
Web Software Visualization Via Google’s Visualization API

Craig Anslow, James Noble,
Stuart Marshall

School of Engineering and Computer Science
Victoria University of Wellington

Wellington, New Zealand
{craig, kjx, stuart}@mcs.vuw.ac.nz

Ewan Tempero
Department of Computer Science

University of Auckland
Auckland, New Zealand

ewan@cs.auckland.ac.nz

ABSTRACT
There exist very few toolkits and libraries that make it easy
for developers to create visualizations of empirical software
metrics data. For this reason the use of software visualiza-
tion tools is not wide-spread within the software develop-
ment industry. We are exploring creating visualizations of
software metrics using the Google Visualization API for the
purposes of visual software analytics. We present examples
illustrating what the API is capable of and give some indi-
cation as to how it might be used for software visualization
in the hope it will help inform developers.

Categories and Subject Descriptors
I.6.9 [Visualization]: [Visualization techniques and method-
ologies]

General Terms
Software Design

Keywords
Visual Analytics, Software Visualization, Metrics, Java

1. INTRODUCTION
Since the inception of Java, a large amount of software has

been written in the language and surprisingly little is known
about the structure of Java programs in the wild [4]. We are
using a tool called mete-tools to generate software metrics
data, which analyses Java byte code in different ways over
a corpus of Java software1. The tool generates a lot of data
and we need better methods for comprehending this data.

Visual analytics could be used which is the science of
analytical reasoning facilitated by interactive visual inter-
faces [9]. We are interested in visual software analytics which
uses software and information visualization techniques to
confirm the expected and expose the unexpected of software.

1http://www.cs.auckland.ac.nz/~ewan/corpus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NZCSRSC 2009 Auckland, New Zealand
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

This paper explores creating visualizations of software met-
ric data using the Google Visualization API [7] to support
visual software analytics. The API is a new JavaScript li-
brary released in early 2008 which allows users to create vi-
sualizations and reporting applications over structured data
and integrate them into a web page, Google Spreadsheet, or
Google Gadget. We now evaluate the API for use in software
visualization and present some of our software visualizations.

2. EVALUATION OF THE API FOR USE IN
SOFTWARE VISUALIZATION

We want to see how effective the Google Visualization
API is for use in visual software analytics. We evaluate the
API against our experience of creating software visualiza-
tions and a framework for evaluating graphics technologies
for use in software visualization [1]. In detail we want to ex-
periment with creating visualizations over the web, evaluate
the animation and interactivity aspects, examine the text,
layout, and extensibility features, test the integration capa-
bilities, and analyze the performance display capabilities of
the visualizations created from the API.

What is the design of the API? The aim is to support
visualizations over the web with any compliant server-side
data source. The API is implemented as a JavaScript li-
brary. Developers can use the API so long as they agree to
the terms of service, but no modifications can be made to
the core of the library, nor can it used offline. Error han-
dling in the API is limited but third-party browser plugins
such as Firebug or Microsoft Script Debugger can be used
for debugging. Developers proficient in JavaScript can learn
the API within a couple of days to become very competent.
We are not aware of the API being used in production for
software visualization nor of any empirical evaluations.

How are visualizations created and viewed? The
visualizations can be created in any text editor. Figure 1
shows the basic code to create a visualization. Lines 1–2
references where the JavaScript API is located. Lines 4–5
load the visualization API, the correct version, and the pack-
ages to be used in the visualization. Once the API is loaded
the initialize function is called, Line 6. Lines 8–12 get the
data source located inside a sheet of a Google spreadsheet,
create a query, and then execute that query. The results of
the query are handled by the handleQueryResponse func-
tion, lines 14–23. This function first checks whether there
are any errors in the query response. If there is no errors the
data is assigned to a data table. The visualization is next
created for the appropriate package name and the data is
then drawn in the visualization with the display options.

