
Visualizing the Size of the Java Standard API

Craig Anslow, James Noble,
Stuart Marshall

School of Engineering and Computer Science
Victoria University of Wellington, New Zealand

{craig,stuart,kjx}@ecs.vuw.ac.nz

Ewan Tempero
Department of Computer Science

University of Auckland, New Zealand
ewan@cs.auckland.ac.nz

ABSTRACT
The design of software should be made up of small packages
and classes. The Java Standard API is now very large since
Java’s beginnings, and contains over 200 packages, nearly
5800 classes, and nearly 50,000 methods. We have con-
ducted visual software analysis on the Java Standard API
using existing software visualization techniques to identify
large packages and classes in the API. Our analysis has iden-
tified that there exists a number of large packages and classes
in the Java Standard API which leads to possible refactoring
opportunities.

Categories and Subject Descriptors
D.3.0 [Programming Languages]: Standards
; H.1.2 [User/Machine Systems]: Human Factors

General Terms
Design, Languages

Keywords
Java Standard API, Software Metrics, Software Visualiza-
tion

1. INTRODUCTION
The more we learn about past mistakes, the better are

our chances to avoid them in the future – and build better
software at lower cost [23]. The Lego Hypothesis states that
the design of software should be made up of small packages
and classes [3]. Having smaller packages and classes makes
software easier to maintain. Our overall research project
goal is to understand the quality of software design by col-
lecting measurements of the software and then visualize the
software metrics data.

To measure software design quality we use software met-
rics. A software metric measures some property of a piece
of software such as the number of lines of code [6]. Applying

This paper was published in the proceedings of the New Zealand Computer
Science Research Student Conference (NZCSRSC) 2010. Copyright is held
by the author/owner(s). NZCSRSC 2010, April 2010, Wellington, New
Zealand.

software metrics can help determine the quality of software.
Lanza et al. [9] claim that there is no magic software metric
that has been found and consider the definition of a universal
software design quality metric as the holy grail of software
engineering.

To visualize the software metrics data we adopt existing
software visualization techniques. Software visualization is
defined as the use of computer graphics and application of
information visualization techniques to facilitate the under-
standing of software [16]. The goal of software visualization
is to help users comprehend software systems and to improve
the productivity of the software development process [5].

To support our project we use the Java Standard API
1.6 and the Qualitas Corpus [12]. The current release of
the Java Standard API 1.6 is now massive compared to the
early beginnings of the language. There are now over 200
packages, nearly 5800 classes, 9500 variables, nearly 50,000
methods, and 523,500 lines of code in the API. The Quali-
tas Corpus is a corpus of 100 open-source Java applications
collected from a number of sources and intended for use in
empirical studies of software to understand how programs
are structured and the relationships between code structure
and design quality attributes.

This paper addresses the question are there any large
packages or classes in the Java Standard API 1.6? Our ap-
proach for answering this question is as follows. We first
collect software size metrics including: Number of Instance
Variables (NIV), Weighted Methods per Class (WMC), and
Lines of Code (LOC) from the Java API. We then create
visualizations of the Java packages and classes using the
System Hotspot View metaphor from the Polymetric View
suite [8], and then conduct visual software analysis to find
the large packages and classes.

The rest of this paper is organised as follows. In Section
2 we give an overview of related work. In Section 3 we
discuss our methodology for creating software visualizations
of metrics data. Section 4 outlines our results and illustrates
our System Hotspot Views of the packages and classes in
the Java Standard API 1.6. Section 5 discusses our results.
Section 6 discusses directions for future work. In Section 7
we present our conclusions.

2. RELATED WORK
We have used the Qualitas Corpus [12] to study var-

ious software attributes such as how inheritance [19] and
fields [18] are used in Java programs. With regard to us-
ing visualizations to display our results; we have conducted
studies into the words most frequently used in class names

and the most common class names used in the packages of
the Java Standard API using Many Eyes, a web based visu-
alization application [1]. We found that the most frequently
used words in the Java Standard API 1.6 class names in de-
scending order are Exception, UI, Helper, Type, Event, and
Factory.

