The Journal of Systems & Software 144 (2018) 165-180

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Check for
updates

A systematic literature review of software visualization evaluation

L. Merino™?, M. Ghafari®, C. Anslow”, O. Nierstrasz®

2 Software Composition Group, University of Bern, Switzerland
b School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

ARTICLE INFO ABSTRACT

Keywords: Context:Software visualizations can help developers to analyze multiple aspects of complex software systems, but
Software visualisation their effectiveness is often uncertain due to the lack of evaluation guidelines.
Evaluation

Objective: We identify common problems in the evaluation of software visualizations with the goal of for-
mulating guidelines to improve future evaluations.

Method:We review the complete literature body of 387 full papers published in the SOFTVIS/VISSOFT con-
ferences, and study 181 of those from which we could extract evaluation strategies, data collection methods, and
other aspects of the evaluation.

Results:Of the proposed software visualization approaches, 62% lack a strong evaluation. We argue that an
effective software visualization should not only boost time and correctness but also recollection, usability, en-
gagement, and other emotions.

Conclusion:We call on researchers proposing new software visualizations to provide evidence of their effec-
tiveness by conducting thorough (i) case studies for approaches that must be studied in situ, and when variables
can be controlled, (ii) experiments with randomly selected participants of the target audience and real-world open
source software systems to promote reproducibility and replicability. We present guidelines to increase the

Literature review

evidence of the effectiveness of software visualization approaches, thus improving their adoption rate.

1. Introduction

Software visualizations are useful for analyzing multiple aspects of
complex software systems. Software visualization tools have been
proposed to help analysts make sense of multivariate data
(Merino et al., 2015), to support programmers in comprehending the
architecture of systems (Panas et al., 2016), to help researchers analyze
version control repositories (Greene et al., 2017), and to aid developers
of software product lines (Lopez-Herrejon et al., 2018). However, most
developers are still unaware of which existing visualization approaches
are suitable to adopt for their needs. We conjecture that the low adop-
tion of software visualization results from their unproved effectiveness and
lack of evaluations. Indeed, researchers adopt varying strategies to
evaluate software visualization approaches, and therefore the quality of
the evidence of their effectiveness varies. We believe that a character-
ization of the evaluation of software visualization approaches will (i)
assist researchers in the field to improve the quality of evaluations, and
(ii) increase the adoption of visualization among developers.

We consider previous research to be an important step to char-
acterizing the evidence of the effectiveness of software visualization
approaches. However, we reflect that previous research has failed to

* Corresponding author.
E-mail address: merino@inf.unibe.ch (L. Merino).

https://doi.org/10.1016/j.jss.2018.06.027

Received 31 October 2017; Received in revised form 27 May 2018; Accepted 7 June 2018
Available online 15 June 2018

0164-1212/ © 2018 Elsevier Inc. All rights reserved.

define what is an effective software visualization, and consequently
comparing the effectiveness of visualization approaches is not possible.
Moreover, we believe that some studies have used a loose definition of
“case studies” and include many usage scenarios of visualization in-
stead that present little evidence of the effectiveness of an approach. In
our investigation we perform a subtler analysis of the characteristics of
evaluations to elucidate these concerns. Consequently, we formulated
the following research questions:

RQ1.) What are the characteristics of evaluations that validate the ef-
fectiveness of software visualization approaches?

RQ2.) How appropriate are the evaluations that are conducted to va-
lidate the effectiveness of software visualization?

We believe that answering these questions will assist researchers in
the software visualization field to improve the quality of evaluations by
identifying evaluation strategies and methods and their common pit-
falls. In particular, we reviewed 181 full papers of the 387 papers
published in SOFTVIS/VISSOFT. We identified evaluation strategies
such as surveys, case studies, and experiments, as well as characteristics
such as tasks, participants, and systems used in evaluations. We found

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1016/j.jss.2018.06.027
mailto:merino@inf.unibe.ch
https://doi.org/10.1016/j.jss.2018.06.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.06.027&domain=pdf

