective when it came to the navigation of system versions
and displaying differences in the different versions. A valu-
able areas of future work would be to extend the application
with a better navigation experience for users, this could
include changing how navigation is implemented, adding
animations when changing systems, and possibly imple-
menting the ability to view multiple versions at once.

Similarly to the multiple versions, another limitation of
the application is the inability to view multiple systems
at once. It would be a possible area of future work to
implement the ability for each dashboard to have its own
dataset behind it so then they could all be showing different
systems.

We have found that the visualizations struggled to scale
due to the one-to-one nature that is commonly seen for
classes in software visualizations. One way to try and com-
bat this is to build filtering into the visualizations as we have
done for packages in the Dependency Chart. A potential
area for future work is to add in filtering frameworks.
This work could also involve more research into find, or
developing more visualizations which do not have one-to-
one mappings so that scalability can be improved.

During the development of CorpusVis, the most chal-
lenging part was extracting the static analysis data from
the Corpus source files. This was due to the limitations
of currently available software, and the sheer volume of
data causing static analysis tools to take a long time to
run. In CorpusVis the data files are stored as flat JSON
files, a potentially useful area for future work would be
to build a database of static analysis metrics data for the
Qualitas Corpus in order to remove this required step from
the process for future developers.

VII. CONCLUSIONS

In this paper we presented CorpusVis which visualizes
software metrics via an extensible web-based viewing ap-
proach. CorpusVis is designed as a widget-based dashboard
application whereby users can select, manipulate and in-
teract with added visualizations. To illustrate CorpusVis we
used the Qualitas Corpus data which includes a number of
Java systems. We conduced a user study of CorpusVis with
31 participants to understand what visualization techniques
were effective. We found that the visualizations themselves
were all effective for the smaller systems in the Corpus,
however in the larger systems they became ineffective
due to the sheer volume of data. We found that of the
visualizations, the HotSpot View and Toxicity Chart were
more effective than the Dependency Chart, ScatterPlot and
TreeMap. The differences between these visualizations and
the others were that they both kept a static size of the visu-
alization no matter the size of the widget, and used scrolling
to view all of the visualization. By developing CorpusVis we
have given insight into developing visualizations of software
metrics at scale.

ACKNOWLEDGMENTS

We thank the participants for participating in the user
study. Merino acknowledges funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) – Projektnummer 251654672 – TRR 161.

108

REFERENCES

[1] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero, “Understanding the shape of java
software,” SIGPLAN Not., vol. 41, no. 10, pp. 397–412, Oct. 2006.

[2] E. Doernenburg, “How toxic is your code?” https://erik.doernenburg.
com/2008/11/how-toxic-is-your-code/, accessed: 2018-10-11.

[3] S. Diehl, Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer, 2007.

[4] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2010.

[5] T. Ball and S. G. Eick, “Software visualization in the large,” Computer,
vol. 29, no. 4, pp. 33–43, Apr. 1996.

[6] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of java code
for empirical studies,” in Proc. of Asia Pacific Software Engineering
Conference (APSEC), 2010, pp. 336–345.

[7] J. Domingue, “Software visualization and education - introduction,”
in Revised Lectures on Software Visualization, International Seminar.
Springer, 2002, pp. 205–212.

[8] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Berlin, Heidelberg: Springer-Verlag, 1999.

[9] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2,
no. 4, pp. 308–320, Jul. 1976.

[10] M. Lanza and S. Ducasse, “Polymetric views – a lightweight visual
approach to reverse engineering,” IEEE Trans. Softw. Eng., vol. 29,
no. 9, pp. 782–795, Sep. 2003.

[11] M. Lanza, “Codecrawler – lessons learned in building a software
visualization tool,” in Proc. of European Conference on Software
Maintenance and Reengineering (CSMR), March 2003, pp. 409–418.

[12] C. Anslow, S. Marshall, J. Noble, and R. Biddle, “Sourcevis: Collab-
orative software visualization for co-located environments,” in Proc.
of Working Conference on Software Visualization (VISSOFT). IEEE,
2013, pp. 1–10.

[28] L. Merino, J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari, O. Nier-
strasz, M. Behrisch, and D. Keim, “On the impact of the medium in
the effectiveness of 3D software visualization,” in Proc. of VISSOFT.
IEEE, 2017.

[13] L. Merino, M. Lungu, and O. Nierstrasz, “Explora: A visualisation
tool for metric analysis of software corpora,” in Proc. of Working
Conference on Software Visualization (VISSOFT), 2015, pp. 195–199.

[14] “Toxicity reloaded,” https://github.com/softvis/toxicity-reloaded, ac-
cessed: 2018-10-11.

[15] “Dependencywheel an interactive visualization of package de-
pendencies,” http://www.redotheweb.com/DependencyWheel/, ac-
cessed: 2018-10-11.

[16] C. Anslow, J. Noble, S. Marshall, E. Tempero, and R. Biddle, “User
evaluation of polymetric views using a large visualization wall.” in
Proc. of Symposium on Software Visualization (SoftVis). ACM, 2010.

[17] “Polymetric views - online version,” https://github.com/softvis/
polymetric-views, accessed: 2018-10-11.

[18] A. Berson, Client-server architecture. McGraw-Hill, 1992, no. IEEE-
802.

[19] N. Foundation, “Node.js,” https://nodejs.org/en/, accessed: 2018-10-
11.

[20] “Gridstack.js,” http://gridstackjs.com/, accessed: 2018-10-11.
[21] M. Bostock, “D3.js - data-driven documents,” https://d3js.org/, ac-

cessed: 2018-10-11.
[22] “Javafx,” https://www.oracle.com/technetwork/java/javase/

9-deprecated-features-3745636.html, accessed: 2018-10-12.
[23] “Checkstyle,” http://checkstyle.sourceforge.net/, accessed: 2018-10-

11.
[24] “Google java style guide,” http://google.github.io/styleguide/javaguide.html,

accessed: 2018-10-11.

[25] D. Finder, “Dependency finder,” http://depfind.sourceforge.net/, ac-
cessed: 2018-10-11.

[26] R. Kosara, C. Healey, V. Interrante, D. Laidlaw, and C. Ware, “User
studies: Why, how, and when?” IEEE Computer Graphics and Appli-
cations, vol. 23, no. 4, pp. 20–25, 7 2003.

[27] J. I. Maletic and A. Marcus, “CFB: A call for benchmarks-for soft-
ware visualization,” in Proc. International Workshops on Visualizing
Software for Understanding and Analysis (VISSOFT). IEEE, 2003, pp.
113–116.

[29] J. Brooke, “Sus: A quick and dirty usability scale,” Usability Eval. Ind.,
vol. 189, 11 1995.

109