There exist a number of software metric tools (as stan-
dalone or plug-ins for IDEs) that allow analysing software.
Some of these tools include SemmleCode1 [21], SciTools Un-
derstand2, Structure1013, and Creole4. SemmleCode and
SciTools have a number of built-in features to collect soft-
ware metrics such as the Chidamber and Kemerer [4] met-
rics suite about software application(s) and allow further
customisation. These tools employ basic visualization tech-
niques such as graphs and tree structures, neither of them
use any specific software visualization techniques. Structure
101 and Creole mainly focus on dependencies between enti-
ties and both have plug-ins to Eclipse.

Gill and Maman [7] created micro-patterns to classify Java
class implementations, while Singer et al. [15] created nano-
patterns to characterize and classify Java methods. They
both have analysis tools for detecting these kinds of patterns
in Java programs, but neither of them have been applied
to large software corpora or the Java Standard API, nor
integrated with commercial tools.

Lanza and Ducasse [8] describe Polymetric Views includ-
ing System Hotspot Views which are visualization techniques
to help understand the structure and detect problems of a
software system in the initial phases of a reverse engineer-
ing process. The visualizations use metrics data about the
size of classes, packages, and their dependencies. Wettel and
Lanza [22] applied design dis-harmonies to their Code City
tool which uses 3D Polymetric Views and disharmony maps
to identify brain, god5, and data classes.

Apatite and Jadeite are two tools part of the Natural Pro-
gramming research project that make it easier for users to
search the Java API [17]. The tools use visualization cues
based on usage data of classes by users as opposed to other
Java software such as our empirical study [11]. A user eval-
uation showed that programmers were about three times
faster at performing common tasks with Jadeite than with
standard Javadoc.

3. METHODOLOGY
Visual analytics is a new research field which has evolved

from the fields of scientific visualization and information vi-
sualization. Visual analytics is defined as the science of
analytical reasoning facilitated by interactive visual inter-
faces [20].

Our methodology is to use visual software analytics [2]
which is a super-set of information visualization, software
visualization, and empirical software engineering to under-
stand the Java Standard API. The visual software analytics
process will help provide insight into a collection of programs
or software using multiple visualization techniques at once
(e.g. tree maps, focus + context, node-link diagrams), as

1http://semmle.com/
2http://www.scitools.com/products/understand/
3http://www.headwaysoftware.com/products/structure101/
4http://www.thechiselgroup.org/creole
5An object that controls way too many other objects in the
system and has become the class that does everything.

well as various data representations (e.g. metrics, revision
history, class hierarchy).

We measure the size of a package as the total number of
classes, methods, variables, and lines of code in that pack-
age. For classes we measure size as the Number of Instance
Variables (NIV), Weighted Methods per Class (WMC), and
Lines of Code (LOC) per class.

Figure 1 shows the suite of tools we use to create the vi-
sualizations. We first obtained the Java Standard API 1.6
source code from the Sun Microsystems web site6. Next we
load the source code into a SciTools Understand Project and
execute the metrics analyser feature which exports the se-
lected metrics (NIV, WMC, LOC) into a CSV file. We filter
the files and then load them into a Processing7 [13] sketch
where we implemented the System Hotspot View metaphor
which is a software visualization technique from the Poly-
metric View suite [8]. Upon execution of the sketch large
static images of the visualizations are then generated in any
format that Processing supports (e.g. png, jpg, gif).

Figure 1: Tool suite to create our System Hotspot
Views.

The Systems Hotspot View metaphor is described as fol-
lows. The packages are ordered alphabetically down the Y
axis and classes in each package are ordered alphabetically
along the X axis. For each class the width indicates the
number of instance variables (NIV) and the height indicates
the number of methods (WMC). Colour indicates the num-
ber of lines of code (LOC), the darker the class the more
lines of code it contains (e.g. LOC < 100 = light grey, >
1000 = black).