L. Merino et al.

that 62% (i.e., 113) of the proposed software visualization approaches
either do not include any evaluation, or include a weak evaluation (i.e.,
anecdotal evidence, usage scenarios). Almost all of them (ie., 110)
introduce a new software visualization approach. The remaining three
discuss an existing approach but without providing a stronger evalua-
tion. We also found that 29% of the studies (i.e., 53) conducted ex-
periments in which 30% (ie., 16) corresponded to visualizations that
target the novice developer audience, and included appropriate parti-
cipants. The remaining 70% proposed visualizations for developers
with various levels of experience. However, amongst them only 30%
included experienced developers, and the remaining 70% (i.e., 37) in-
cluded in experiments only students and academics of a convenience
sample who are vulnerable to selection bias and hence hinder gen-
eralization. We found that 7% (i.e., 12) of the studies conducted a case
study that involved (i) professional developers from industry, and (ii)
real-world software systems. Finally, 3% (i.e., 4) of studies conducted a
survey. Even though we are not aware of a similar quantitative report of
the state of the art in information visualization, a review of the practice
of evaluation (Isenberg et al., 2013) found similar issues.

We believe that for software visualization approaches to be adopted
by developers, visualizations not only must prove their effectiveness via
evaluations, but evaluations should also include participants of the
target audience, and be based on real-world software systems. Finally,
we recommend researchers in the field to conduct surveys that can help
them to identify what are the frequent and complex problems that af-
fect developers.

This paper makes the following contributions:

1. A study of the characteristics of evaluations performed in the lit-

erature of software visualization.

Guidelines for researchers in the visualization field who need to

evaluate software visualization approaches.

3. A publicly available data set including the information of the studies
and classifications."

2.

The remainder of the paper is structured as follows: Section 2 pre-
sents related work. Section 3 describes the main concepts that are ad-
dressed in the characterization. Section 4 describes the methodology
that we followed to collect and select relevant studies proposed in the
software visualization field. Section 5 presents our results by classifying
evaluations based on adopted strategies, methods and their character-
istics. Section 6 discusses our research questions and threats to validity
of our findings, and Section 7 concludes and presents future work.

2. Related work

A few studies have attempted to characterize the evaluation of
software visualization approaches via a literature review. For instance,
Schots and Werner (2014) reviewed 36 papers published between 1993
and 2012 and proposed an extended taxonomy that includes evidence
of the applicability of a software visualization as a
dimension (Schots et al., 2014). They found that papers lacked a clear
description of information related to the evidence on the use of visua-
lization. Seriai et al. (2014) analyzed 87 papers published between
2000 and 2012. They found that most visualizations are evaluated via
case studies (i.e., 78.16%), and only a few researchers conducted ex-
periments (i.e., 16.09%). They observed that even though the propor-
tion of publications that include an evaluation is fairly constant over
time, they lack rigor. Mattila et al. (2016) included 83 papers published
between 2010 and 2015 in their analysis. They also found that only a
few researchers conducted experiments (i.e., 13.25%), some performed
case studies (i.e., 22.89%), and the rest used other evaluation methods.
In our investigation we cover a much larger body of literature (i.e., 181

1 http://scg.unibe.ch/research/softvis-eval.

166

The Journal of Systems & Software 144 (2018) 165-180

full papers) that spans up to 2017. We not only characterize the state-of-
the-art in software visualization evaluation, but we also propose gui-
dance to researchers in the field by detecting common pitfalls, and by
elaborating on guidelines to conduct evaluation of software visualiza-
tion approaches.

Other studies have opted to evaluate software visualization tools
and have reported guidelines. For example, Storey et al. (2005) eval-
uated 12 software visualization tools, and proposed an evaluation fra-
mework based on intent, information, presentation, interaction, and
effectiveness. Sensalire et al. (2008, 2009) evaluated 20 software vi-
sualization tools proposed for maintenance based via experiments, and
elaborated various lessons learned. They identified a number of di-
mensions that are critical for organizing an evaluation, and then ana-
lyzing the results. Miiller et al. (2014) proposed a structured approach
for conducting controlled experiments in envisioned 3D software vi-
sualization tools. Instead of concentrating on rather limited number of
tools, we chose a meta analysis by analyzing the reports of the eva-
luation of proposed visualization tools. In this way we could analyze the
state-of-the-art in the practice of software visualization evaluation, and
consequently elaborate guidelines for defining what is an effective
software visualization.

