Web Software Visualization Using Extensible 3D (X3D) Graphics

Craig Anslow, James Noble, Stuart Marshall*
Victoria University of Wellington, New Zealand

Abstract

3D web software visualization has always been expensive, special
purpose, and hard to program. Most of the technologies used re-
quire large amounts of scripting, are not reliable on all platforms,
are binary formats, or no longer maintained. We can make web
software visualization of object-oriented programs cheap, portable,
and easy by using Extensible (X3D) 3D Graphics, which is a free
open standard. In this paper we outline our experience with X3D
and discuss the suitability of X3D as an output format for software
visualization.

CR Categories:
Environments—;

D.2.6 [Programming Environments]: Graphical

Keywords: Software Visualization, Extensible 3D Graphics

1 Introduction

The Web3D Consortium’s Extensible 3D (X3D) Graphics stan-
dard [Brutzman and Daly 2007] provides a technology for deploy-
ing interactive 3D graphical content over the web. This technology
has many possible applications and one we are interested in is de-
ploying software visualizations over the web.

Our current work in developing a web-based software visualiza-
tion architecture [Marshall et al. 2001] requires a technology that
can deliver visualizations over the web. For this reason we decided
to evaluate X3D to see if it is a viable graphics technology for use
in the development of software visualizations. We have created a
prototype tool for creating X3D software visualizations [Anslow
et al. 2006b], described techniques for visualizing software with
X3D [Anslow et al. 2007], and presented preliminary results of
evaluating X3D [Anslow et al. 2006a]. In this paper we present
our final evaluation results for using X3D in software visualization.

2 Evaluation of X3D

We want to see if X3D can support a range of 3D software visual-
ization techniques to determine if the technology is viable for use
in software visualization. More precisely we want to experiment
with automatically creating X3D software visualizations over the
web, evaluate X3D’s animation and interactivity aspects, examine
the text, layout, and extensibility features, test the integration capa-
bilities, and analyse the performance display capabilities of X3D.

Figure 1 shows bubble, selection, and insertion sort algorithms
all animating at once. The combined views allow a user to see
both the current state of the array and the history of an algorithm’s
execution. The animation replicates a similar example by [Najork
and Brown 2001].

Figure 2 shows a documentation related visualization that has
a 3D UML class diagram of a Java program and the associated

*E-mail: {craig, kjx, stuart}@mcs .vuw.ac.nz
TE-mail: robert _biddle@carleton.ca

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.

SOFTVIS 2008, Herrsching am Ammersee, Germany, September 16-17, 2008.
© 2008 ACM 978-1-60558-112-5/08/0009 $5.00

213

Robert Biddle"
Carleton University, Canada

x3d - Windows Internet Explorer

9 4 @ ci\ocuments and Settings\craig|Desktopanimation-

Bubble Selection Insertion

6102128 4 14161820

2 46 821218161014 2 61012 8 14161820 4

,,,,,,
2y Conputer R -

Figure 1: X3D Elementary Sorting Algorithm Animation.

Javadoc. When a user clicks on a class or package in the visual-
ization in the left frame the associated Javadoc entity is displayed
in the right frame. The UML diagram replicates a similar example
by [McIntosh et al. 2005]. We now discuss our evaluation results.

Design: X3D is a free open standards file format and run-time
architecture to represent, communicate, and deploy 3D scenes and
objects over the web using XML. The X3D specification is com-
prised of components which contain nodes (e.g. geometry) that
are declared in a scene graph. Content can be created using text
editors, X3D editors (e.g. X3D-Edit a Netbeans plug-in), digital
content creation tools (3DS Max, Maya, Blender), or XSLT trans-
formations. There are language bindings to ECMAScript and Java.
We used three of the main X3D browser free version implementa-
tions including (in order of preference): BS Contact VRML/X3D
Player (6MB download), Octaga Player (SMB), and Flux Player
(1.5MB). Each of these X3D browsers operate on Windows and
can be plugged into Mozilla Firefox and Microsoft Internet Ex-
plorer or operate as stand alone. There is also the Web3D Con-
sortium’s stand-alone open source test-bed implementation Xj3D
(12MB). X3D content can be rendered in either OpenGL or Di-
rectX. Some of these X3D browsers do not implement all of the
X3D specification nor do they make the Scene Access Interface
(SAI) run-time API available. This makes it hard for developers to
create consistent X3D software visualizations.

Graphical Capability: A rich set of graphical elements exist to
create high quality visual pictures required in software visualiza-
tions. Points and lines can be implemented using nodes from the
2D geometry component, and areas and volumes from the 3D ge-
ometry component. Shapes have size, height, radius, colour, and
transparency fields, and can be animated to change in a software
visualization. Shapes can be orientated in any order (e.g. translated
then rotated) and change position during a software visualization.
When nodes that are connected in a graph visualization are moved
in a scene, scripting is required to preserve the node-link relation-
ships. Text can also be displayed using the shape node. Lighting

Figure 2: X3D UML Class Diagram showing 100 classes inte-
grated with Javadoc.

(directional light) and environment (background) effects can be ap-
plied to a scene. Textures can be applied to shapes using images
(.png, .gif, and .jpg), sound (.wav, .mp3), or video (.mpg). Sound is
used in Figure 1 to signify ordering of elements. Videos have been
used for providing additional information in our UML diagrams
when an entity is selected. Node prototyping can be used to extend
X3D. Developers specify node prototypes and then use prototype
instances which are then mapped to geometry nodes.