We extended the Systems Hotspot View metaphor to con-
tain package labels and coloured borders to represent the
different kinds of classes. Concrete classes have blue bor-
ders, interfaces red borders, and abstract classes green bor-
ders. Figure 2 shows a snapshot of one of our visualizations
that illustrates our extensions to the System Hotspot View
metaphor.

Viewing the visualizations on paper or a desktop machine
with 17-24 inch screens does not do them justice, one needs
a large display to view them in their entirety or use tech-
niques that allow the user to easily zoom in on the details.
We conduct our visual software analysis of the visualizations
using an OptIPortal visualization cluster to display multiple
visualizations at once, see Figure 3. The visualization wall
has 12 screens arranged 4x3. Each individual display is 2560
x 1600 pixels (at a cost of $3000 NZD) for a total display
of 10240 x 4800 pixels. The wall is useful for visual analy-
sis of multiple visualizations at once for discovering common
trends, videoconferencing, and collaboration with other por-

6http://download.java.net/jdk6/source/
7a programming language and IDE built for the electronic
arts and visual design communities, http://processing.org

Figure 2: Our extensions to the System Hotspot
View metaphor.

Figure 3: Conducting Visual Software Analysis us-
ing our OptIPortal Visualization Wall.

tals. The biggest visualizations we created were 3000 x 9000
pixels as that is the smallest resolution we could produce
them to get fine enough granularity.

4. RESULTS
We are interested in identifying large packages and classes

in the Java Standard API 1.6. Tables 1, 2, and 3 list the
top 20 largest packages and classes in the Java Standard
API 1.6 that we generated from the SciTools Understand
application. Our approach is to use visual software ana-
lytics as described earlier with System Hotspot Views to
understand this data from the Java API. We created three
System Hotspot Views for the top level packages in the Java
API as defined as java, javax, and org. We now present the
System Hotspot Views for each of these packages.

Figure 4(a) shows a System Hotspot View of the top
level packages from the java package. The two largest pack-
ages are java.awt and java.util. The smallest packages are
java.applet and java.math. What is noticeable is that Com-
ponent in java.awt is by far the largest class (NIV = 61,
WMC = 323, LOC = 4410), which is also noticeable in Fig-
ure 2. In the java.awt package there are two other large
classes (Container and Window) and two large interfaces
(KeyboardFocusManager and Toolkit).

The java.awt.peer, java.security.interfaces, and java.sql pack-
ages are mainly made up of interfaces. The java.sql pack-
age has three interfaces that are represented by long narrow
rectangles as they have a high WMC as evidenced by Ta-
ble 3 (java.sql.ResultSet, java.sql.DatabaseMetaData, and
java.sql.CallableStatement).

Each of the following packages has one very large class
compared to the rest of the classes in the package, which
could be god classes: java.lang (Character), java.net (URI),
java.security.cert (X509CertSelector), java.text (DecimalFor-
mat), and java.util.concurrent (ConcurrentSkipListMap). The
java.awt.font and java.io packages have one very large class
(TextLayout and ObjectStreamClass), a few other large classes,
and then lots of smaller classes. The java.util.regex has one
god class (Pattern), then another slightly smaller class, and
then lots of very small classes.

Figure 4(b) shows the top level packages from the javax
package. Clearly the largest package is javax.swing followed
by javax.swing.plaf.basic, and then other javax.swing sub-
packages. The javax.swing package has two large classes
(JTable and JTree) and two large abstract classes (JCompo-
nent and AbstractButton). The javax.swing.plaf.basic pack-
age has two large classes (BasicTreeUI and BasicTabbedPan-
elUI) and then nine other classes that have over 1000 lines
of code.

There are a few other interesting packages. There are
some packages that contain entirely interfaces including:
javax.sound.midi.spi, javax.sound.sampled.spi, and
javax.xml.bind.attachment. Then there are some packages
that mainly contain interfaces with the exception of a few
classes (or no classes) and these include: javax.sql,
javax.imageio.event, javax.lang.model.element,
javax.lang.model.type, javax.security.auth.api,
javax.xml.stream.events, javax.xml.ws.handler, and
javax.xml.ws.handler.soap

The javax.lang.model package contains no classes but has
an enum instead. The rest of the javax.xml packages are
relatively small having no more than 36 classes, but most
much smaller than that.