A few reviews of the software visualization literature that focus on
various domains have tangentially analyzed the evaluation aspect.
Lopez-Herrejon et al. (2018) analyzed evaluation strategies used in
visualizations proposed for software product line engineering, and they
found that most approaches used case studies. They also found that only
a few performed experiments, and a few others did not explicitly de-
scribe an evaluation. Shahin et al. (2014) discussed the evaluation of
visualization approaches proposed to support software architecture,
and classified the evidence of the evaluation using a 5-step
scale (Alves et al., 2010). The analysis of the results showed that almost
half of the evaluations represent toy examples or demonstrations. The
other half correspond to industrial case studies, and a very few others
described experiments and anecdotal evidence of tool adoption.
Novais et al. (2013) investigated the evaluations of approaches that
proposed visualization to analyze software evolution. In most of the
analyzed studies evaluation consisted in usage examples that were de-
monstrated by the authors of the study. In a few of them, the demon-
stration was carried out by external users. Evaluation strategies based
on experiments were found to be extremely rare. In almost 20% of the
studies they did not find an explicit evaluation. Since the main focus of
these mentioned studies is not on evaluation (as opposed to ours), they
only characterize the evaluation of the analyzed studies, and offer little
advice for researchers who need to perform their own evaluations of
software visualizations.

Similar efforts have been made in the information visualization
field. Amar and Stasko (2004) proposed a task-based framework for the
evaluation of information visualizations. Forsell (2010) proposed a
guide to scientific evaluation of information visualization that focuses
on quantitative experimental research. The guide contains re-
commendations for (a) designing, (b) conducting, (c) analyzing results,
and (d)reporting on experiments. Lam et al. (2012) proposed seven
scenarios for empirical studies in information visualization.
Isenberg et al. (2013) reviewed 581 papers to analyze the practice of
evaluating visualization. Some of the pitfalls they found are that in
some evaluations (i) participants do not belong to the target audience,
(ii) goals are not explicit, (iii) the strategy and analysis method is not
appropriate, and (iv) the level of rigor is low. Elmqvist and Yi (2015)
proposed patterns for visualization evaluation that present solutions to
common problems encountered when evaluating a visualization system.
We observed that advice given in the context of information visuali-
zation can also be applied to software visualization evaluation; how-
ever, we also observed that there are particularities in software visua-
lization that require a tailored analysis, which is an objective of our
investigation.

http://scg.unibe.ch/research/softvis-eval

L. Merino et al.

3. Background

The strategies that researchers adopt to evaluate the effectiveness of
a software visualization approach can be classified into two main ca-
tegories:

i) Theoretical principles from information visualization that provide re-
searchers support to justify a chosen visual encoding (Munzner, 2008).
For instance, the effectiveness of perceptual channels depends on the
data type (i.e., categorical, ordered, or quantitative) (Mackinlay, 1986).

ii) Empirical evidence gathered from the evaluation of a technique,
method or tool. Amongst them we find a) exploratory evaluations
that involve high-level real-world tasks, for which identifying the
aspects of the tool that boosted the effectiveness is complex; and b)
explanatory evaluations in which high-level tasks are dissected into
low-level (but less realistic) tasks that can be measured in isolation
to identify the cause of an increase in the effectiveness of an
approach (Wohlin et al., 2000).

Amongst the strategies used in empirical evaluations we find (a)
surveys (Wohlin et al., 2012) that allow researchers to collect data from
developers who are the users of a system, and hence analyze the col-
lected data to generalize conclusions; (b) experiments (Sjgberg et al.,
2005) that provide researchers with a high level of control to manip-
ulate some variables while controlling others (i.e., controlled experi-
ments) with randomly assigned subjects (when it is not possible to
ensure randomness the strategy is called “quasi-experiment”); and (c)
case studies (Runeson and Host, 2009) that help researchers to in-
vestigate a phenomenon in its real-life context (i.e., the case), hence
giving researchers a lower level of control than an experiment but en-
abling a deeper analysis.