Performance: Using our prototype tool [Anslow et al. 2006b]
our smaller XML execution traces take less than a few seconds!
to generate a X3D software visualization and our larger traces (10-
50MB) take less than two minutes to produce 10K-100K nodes.
The longest time spent in creating our web software visualizations
is the rendering of the X3D scenes rather than the stylesheet trans-
formation. It takes less than 10 seconds to render about 10K nodes,
three minutes for S0K nodes, but up to 10 minutes to render 100K
nodes. The size of the files ranged from less than 100KB for our
small visualizations to 10-18MB for our large visualizations. We
converted the visualizations to the X3D binary format which re-
duced the files by about 75%.

Visualization Techniques: There is no specific software visual-
ization component or library. We replicated a range of software
visualization techniques in X3D including algorithm animations
(Figure 1), 3D UML diagrams (class, package, and sequence di-
agrams), documentation related visualizations (source code, API
Javadoc - Figure 2, and video visualizations), and execution trace
visualizations (3D compound shapes and 3D information visualiza-
tion metaphors). The data for our visualizations have been encoded
using three different approaches: in the X3D scene, transformed
from XML execution traces into X3D geometry primitives, and as
node prototype instances. Our visualizations can display Java and
C++ programs. X3D can be used to represent program synchroniza-
tion (Figure 1). Multiple views can be accomplished by displaying
the data in different positions in the scene (Figure 1) or integrating
external web pages (Figure 2).

Animation: X3D relies too heavily on the routing event model
(Figure 3) for animation. ROUTE directives are used between each
event in the model. A ROUTE directive takes input from one node’s
field and outputs values to another node’s field (e.g. timer to a po-

IPerformance transformation and rendering timings of both client and
server were measured using a Dell 610 laptop with Windows XP and
512MB of RAM.

214

(o ol e o) e

s T\me) bl \nterpo\atorl bf Target '\
\ ensor

/ ROUTE \ / ROUTE \ / ROUTE \ /

Figure 3: X3D Animation Routing Event Model.

sition interpolator then to a geometry node such as a cube). The
design of the model is very cumbersome as ROUTE directives re-
quire the explicit name of each node as opposed to an instance based
model for object-oriented methods.

User Control and Navigation: X3D supports basic user con-
trols such as start and stop buttons for temporal control in algorithm
animations (Figure 1). No specific software visualization user con-
trols exist in X3D. More complicated controls such as speed, pause,
fast forward, rewind, and step in algorithm animations require the
use of scripts. X3D has very good 3D user navigation support for
software visualization including the follwing techniques: walk, ex-
amine, fly, look-at, slide, and pan. A user can change the navigation
type, the speed of navigation, and viewpoint at run-time using the
X3D browsers’ user control menus.

User Tasks: Users can gain an overview of the entire software
visualization if a viewpoint is defined that contains the whole data
set. Users can zoom using the navigation controls or by selecting a
pre-defined viewpoint. Filtering can be achieved using the boolean
filter field or changing the transparency, scale, or size values of a
node once a user clicks or moves a user control. Details-on-demand
can be provided through the level-of-detail or switch nodes which
displays additional information about a node once a user clicks or
moves within a certain distance from a node in the scene. Show-
ing relationships among items in a visualization requires the use of
scripting. There is no built in support for creating a history of user
actions nor extracting sub-collections of information.

In this paper we have reported on our experience with X3D for
use in software visualization. Our detailed evaluation can be found
elsewhere [Anslow 2008]. In summary, the advantages of X3D for
software visualization are rich graphics, extensibility, and XML in-
tegration. The disadvantages of X3D are lack of software visualiza-
tion user controls, a primitive animation model, and weak support
for filtering and layout. Nonetheless we encourage software visual-
ization developers to adopt X3D if they need 3D for the web.

References

ANSLOW, C., MARSHALL, S., NOBLE, J., AND BIDDLE, R. 2006. Evalu-
ating X3D for use in software visualization. In Proc. of SOFTVIS, 161—
162.

ANSLOW, C., MARSHALL, S., NOBLE, J., AND BIDDLE, R. 2006.
VET3D: a tool for execution trace web 3D visualization. In Compan-
ion to OOPSLA, 655-656.

ANSLOW, C., MARSHALL, S., NOBLE, J., AND BIDDLE, R. 2007. X3D
software visualisation. In Proc. of NZCSRSC.

ANSLOW, C. 2008. Evaluating Extensible 3D (X3D) Graphics For Use in
Software Visualisation. Master’s thesis, VUW.

BRUTZMAN, D., AND DALY, L. 2007. X3D: Extensible 3D Graphics for
Web Authors. Morgan Kaufmann.

MARSHALL, S., JACKSON, K., BIDDLE, R., MCGAVIN, M., TEMPERO,
E., AND DUIGNAN, M. 2001. Visualising reusable software over the
web. In Proc. of INVIS, 103-111.

MCINTOSH, P., HAMILTON, M., AND VAN SCHYNDEL, R. 2005. X3D-
UML.: enabling advanced UML visualisation through X3D. In Proc. of
Web3D, 135-142.

NAJORK, M. A., AND BROWN, M. H. 2001. Three-dimensional web-
based algorithm animations. Tech. Rep. SRC-RR-170, Compaq Systems
Research Centre.