Figure 5 shows the top level packages from the org pack-
age. The org.omg.CORBA package is the largest and con-
tains many abstract classes. The org.w3c packages are made
up of predominantly interfaces and they have one very large

interface dom.css.CSS2Properties which is represented as
the very long red line and has the second most WMC, see
Table 3. There are a couple of square like boxes in the
org.jcp package where the number of instance variables and
number of methods are near equal. Besides that there is not
many other interesting patterns in this top level package.

Table 1: Top 20 largest Java API 1.6 Packages.
Packages (Totals)

Name Variables Methods Classes Code
javax.swing 1041 5487 462 64242
javax.swing.plaf.basic 750 2666 326 47843
java.awt 674 3177 256 34712
java.util 448 2727 262 29914
javax.swing.text 461 1993 231 27449
javax.swing.text.html 361 1264 147 25073
javax.swing.plaf.synth 202 1639 105 18083
javax.swing.plaf.metal 203 953 164 16187
java.io 281 1202 124 12789
java.lang 146 1418 130 12651
java.awt.image 216 836 52 12015
java.util.concurrent 220 1063 123 11297
java.net 235 1010 119 11027
java.text 225 735 61 10349
java.awt.geom 165 732 49 9543
java.security 177 740 114 8485
javax.management 135 688 92 6237
org.omg.CORBA 83 1151 211 5220
java.beans 121 516 126 5853
javax.swing.tree 103 492 34 5848

Table 2: Top 20 largest Java API 1.6 Classes ordered
by total of NIV, WMC, and LOC. # denotes A =
Abstract Class, C = Class, I = Interface.

Classes
Name NIV WMC LOC
A java.awt.Component 61 323 4410
C javax.swing.JTable 38 204 4448
C java.util.regex.Pattern 13 73 3312
C javax.swing.plaf.basic.BasicTreeUI 46 136 3010
C javax.swing.plaf.basic.BasicTabbedPaneUI 45 109 2916
C javax.swing.JTree 30 154 2547
A javax.swing.JComponent 21 186 2319
A javax.swing.text.JTextComponent 28 100 2389
C java.lang.Character 1 86 2127
C java.awt.geom.AffineTransform 8 75 2115
C java.awt.Container 18 144 2002
C javax.swing.text.html.CSS 4 43 2115
C javax.swing.text.html.StyleSheet 7 58 2092
C javax.swing.text.html.HTMLDocument 7 58 2063
C javax.swing.GroupLayout 12 50 2053
C javax.management.relation.RelationService 12 58 2032
C javax.swing.plaf.metal.MetalIconFactory 0 25 1965
C java.io.ObjectInputStream 11 59 1920
C javax.swing.plaf.basic.BasicListUI 21 49 1849
C java.util.Collections 0 65 1812

5. DISCUSSION
We now discuss our results with respect to packages, classes,

average size metrics of the classes, frequency of packages and
classes used in Java software, and displaying our System
Hotspot Views on our visualization wall.

5.1 Packages
The System Hotspot View metaphor easily allowed us to

identify the largest packages in the Java Standard API 1.6 as
they were packages that extended the farthest along the X
axis. The javax.swing package is by far the largest package
in the API. The javax.swing sub-packages make up a consid-
erable amount of the largest packages. The package with the
most amount of classes is javax.swing with more than 100
classes to the next largest package, javax.swing.plaf.basic,
then almost 200 classes to the third and fourth largest pack-
ages, java.awt and java.util.

5.2 Classes
Most of the largest classes in the top 20 were from the

javax.swing package. In most cases the classes in the Java
Standard API 1.6 have more methods than variables. The
java.awt.Component class is by far the largest class. The
java.util.regex.Pattern is the third largest class but the ac-
tual shape of the class is a lot smaller than some of the other
classes in the top 10 as it has a lot less NIV, WMC, but has
a high LOC.