Several methods exist for collecting data in each evaluation
strategy. The two most common methods (Fink, 2003) are (i) ques-
tionnaires in which the researcher provides instructions to participants
to answer a set of questions that can range from loosely structured (e.g,
exploratory survey) to closed and fully structured (e.g, to collect data of
the background of participants in an experiment), and (ii) interviews in
which a researcher can ask a group of subjects a set of closed questions
in a fixed order (i.e., fully structured), a mix of open and closed ques-
tions (i.e., semi-structured), and open-ended questions (i.e., un-
structured). Less frequent methods for collecting data are observational
ones such as (iii) think-aloud in which researchers ask participants to
verbalize their thoughts while performing the evaluation. Besides, re-
cent experiments have collected data using (iv) video recording to cap-
ture the behavior of participants during the evaluation; (v) sketch
drawing to evaluate recollection; and (vi) eye tracking to measure the
browsing behavior of eye’s movement.

Finally, there are several statistical tests that are usually used to
analyze quantitative data collected from an experiment. For discrete or
categorical data, tests such as Chi-square and Cohen’s kappa are suitable.
For questions that analyze the relationships of independent variables,
regression analysis can be applied. For correlation analysis of dependent
variables one has to first analyze if the parametric assumptions holds.
That is, if the data is (i) collected from independent and unbiased
samples, (ii) normally distributed (Shapiro-Wilk test is suggested and
proven more powerful than Kolmogorov-Smirnov (Razali and
Wah, 2011)), and (iii) present equal variances (e.g., Levene’s test,
Mauchly’s test). Parametric data can be analyzed with Pearson’s r, while
non-parametric with Spearman’s Rank Correlation. For the analysis of
differences of parametric data collected from two groups Student’s un-
paired t-test, Paired t-test, and Hotelling’s T-square are appropriate. For
the non-parametric case Mann-Whitney U and Wilcoxon Rank sum test
are suitable. In the case of analysis that involves more than two groups
of parametric data ANOVA is a frequent choice, which is usually fol-
lowed by a post-hoc test such as Tukey HSD. When data is non-para-
metric Kruskal-Wallis test and Friedman test are suitable as well.

The Journal of Systems & Software 144 (2018) 165-180

4. Methodology

We applied the Systematic Literature Review approach, a rigorous and
auditable research methodology for Evidence-Based Software Engineering.
We followed Keele’s comprehensive guidelines (Kitchenham et al., 2002),
which make it less likely that the results of the literature survey will be
biased. The method offers a means for evaluating and interpreting relevant
research to a topic of interest by evidence, which is robust and transfer-
able. We defined a review protocol to ensure rigor and reproducibility, in
which we determine (i) research questions, (ii) data sources and search
strategy, (iii) inclusion and exclusion criteria, (iv) quality assessment, (v)
data extraction, and (vi) selected studies.

4.1. Data sources and search strategy

Systematic literature reviews often define as their data source di-
gital libraries such as ACM DL? or IEEE Xplore.® To find suitable pri-
mary studies for analysis, they define a search strategy that typically is
based on keywords. Instead, we decided to adopt as data source the
complete set of papers published by the SOFTVIS and VISSOFT con-
ferences. We believe the sixteen editions and hundreds of papers
dedicated especially to software visualization offer a sound body of
literature used in previous studies (Merino et al., 2016¢). We based our
decision on (i) the good B classification that they obtain in the CORE
ranking” (which considers citation rates, paper submission and accep-
tance rates among other indicators), (ii) related work that concluded
that results from the analysis of software visualization evaluation in
papers published by other venues do not differ from those published by
SOFTVIS/VISSOFT (Mattila et al., 2016; Seriai et al., 2014). Although
we observe that publications in better ranked venues might require
stronger evaluations, we believe that analyzing a collection of studies
that have been accepted for publication according to fairly similar
criteria will support a more objective comparison, and will provide a
suitable baseline for future investigations.