1 <script type="text/javascript"
2 src="http ://www.google.com/jsapi"></script >
3 <script type="text/javascript">
4 google.load(’visualization ’, ’1’,
5 {packages:[’packagename ’]});
6 google.setOnLoadCallback(initialize);
7
8 function initialize () {
9 var query = new google.visualization.Query(url);

10 query.setQuery(’query string >’);
11 query.send(handleQueryResponse);
12 }
13
14 function handleQueryResponse(response){
15 if (response.isError ()){
16 alert(’Error in query ’);
17 return;
18 }
19 var data = response.getDataTable ();
20 var vis =
21 new google.visualization.PackageName(container);
22 vis.draw(data , options);
23 }

Figure 1: Basic code to create a visualization.

The visualizations are viewed in a web browser and we
displayed them in the following browsers: Microsoft Inter-
net Explorer and Mozilla Firefox on Windows, Firefox on
NetBSD, and Safari on MacOSX.

What data can be used as input? Google Spread-
sheets, HTML pages with data tables, JSON or CSV file
formats, or web accessible databases can be used as data
source inputs. The API can freely interoperate with Google
Spreadsheets and there exists a Python helper library to
work with JSON encoded data that was created by an ex-
ternal developer. All other alternative data sources require
custom code. Alternatively data can be encoded in a data
table within a JavaScript function. A SQL-like query lan-
guage exists which allows developers to perform various data
manipulations with a query to the data source and is inde-
pendent to the implementation of any specific data source.

What is the graphical capability of the API? Visu-
alizations displayed in Firefox are rendered in Scalable Vec-
tor Graphics (SVG) and Vector Markup Language (VML)
for Microsoft Internet Explorer. Visualizations that support
animation use Flash. 2D is supported, while some of the
charts can display 2 1/2 dimensions. Distortion oriented
techniques are possible including focus+context.

What visualization techniques exist? 17 visualiza-
tion types exist including: tables, spreadsheet like charts,
hierarchical charts, maps, and more sophisticated temporal
displays. Most of the focus of these visualizations are on
spreadsheet charts since the underlying data source is struc-
tured data. No specific software visualization techniques [5]
or graphs/node-link diagrams are supported. Techniques
such as tree maps could be implemented in the future.

We illustrate some of the possible uses of the API with a
data-set showing the frequency of dependencies (see Table 1)
of JGraph version 5.10.2.0 (graph drawing application). Fig-
ure 2 shows a pie, area, and bar charts all using data from
the same Google Spreadsheet. A dependency exists from
one type (classes and interfaces) to another if the other is
referred to in the byte-code of the first. The kind of depen-
dency, such as InvokeVirtual, Get, etc, indicates what kind
of instruction the dependency is part of, or how it is being

(a) Pie Chart

(b) Area Chart

(c) Bar Chart

Figure 2: Basic chart visualization types.

referred to (e.g., Parameter, Return, Field, etc).
Figure 3 shows some of the more specialized visualization

types. The motion chart implemented in Flash allows users
to explore several indicators or trends over time. The chart
shows the version release history of JGraph against Jung an-
other graph drawing application. The chart allows a user to
press play to animate the data points evolving over time. It
shows that JGraph was created before Jung and by the end
of 2008 JGraph had reached version five while Jung was still
in version two. It is also evident that JGraph has more devel-
opment iteration cycles than Jung, but this doesn’t measure
the quality of code between the applications.

The annotated timeline chart uses the same data set as

Type Definition
Extends The to module appears in the extends clause
Implements ” ” ” ” in the implements clause
Parameter ” ” ” ” as the type of a parameter
Return ” ” ” ” as a return type
Throws ” ” ” ” in a throws clause
Field ” ” ” ” as the type of a field
Local ” ” ” ” as the type of a local variable
Catch ” ” ” ” as the type of an exception in a catch clause
Cast ” ” ” ” in a cast expression
Allocation ” ” ” ” in a allocation (”new”) expression
Instanceof ” ” ” ” in an instanceof expression
InvokeStatic A static method is invoked on the to module
InvokeVirtual An instance method is invoked on the to module

