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Abstract
The computation trees of the Tutte Polynomial algorithm are very
large. Understanding the effects of applying heuristics to the al-
gorithm for example to classify knots is very challenging. We
have constructed visualizations of the Tutte Polynomial computa-
tion tree. The visualizations are useful to study the effect of various
heuristics on the algorithms’ operation.
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1 Introduction
Tutte polynomials play an important role in graph theory, combina-
torics, matroid theory, knot theory, and experimental physics. The
Tutte Polynomial can be used to classify knots. A knot can be
thought of as a tangled cord with the ends joined. If the tangled
cord is a trivial knot, it could be untangled with the ends still fused;
however, if the tangled cord is a nontrivial knot, a cut is needed
to untangle it. The double helix which constitutes DNA can be vi-
sualized as two very long strands that are intertwined and coiled
so much as to form a knot. In order for DNA to replicate it must
first “untangle” itself and various enzymes are responsible for this.
The type of knot involved affects this process, and a better under-
standing of this would yield additional insight into the replication,
transcription, and recombination of DNA [Murasugi 1996].

Haggard et al.[Haggard et al. 2007] have developed the most
efficient algorithm to compute the Tutte polynomial of a graph
of sufficient size to represent a DNA knot [Bollobas and Riordan
1999]. The algorithm relies on various optimizations and heuristics
to obtain good performance. However, the reason that a particu-
lar heuristic is effective often remains unclear. We have developed
visualizations of the computation tree for the Tutte Polynomial to
understand the heuristics and suggest better ones which will lead to
a faster algorithm in practice.

2 Computing Tutte Polynomials
A graph is defined as a pair (V, E), where V is the vertex set and
E⊆V ×V the edge set. In this paper, we consider only undirected
graphs, meaning (x, y) is the same as (y, x). A loop is an edge
(x, x) between the same vertex, whilst a bridge is an edge whose
removal disconnects two or more vertices (i.e. there is no longer
a path between them). The degree of a vertex is the number of
vertices incident on it.

The definition of a Tutte polynomial outlines a simple recursive
procedure for computing it. We are free to apply its rules in what-
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ever order we wish, and to choose any edge to operate on at each
stage. Two operations are essential to understanding the Tutte poly-
nomial definition. These are: edge deletion, G − e; and edge con-
traction, G/e. The latter involves first deleting e, and then merging
its endpoints.

Definition 1. The Tutte polynomial of a graph G = (V, E) is a
two-variable polynomial defined as follows:

T (G) =

8>>>>><>>>>>:

1 E(G) = ∅ (1)
xT (G/e) e∈E and e is a bridge (2)
yT (G− e) e∈E and e is a loop (3)
T (G− e) + e∈E and e is neither a (4)

T (G/e) loop nor a bridge

The order of applying the rules of Definition 1 significantly af-
fects the size of the computation tree. An “efficient” order can re-
duce work in a number of ways. For example, there are two situa-
tions where an edge is associated with a factor directly: if the edge
is a loop, the factor is y; likewise, if the edge is a bridge, the factor
is x. Eliminating such edges as soon as possible and storing the fac-
tor (a cache of computed polynomials) for later incorporation into
the answer reduces work by lowering the cost of operations (e.g.
contracting, connectedness testing, etc.) on graphs in the subtrees
below the removal.

The choice of edge for a delete/contract operation can also
greatly affect the size of the computation tree. In particular, it af-
fects the likelihood of reaching a subgraph isomorphic to one al-
ready seen. We have elsewhere developed two simple edge selec-
tion heuristics which appear to perform well. The first, called MINS-
DEG, minimises the degree of either end-point; that is, it chooses an
edge where one endpoint has the smallest degree of any. The sec-
ond, called VORDER, relies on an arbitrary ordering of the vertices;
starting from the first vertex in the order, it continuously selects
edges from the same vertex until none remain, before moving on to
the next vertex in the ordering.

Understanding why the edge selection heuristics MINSDEG and
VORDER perform so well is not easy. This is because the computa-
tion trees we are interested in typically have hundreds of thousands
of nodes, and it is difficult to gauge exactly what effect each heuris-
tic is having. Understanding them better would allow us to design
better heuristics.

3 Visualizing the Computation Tree
We have developed a visualizer in Java for the Tutte Polynomial
computation. We used the radial layout visualization technique for
viewing the computation tree which is essentially a top down view
of a cone and maximizes the use of screen real estate. We split the
radial view into an arrangement of concentric circles divided into
wedges. We call this the wedge display, as illustrated in Figure 1.
The display provides an uncluttered view of the computation tree,
with the flush proximity of nodes allowing node characteristics to
be effectively summarized by colour.

Figure 2 illustrates two computation trees for the same starting
graph, computed using the two different heuristics. It is immedi-
ately apparent from this visualization that the effect of the heuristics
can be significant.
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Figure 1: Nodes in the computation tree are arranged into the
wedge display where each node is represented by a wedge of colour,
rather than a small circle, making better use of space.

Figure 3 shows the visualizer’s application view; this allows the
user to manipulate their view of the computation tree through zoom-
ing, shifting, and other effects. The target viewport provides the
main view window for the computation tree. Within this view the
user can click and drag the view, zoom in/out and select a node,
amongst other things. The macro view shows an outline view of
the computation tree, which helps the user navigate the computa-
tion tree; a box in the macro view indicates the size and location of
the target viewport. The user can also reposition the target viewport
by clicking on the macro view directly. The node view shows the
graph at a particular node in the computation tree, which is selected
by clicking on the target viewport.

Figure 4 demonstrates another view produced by our visualizer
that can provide some useful insight. This shows the distribution of
matches in the cache. We have a cache that is used to store com-
puted polynomials for intermediate graphs seen during the compu-
tation, so that they can be recalled when that intermediate graph is
encountered again.

Figure 2: Tutte polynomial computation of the same graph. The
VORDER heuristic (bottom) produces a computation tree with 325K
steps and the MINSDEG heuristic (top) produces 806K steps.

Figure 3: The application view with the following labelled parts:
1. Target View, 2. Macro View, 3. Magnification Slider, 4. Node
View, 5. Colour Gradient Key, 6. Squashing Slider, 7. Function
Panel.

We have presented a visualization of the Tutte polynomial com-
putation. This has proved useful in aiding understanding of the
computation. We are unaware of any other work on visualizing the
Tutte Polynomial computation. In the future, we would like to con-
sider visualization of the computation tree for other NP-complete
problems, such as SATisfiability (SAT) solving.

Figure 4: Tutte Polynomial computation of the same graph (MINS-
DEG heuristic on the left and VORDER heuristic on the right). Each
line shown on the two diagrams connects the point when an inter-
mediate graph is first encountered and stored in the cache, with a
later point where that graph is recalled and used.
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