4.2. Inclusion and exclusion criteria

We reviewed the proceedings and programs of the venues to include
full papers and exclude other types of papers that due to limited space
are unlikely to contain enough detail. In particular, from the 387 papers
we excluded 178 papers that corresponded to: (i) 61 poster. (ii) 52 new
ideas and emerging results (NIER), (iii) 44 tool demo (TD), (iv) 8
keynote, (v) 8 position, and (vi) 5 challenge papers,

4.3. Quality assessment

We then assessed the quality of the remaining 209 papers. We
classified the studies according to the categories proposed by
Munzner (2008), in which a visualization paper can be classified into
one of five categories:

a) Evaluations describe how a visualization is used to deal with tasks in
a problem domain. Evaluations are often conducted via user studies
in laboratory settings in which participants solve a set of tasks while
variables are measured.

b) Design studies show how existing visualization techniques can be
usefully combined to deal with a particular problem domain.
Typically, design studies are evaluated through case studies and
usage scenarios.

c) Systems elaborate on the architectural design choices of a proposed
visualization tool and the lessons learned from observing its use.

2 http://dl.acm.org/.
3 http://ieeexplore.ieee.org.
4 http://portal.core.edu.au/conf-ranks/.

http://dl.acm.org/
http://ieeexplore.ieee.org
http://portal.core.edu.au/conf-ranks/

L. Merino et al.

d) Techniques focus on novel algorithms that improve the effectiveness
of visualization. Techniques are often evaluated using benchmarks
that measure performance.

e) Models include Commentary papers in which an expert in the field
advocate a position and argue to support it; Formalism papers pre-
sent new models, definitions or terminology to describe techniques;
and Taxonomy papers propose categories that help researchers to
analyze the structure of a domain.

For each paper, we first read the abstract, second the conclusion,
and finally, in the cases where we still were not sure of their main
contribution, we read the rest of the paper. Although some papers
might exhibit characteristics of more than one type, we classified them
by focusing on their primary contribution.

We observed that model papers in which the main contribution is a
commentary, a formalism or a taxonomy, usually do not describe ex-
plicit evaluations. Consequently, we excluded twenty-eight papers that
we classified in those categories: (i) six commentary, (ii) seven tax-
onomy, and (iii) fifteen formalism papers.

Fig. 1la provides an overview of the selection process. Fig. 1b sum-
marizes the 387 collected papers and highlights the 181 included in the
study. Fig. 1c shows the outcome of our classification. We observe that
the two venues have a slightly different focus. SOFTVIS papers focus
mostly on design studies, while VISSOFT papers focus mainly on
techniques. A frequent critique of visualization papers is a lack of
evaluation. Indeed, papers in which the main contribution is an eva-
luation are unusual (i.e., 10%). The chart also shows that the two main
paper types in visualization are design study and technique.

The collection of 181 full papers includes studies from six to eleven
pages in length. Initially, we were reluctant to include six-page papers,
but we observed that in two editions of the conferences all full papers
were of that length. Consequently, we analyzed the distribution of re-
search strategies used to evaluate software visualization approaches by
paper length. We did not find any particular trend, and so decided to
include them.

4.4. Data extraction

To accelerate the process of finding and extracting the data from the
studies, we collected keywords that authors commonly use to describe
evaluations iteratively. That is, we started the process by searching for
the following keywords in each paper: “evaluation”, “survey”, “ex-
periment”, “case study”, and “user study”. When we did not find these
keywords, we manually inspected the paper and looked for other new
representative keywords to expand our set. During the manual inspec-
tion when we did not find an explicit evaluation we labeled the papers

accordingly. In the end, we collected the following set of keywords:

{evaluation, survey, [case|user] stud[y|ies], [application | usage |
analysis] example[s], use case[s], application scenario[s], [con-
trolled | user] experiment, demonstration, user scenario[s], ex-
ample of use, usage scenario[s], example scenario[s], demon-
strative result[s]}

We investigated whether evaluations that involve users are con-
ducted with end users from the expected target audience (ie., re-
presentative sample) to ensure the generality of results. Therefore, in
studies that used this type of evaluation, we extracted who conducted
the evaluation, and what subject systems were involved. We extracted
these data by scanning the evaluation section of papers. In particular ,
we extracted (i) data collection methods (e.g, think-aloud, interview,
questionnaire); (ii) number of participants and their background, (iii)
tasks, (iv) subject system, (v) dependent variables, and (vi) statistical
tests.