Table 3 contains the classes with the most WMC and
these classes are represented as having a long height value
in the System Hotspot Views. Some of these classes are
also present in Table 2 as denoted by * in the name col-
umn in Table 3. The ones that aren’t with the exception of
java.util.Arrays and java.awt.Window have less than 1000
LOC, are most likely to be interfaces or abstract classes,
and are likely to have zero NIV.

There are a couple of patterns related to the shapes of
each class in the System Hotspot Views. There are are a few
classes that have a similar number of variables and methods
and closer inspection of the code reveals that they contain
mainly accessor and mutator methods. The shapes of these
classes are essentially squares. These classes include:

javax.swing.plaf.basic.BasicFileChooserUI
javax.swing.plaf.basic.BasicInternalFrameTitlePane
javax.swing.text.html.HTMLDocument.HTMLReader

Another pattern that is not obvious but is of interest with
respect to large classes are ones that contain a low number
(less than 20) of variables and methods and LOC greater
than 1000. The shapes of these classes are small black lines.
These classes include:

javax.swing.plaf.basic.BasicLookAndFeel
javax.swing.text.html.AccessibleHTML
javax.swing.text.DefaultEditorKit
javax.swing.text.RTFReader

5.3 Average Metrics for Classes
Table 4 lists the average metric values in the Java Stan-

dard API 1.6 for NIV, WMC, LOC for abstract classes,
classes, interfaces and total average of all Java class enti-
ties. Table 4 also lists the same values for packages and also
includes the average number of classes per package.

A recent project within our research group studied why
Java classes are big using the Qualitas corpus [10]. The

Table 3: Top 20 largest Java API 1.6 Classes ordered by WMC. # denotes A=Abstract Class, C=Class,
I=Interface.

Classes
Name NIV WMC LOC
A java.awt.Component* 61 323 4410
I org.w3c.dom.css.CSS2Properties 0 244 368
C javax.swing.JTable* 38 204 4448
I java.sql.ResultSet 10 187 245
A javax.swing.JComponent* 21 186 2319
I java.sql.DatabaseMetaData 61 172 271
C javax.swing.JTree* 30 154 2547
C java.util.Arrays 0 150 1588
C java.awt.Container* 18 144 2002
C javax.swing.plaf.synth.ImagePainter 8 144 772
C javax.swing.plaf.synth.ParsedSynthStyle.AggregatePainter 1 138 936
C javax.swing.plaf.synth.ParsedSynthStyle.DelegatingPainter 0 137 694
C javax.swing.plaf.basic.BasicTreeUI* 46 136 3010
A javax.swing.plaf.synth.SynthPainter 0 136 570
C java.awt.Window 34 135 1482
A javax.sql.rowset.BaseRowSet 23 131 748
C java.nio.Bits 0 115 515
I javax.sql.RowSet 0 115 161
I java.sql.CallableStatement 0 111 157
C javax.swing.plaf.basic.BasicTabbedPaneUI* 45 109 2916

study found that 50% of classes in the corpus have between
one and six NIV, have less than five WMC, and between four
and 38 LOC. The study did not explore the size of packages.

The averages in our study show that the Java API classes
have about the same number of NIV, double the number of
WMC for abstract classes but only slightly more for con-
crete classes and interfaces, and substantially more LOC for
abstract and concrete classes.

Table 4: Averages for NIV, WMC, LOC for classes
and packages.

Averages
Type NIV WMC LOC Classes
Abstract Classes 1.65 12.96 120.35 N/A
Classes 1.98 8.57 106.07 N/A
Interfaces 0.24 6.22 11.36 N/A
Classes Average 1.64 8.60 91.05 N/A

Packages Average 51.67 270.08 2858.52 31.68

5.4 Java API Usage
A recent empirical study of ours explored the usage pat-

terns of the Java Standard API 1.4.2 with an early version
of the Qualitas Corpus which contained 39 open source Java
applications [11]. They chose to use Java 1.4.2 API because
most of the open source applications used in the study were
originally compiled with Java 1.4.2. The results of the study
showed that about 50% of the classes and 21% of the meth-
ods in the Java Standard API 1.4.2 are used at all. The
java.lang package and String class are the most frequently
used from the study.