(which is a class)
InvokeSpecial A constructor or private method is invoked on

the to module
InvokeInterface An instance method is invoked on the to module

(which is an interface)
Get An instance field of to module is read from
Put An instance field of the to module is written to
GetStatic A static field of the to module is read from
PutStatic A static field of to module is written to
Nested The to module is nested within the from module
Enclosing The to module encloses the from module
Unknown Somehow a dependency to the to module was

detected but the type could not be determined

Table 1: Dependency Type

the motion chart. The chart allows data points to be anno-
tated such as the date and version of a Beta release or when
different versions of a language were used such as Java 1.4
and 1.6. The bottom part of the chart has features to zoom-
in and display segments of time and then slide the segment
over the whole time series.

The API can be extended by developers to create their
own visualizations other than the predefined ones, see Fig-
ure 4. Currently there are six visualization types created

(a) Motion Chart

(b) Annotated Time Line Chart

Figure 3: Google specialized visualization types.

(a) Tag Cloud

(b) Magic Table

Figure 4: External developer created visualization
types.

by non-Google developers which range from basic counting
to more domain specific areas such as heat maps. The tag
cloud displays in alphabetical order text at different font
sizes depending on the frequency of the words in the data
set. Quite clearly the most frequently occurring dependency
types of JGraph are InvokeVirtual, Get, and then Put. The
magic table displays the data source that is used as input
represented as a table. If a cell has a numerical value then
filled bars can be used to represent the values using a colour
ordering. A graphical fish eye view can be enabled which dis-
plays zoomed-in values of cells when the mouse hovers over
a selection of cells and the neighbouring cells are distorted.

How well does the API perform? There is no per-
ceptual differences with rendering the visualizations on the
various browsers. However, the motion chart had some la-
tency lagging issues when the trail of items option was se-
lected. Google Spreadsheets can be used as input to the
visualizations which has a limit of 200K cells and importing
of spreadsheets from other formats to Google Spreadsheets
have a limit of approximately 1MB. We have not used any
large data sets stored in external data sources yet. It takes
approximately five seconds2 for one visualization to render.
We embedded 12 visualizations on one web page and it took
approximately 20 seconds for the visualizations to display.

2Performance timings were done on a Dell Optiplex GX745
workstation running NetBSD with 2.8GHz Core Duo pro-
cessor, 2GB RAM, and ATI x1300 Graphics, and a Mac-
Book Pro running MacOSX with 2.4GHz Core Duo proces-
sor, 4GB RAM, and NVIDIA GeForce 8600M GT

How can the visualizations be presented? The data
is independent of the display. Data in the visualizations can
still be referenced. Basic layout features are supported but
no advanced techniques such as force directed. The mo-
tion chart is the only visualization that supports animation.
Displaying multiple views of different parts of the data set is
possible. No video or sound capabilities are supported, but
the YouTube API could be integrated.

How can users interact or customize a visualiza-
tion? Users can select a point or value in the visualization
which creates a pop up box listing the label type and the
value. For example the pie chart allows users to select pieces
of the pie (either on the pie or from the legend) which pop
out from the main core of the pie. Users can’t rotate or resize
visualizations since these properties are all defined when first
created. Users can’t manipulate objects within the visual-
ization to move them to different parts of the screen. Users
can only interact with the visualization using a mouse. The
API provides listeners that can respond to events that are
triggered in the visualization such as when a user clicks an
item in a visualization an alert window will appear.

What user navigation options are supported?
Navigation within a visualization is not supported. If a

visualization is larger than the current screen size then web
browser scroll bar navigation is required. Viewpoints of spe-
cific locations in a visualization is not supported either.

What user tasks [8] are supported? All the visual-
izations provide an overview and show details on demand for
the user, and some support being able to zoom into items
of interest such as Figure 3. Only one externally developed
visualization allows filtering out uninteresting items in a vi-
sualization. Showing relationships among items in a visu-
alization is not supported, a history of user actions can’t
be saved, and it is not possible to extract sub-collections of
information from a visualization.