168

The Journal of Systems & Software 144 (2018) 165-180

Inclusion Criteria |

SOFTVIS [N=148]
VISSOFT [N=239]

N =387

Exclusion Criteria

Keynote [N=8]
Challenge [N=5]
NIER [N=52]
TD [N=44]
Position [N=8]
Poster [N=61]

J N =209

\ 4

\
Quality Assessment |

Commentary [N=6]
Taxonomy [N=7]
Formalism [N=15]

N =181

(a) Stages of the search process and number of selected studies in each
stage.

VISSOFT'17
VISSOFT'16
VISSOFT'15
VISSOFT'14
VISSOFT'13
VISSOFT'11
SOFTVIS'10 34
VISSOFT'09
SOFTVIS'08
VISSOFT'07
SOFTVIS'06 2 n
VISSOFT'05
SOFTVIS'05
VISSOFT'03
SOFTVIS'03
VISSOFT'02

20 30 40 50

B Included ™ Total

(b) The 181 included papers from the collection of 387 papers published
in SOFTVIS/VISSOFT venues.

70

60

65
56
4
37 37
30 28 28
19
I :
0 I

Design Study

1)
S

=)

19
M I

I B
Evaluation

Technique

B VISSOFT ®SOFTVIS ®Total

System

(c) Classification of the 181 SOFTVIS/VISSOEFT full papers by type.
Fig. 1. The 181 SOFTVIS/VISSOFT full papers included.