We wanted to find out if there is any correlation between
the usage of the Java API packages and classes in the Qual-
itas Corpus with the size of Java API 1.6 packages and
classes. We do this by seeing where the largest packages and
classes are ranked in the most frequently used lists and vice
versa. Even though we are comparing the usage of the Java

API 1.4.2 packages and classes with the size of the Java API
1.6 packages and classes, we still believe the frequency data
is highly likely to remain the same. That is the java.lang
package and String class are still the most frequently used.

The largest package in the API is the javax.swing pack-
age but it only appears at position six in the most fre-
quently used Java packages. Two sub javax.swing packages
(javax.swing.text and javax.swing.text.html) also appear in
the top most frequently used packages. The most frequently
occurring package java.lang has an even spread of different
sized classes and appears at position 10 in the largest pack-
ages list. 12 of the top 20 most frequently used Java API
packages appear in the top 20 of the largest packages. This
would suggest that there no correlation between the usage
and size of a package.

None of the most frequently used classes appear in the
top 20 largest classes list. This would strongly suggest that
there is no correlation between usage and size. This could
also mean that the majority of the software in the early
version of the Qualitas Corpus is unlikely to have graphical
user interfaces built using the Swing package.

5.5 Visualization Wall
The issues we found with the visualization wall is that it

lacked good interaction and collaborative capabilities. The
only current way to interact with the visualizations on our
visualization wall is from a control machine sitting a couple
of metres back from the wall. The visualization wall only al-
lowed repositioning and scaling the resolution of the images
on the visualization wall using a mouse. However, these two
important interaction tasks were quite cumbersome. The
limited control screen doesn’t actually show the details of
an image only the outline, so making adjustments to the
image had a delayed effect on the user.

6. FUTURE WORK
In the future we would like to redo the previous usage

study [11] with the Java Standard API 1.6. We would then
like to apply Spearman’s rank correlation coefficient statis-
tical technique8 to statistically confirm if there is any corre-
lation between the usage and size of packages and classes.

To help end-users we would like to create a more com-
prehensive software visualization tool. We would create a
tool that allows users to explore the API by implement-
ing more Polymetric Views such as System Complexity and
Class Blueprint and augmenting them with Javadoc.

Ben Shneiderman [14] claims that gigapixel displays will
be useful for some tasks, but innovative interface design is
likely to have higher payoffs and wider usage. For our re-
search we need better ways to be able to display the visual-
izations connected together, to interact and navigate within
the visualization environment, and support co-located col-
laborative interaction. We would like to investigate how our
visualizations could benefit from interfaces that are designed
for collaborative work such as multi-touch tables which sup-
port multi-touch interaction gestures like zoom and scale.

7. CONCLUSIONS
The Java Standard API 1.6 is now very large and con-

tains over 200 packages, nearly 5800 classes, and nearly
50,000 methods. We wanted to find out if there exists any
large packages and classes in the Java API. We have cre-
ated System Hotspot Views to identify large packages and
classes in the API. Our visual software analysis has identi-
fied that there exists a number of large packages and classes
in the Java Standard API 1.6. The javax.swing package is
the largest package and java.awt.Component is the largest
class. We found that the average number of WMC and LOC
for abstract and concrete classes in the Java Standard API
against the Java software in the Qualitas Corpus is much
larger. We found that that there is no correlation between
the usage and size of Java API packages and classes.

Acknowledgments
This work is supported by the New Zealand Foundation for
Research Science and Technology for the Software Process
and Product Improvement project, and a TelstraClear schol-
arship.

8. REFERENCES
[1] Anslow, C., Noble, J., Marshall, S., and

Tempero, E. Visualizing the word structure of Java
class names. In Companion to the ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA)
(2008), ACM Press, pp. 777–778.

[2] Anslow, C., Noble, J., Marshall, S., and
Tempero, E. Towards visual software analytics. In
Proceedings of the Australasian Computing Doctoral
Consortium (ACDC) (2009), Australian Computer
Society, Inc.