3. RELATED WORK
Duignan et al. [6] evaluated SVG and found that it can

meet the requirements of software visualization only ade-
quately. They found that to do anything more than the ba-
sic tasks required scripting, and that SVG lacks an in-built
layout constraints system and the ability for data display
independence.

Anslow et al. [2] evaluated X3D and concluded that the
major advantages of X3D are rich graphics, extensibility,
and XML integration. The major disadvantages of X3D are
lack of software visualization user controls, a primitive an-
imation model, and weak support for filtering and layout.
Nonetheless they encourage software visualization develop-
ers to adopt X3D if they need 3D for the web.

Anslow et al. [3] explored creating visualizations with Many
Eyes [10]. All of the visualizations in Many Eyes are ren-
dered in Flash. Users have to upload their data to the ap-
plication and then select an appropriate visualization which
matches the data set. There exist 16 pre-defined visual-
ization types ranging from spreadsheet charts, maps, text,
network diagrams, and tree maps. No user generated visual-
ization types can be uploaded to the application, developers
can’t create visualizations using external data sources, and
data sets are publicly accessible. The Google Visualization
API allows for more flexibility than Many Eyes, but provides
less powerful visualization techniques.

4. CONCLUSIONS
We are interested in understanding Java software through

visual software analytics which uses software and informa-
tion visualization techniques to confirm the expected and
expose the unexpected of software. In this paper we have
explored creating visualizations from software metrics data
using the Google Visualization API in order to support vi-
sual software analytics. We found that the weaknesses of
the API is that only visualization chart like types are really
supported, no specific software visualization techniques are
supported, visualizations only operate on structured data,
and support for animation and user tasks is limited. The
strengths are that no additional plugins are required to dis-
play visualizations, all code and data are processed and ren-
dered in the browser, multiple visualizations can be embed-
ded on the same web page, and that the API can be extended
to create domain specific visualizations. In the future, we
plan to integrate some of these Google Visualization API
techniques to build a complete visual software analytics tool
for developers to understand Java software.

Acknowledgments
This work is supported by the New Zealand Foundation for
Research Science and Technology for the Software Process
and Product Improvement project, and Telstra Clear.

5. REFERENCES
[1] Craig Anslow. Evaluating extensible 3D (X3D)

graphics for use in software visualisation. Master’s
thesis, Victoria University of Wellington, 2008.

[2] Craig Anslow, James Noble, Stuart Marshall, and
Robert Biddle. Web software visualization using
extensible 3D (X3D) graphics. In SoftVis, pages
213–214. ACM, 2008.

[3] Craig Anslow, James Noble, Stuart Marshall, and
Ewan Tempero. Visualizing the word structure of java
class names. In OOPSLA Companion, pages 777–778.
ACM, 2008.

[4] Gareth Baxter, Marcus Frean, James Noble, Mark
Rickerby, Hayden Smith, Matt Visser, Hayden Melton,
and Ewan Tempero. Understanding the shape of java
software. In OOPSLA, pages 397–412. ACM, 2006.

[5] Stephan Diehl. Software Visualization: Visualizing the
Structure, Behaviour, and Evolution of Software.
Springer Verlag, 2007.

[6] Matthew Duignan, Robert Biddle, and Ewan
Tempero. Evaluating scalable vector graphics for use
in software visualisation. In APVis, pages 127–136.
Australian Computer Society, Inc., 2003.

[7] Google. Google visualization API, 2008.
http://code.google.com/apis/visualization.

[8] Ben Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In VL,
pages 336–343, 1996.

[9] James J. Thomas and Kristin A. Cook. Illuminating
the Path: The Research and Development Agenda for
Visual Analytics. IEEE, 2005.

[10] Fernanda B. Viegas, Martin Wattenberg, Frank van
Ham, Jesse Kriss, and Matt McKeon. Manyeyes: a
site for visualization at internet scale. Transactions on
Visualization and Computer Graphics,
13(6):1121–1128, 2007.