L. Merino et al. The Journal of Systems & Software 144 (2018) 165-180

Table 1

The papers included in the study [S1-S107].
Id and Reference Venue Evaluation
[S1] Aesthetics of class diagrams, Eichelberger, H. V02 Theorical
[S2] Specifying algorithm visualizations in terms of dat..., Francik, J. V’02 Usage Scenario
[S3] View definitions for language-independent multipl..., Sajaniemi, J. V’02 Usage Scenario
[S4] The CONCEPT project - applying source code analysis to..., Rilling, J. et al. V02 -
[S5] UML collaboration diagram syntax: an empir..., Purchase, H.C. et al. V’02 Experiment
[S6] Runtime visualisation of object oriented soft..., Smith, M.P. et al. V02 Usage Scenario
[S7] Reification of program points for visual execution , Diehl, S. et al. V02 -
[S8] Metrics-based 3D visualization of large obj..., Lewerentz, C. et al. V02 Usage Scenario
[S9] Analogical representations of programs, Ploix, D. V02 Usage Scenario
[S10] Revision Towers, Taylor, C.M.B. et al. V’'02 Usage Scenario
[S11] Self-Organizing Maps Applied in Visualising ..., Brittle, J. et al. V03 Experiment
[S12] KScope: A Modularized Tool for 3D Visualizati..., Davis, T.A. et al. V03 Theorical
[S13] Visualization to Support Version Control Software..., Wu, X. et al. V’03 Experiment
[S14] Techniques for Reducing the Complexity o..., Hamou-Lhadj, A. et al. V03 Usage Scenario
[S15] A topology-shape-metrics approach for the automa..., Eiglsperger, M. et al. $03 -
[S16] A new approach for visualizing UML class diagrams, Gutwenger, C. et al. 03 -
[S17] Visualizing model mappings in UML, Hausmann, J.H. et al. S’03 -
[S18] Visualizing software for telecommunication services..., Gansner, E.R. et al. S’03 -
[S19] Graph visualization for the analysis of the structure an..., Zhou, C. et al. S°03 -
[S20] Interactive locality optimization on NUMA architectures, Mu, T. et al. S’03 -
[S21] End-user software visualizations for fault ..., Ruthruff, J. et al. S’03 Experiment
[S22] Interactive visual debugging with UML, Jacobs, T. et al. $03 Usage Scenario
[S23] Designing effective program visualization too..., Tudoreanu, M.E. S03 Experiment
[S24] Dancing hamsters and marble statue..., Huebscher-Younger, T. et al. S’03 Experiment
[S25] Algorithm visualization in CS education: com..., Grissom, S. et al. 03 Experiment
[S26] A system for graph-based visualization of t..., Collberg, C. et al. $°03 Usage Scenario
[S27] Visualization of program-execution data for dep..., Orso, A. et al. S’03 Usage Scenario
[S28] Visualizing Java in action, Reiss, S.P. S’03 Usage Scenario
[S29] Plugging-in visualization: experiences integrating a ..., Lintern, R. et al. $°03 -
[S30] EVolve: an open extensible software visualizatio..., Wang, Q. et al. S’03 Usage Scenario
[S31] 3D representations for software visualization..., Marcus, A. et al. S’03 Usage Scenario
[$32] Growing squares: animated visualization of ..., Elmqvist, N. et al. 03 Experiment
[S33] Program animation based on the roles of va..., Sajaniemi, J. et al. $°03 Experiment
[S34] Visualizing Feature Interaction in 3-D, Greevy, O. et al. V’05 Usage Scenario
[S35] Identifying Structural Features of Java Prog..., Smith, M.P. et al. V’05 Usage Scenario
[S36] Support for Static Concept Location with sv3D, Xie, X. et al. V05 Usage Scenario
[S37] Interactive Exploration of Semantic Clusters, Lungu, M. et al. V05 Usage Scenario
[S38] Exploring Relations within Software Systems ..., Balzer, M. et al. V’05 Usage Scenario
[S39] The Dominance Tree in Visualizing Software Dep..., Falke, R. et al. V05 Usage Scenario
[S40] User Perspectives on a Visual Aid to Program Com..., Cox, A. et al. V’05 Experiment
[S41] Interactive Visual Mechanisms for Exploring So..., Telea, A. et al. V05 Usage Scenario
[S42] Fractal Figures: Visualizing Development Ef..., D’Ambros, M. et al. V05 Usage Scenario
[S43] White Coats: Web-Visualization of Evolving S..., Mesnage, C. et al. V05 Usage Scenario
[S44] Multi-level Method Understanding Using Microprints , Ducasse, S. et al. V05 -
[S45] Visual Realism for the Visualization of Softwa..., Holten, D. et al. V05 Usage Scenario
[S46] Visual Exploration of Combined Architectural and Met..., Termeer, M. et al. V05 -
[S47] Evaluating UML Class Diagram Layout base..., Andriyevska, O. et al. V’05 Experiment
[S48] Interactive Exploration of UML Sequence Diagra..., Sharp, R. et al. V05 Usage Scenario
[S49] SAB - The Software Architecture Browser, Erben, N. et al. V05 -
[S50] Towards understanding programs through wear-b..., DeLine, R. et al. $’05 Experiment
[S51] Online-configuration of software visualizations with Vi..., Panas, T. et al. S’05 -
[S52] Visualization of mobile object environments..., Frishman, Y. et al. S’05 Case Study
[S53] Visualizing structural properties of irregular par..., Blochinger, W. et al. 05 -
[S54] Jove: java as it happens, Reiss, S.P. et al. S05 -
[S55] Methodology and architecture of JIVE, Gestwicki, P. et al. $05 Anecdotal
[S56] Visual specification and analysis of use cas..., Kholkar, D. et al. $°05 Case Study
[S57] Visualizing multiple evolution metrics, Pinzger, M. et al. $’05 Usage Scenario
[S58] The war room command console: shared visual..., O’Reilly, C. et al. S’05 Case Study
[S59] CVSscan: visualization of code evolution, Voinea, L. et al. S’05 Case Study
[S60] Visual data mining in software archives, Burch, M. et al. S’05 Usage Scenario
[S61] Algorithm visualization using concept keyboa..., Baloian, N. et al. S’05 Experiment
[S62] Mondrian: an agile information visualization f..., Meyer, M. et al. $°06 Usage Scenario
[S63] Multiscale and multivariate visualizations of ..., Voinea, L. et al. S’06 Usage Scenario
[S64] Visualization of areas of interest in softwar..., Byelas, H. et al. S’06 Case Study
[S65] Visual exploration of function call graphs for feature..., Bohnet, J. et al. S’06 -
[S66] Using social agents to visualize software..., Alspaugh, T.A. et al. 06 Experiment
[S67] Transparency, holophrasting, and automatic layout appl..., Gauvin, S. et al. S’06 -
[S68] A data-driven graphical toolkit for softwa..., Demetrescu, C. et al. S’06 Usage Scenario
[S69] Visualizing live software systems in 3D, Greevy, O. et al. $°06 Usage Scenario
[S70] Execution patterns for visualizing web servic..., de Pauw, W. et al. S’06 Anecdotal
[S71] Experimental evaluation of animated-verifying o..., Jain, J. et al. S06 Experiment
[S72] Narrative algorithm visualization, Blumenkrants, M. et al. S06 Experiment
[S73] The Clack graphical router: visualizing net..., Wendlandt, D. et al. 06 Anecdotal
[S74] A Visualization for Software Project Awaren..., Ripley, R.M. et al. Vo7 Usage Scenario