[3] Baxter, G., Frean, M., Noble, J., Rickerby, M.,
Smith, H., Visser, M., Melton, H., and Tempero,
E. Understanding the shape of Java software. In

8http://en.wikipedia.org/wiki/Spearman’s_rank_
correlation_coefficient

Proceedings of ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (October 2006), ACM
Press, pp. 397–412.

[4] Chidamber, S. R., and Kemerer, C. F. Towards a
metrics suite for object oriented design. In Proceedings
of ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA) (1991), ACM Press, pp. 197–211.

[5] Diehl, S. Software Visualization: Visualizing the
Structure, Behaviour, and Evolution of Software.
Springer Verlag, 2007.

[6] Fenton, N. E., and Pfleeger, S. L. Software
Metrics: A Rigorous and Practical Approach. PWS
Publishing, 1998.

[7] Gil, J. Y., and Maman, I. Micro patterns in Java
code. In Proceedings of ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA) (2005),
ACM, pp. 97–116.

[8] Lanza, M., and Ducasse, S. Polymetric views-a
lightweight visual approach to reverse engineering.
IEEE Transactions on Software Engineering 29, 9
(2003), 782–795.

[9] Lanza, M., and Marinescu, R. Object-Oriented
Metrics in Practice. Springer Verlag, 2005.

[10] Lindsay, J. Why are classes big? Honours Report,
Victoria University of Wellington, October 2009.

[11] Ma, H., Amor, R., and Tempero, E. Usage
patterns of the Java standard API. In Asia Pacific
Software Engineering Conference (APSEC) (2006).

[12] Qualitas Research Group. Qualitas corpus version
20090202, February 2009. The University of Auckland,
http://www.cs.auckland.ac.nz/~ewan/corpus.

[13] Reas, C., and Fry, B. Processing: A Programming
Handbook for Visual Designers and Artists. MIT
Press, 2007.

[14] Shneiderman, B. Extreme visualization: squeezing a
billion records into a million pixels. In Proceedings of
the ACM International Conference on Management of
Data (SIGMOD) (2008), ACM Press, pp. 3–12.

[15] Singer, J., Brown, G., Lujan, M., Pocock, A.,
and Yiapanis, P. Fundamental nano-patterns to
characterize and classify Java methods. In Proceedings
of the Workshop on Language Descriptions, Tools and
Applications (LDTA) (2009).

[16] Stasko, J. T., Brown, M. H., and Price, B. A.
Software Visualization. MIT Press, 1997.

[17] Stylos, J., Faulring, A., Yang, Z., and Myers,
B. A. Improving API documentation using API usage
information. In Proceedings of the IEEE Symposium
on Visual Languages - Human Centric Computing
(VLHCC) (2009), IEEE Computer Society Press,
pp. 119–126.

[18] Tempero, E. How fields are used in Java: An
empirical study. In Australian Software Engineering
Conference (ASWEC) (2009).

[19] Tempero, E., Noble, J., and Melton, H. How do
Java programs use inheritance? an empirical study of
inheritance in java software. In Proceedings of
European Conference on Object-Oriented

Programming (ECOOP) (2008).

[20] Thomas, J. J., and Cook, K. A., Eds. Illuminating
the Path: The Research and Development Agenda for
Visual Analytics. National Visualization and Analytics
Center, 2005.

[21] Verbaere, M., Hajiyev, E., and Moor, O. D.
Improve software quality with SemmleCode: an
Eclipse plugin for semantic code search. In Companion
to the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA) (2007).

[22] Wettel, R., and Lanza, M. Visualizing software
systems as cities. In Proceedings of the International
Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT) (2007), IEEE Computer
Society Press, pp. 92–99.

[23] Zimmermann, T., Premraj, R., and Zeller, A.
Predicting defects for Eclipse. In Proceedings of the
International Workshop on Predictor Models in
Software Engineering (PROMISE) (2007), IEEE
Computer Society Press.

(a) java packages (b) javax packages

Figure 4: The java and javax packages of the Java API 1.6

Figure 5: The org packages of the Java API 1.6