(continued on next page)

169

L. Merino et al.

Table 1 (continued)

The Journal of Systems & Software 144 (2018) 165-180

Id and Reference Venue Evaluation
[S75] YARN: Animating Software Evolution, Hindle, A. et al. Vv’07 Usage Scenario
[S76] DiffArchViz: A Tool to Visualize Correspondence ..., Sawant, A.P. V07 Usage Scenario
[S77] A Bug’s Life” Visualizing a Bug Database””A..., D’Ambros, M. et al. V07 Usage Scenario
[S78] Task-specific source code dependency investig..., Holmes, R. et al. Vv’07 Experiment
[S79] Visualizing Software Systems as Cities, Wettel, R. et al. Vo7 -

[S80] Onion Graphs for Focus+ Context Views of UML Cl..., Kagdi, H. et al. V07 Usage Scenario
[S81] CocoViz: Towards Cognitive Software Visuali..., Boccuzzo, S. et al. Vv’07 Usage Scenario
[S82] Distributable Features View: Visualizing the..., Cosma, D.C. et al. V07 Usage Scenario
[S83] Trace Visualization Using Hierarchical Edge B..., Holten, D. et al. V07 Usage Scenario
[S84] Visualization of Dynamic Program Aspects, Deelen, P. et al. Vv’07 Usage Scenario
[S85] Visualizing Dynamic Memory Allocations, Moreta, S. et al. V’07 Usage Scenario
[S86] Applying visualisation techniques in software..., Nestor, D. et al. $°08 Usage Scenario
[S87] Stacked-widget visualization of scheduling-..., Bernardin, T. et al. $°08 Usage Scenario
[S88] Visually localizing design problems with dish..., Wettel, R. et al. $°08 Usage Scenario
[S89] Visualizing inter-dependencies between scenarios, Harel, D. et al. S’08 -

[S90] Software visualization for end-user pr..., Subrahmaniyan, N. et al. 508 Case Study
[S91] Streamsight: a visualization tool for large-s..., de Pauw, W. et al. S’08 Anecdotal
[$92] Improving an interactive visualization of transition ..., Ploeger, B. et al. $°08 -

[S93] Automatic layout of UML use case diagrams, Eichelberger, H. $°08 -

[S94] Gef3D: a framework for two-, two-and-a-h..., von Pilgrim, J. et al. S’08 Usage Scenario
[S95] A catalogue of lightweight visualizations to ..., Parnin, C. et al. $°08 Usage Scenario
[S96] An interactive reverse engineering environment..., Telea, A. et al. S’08 Experiment
[S97] Representing unit test data for large scale ..., Cottam, J.A. et al. $°08 Anecdotal
[S98] HDPV: interactive, faithful, in-vivo run..., Sundararaman, J. et al. S’08 Usage Scenario
[S99] Analyzing the reliability of communication be..., Zeckzer, D. et al. $’08 Usage Scenario
[S100] Visualization of exception handling constructs..., Shah, H. et al. $°08 Experiment
[S101] Assessing the benefits of synchronization-adorn..., Xie, S. et al. S’08 Experiment
[S102] Extraction and visualization of call dependen..., Telea, A. et al. V’09 Usage Scenario
[S103] Visualizing the Java heap to detect memory proble..., Reiss, S.P. V’09 Anecdotal
[S104] Case study: Visual analytics in software prod..., Telea, A. et al. V’09 Usage Scenario
[S105] Visualizing massively pruned execution trace..., Bohnet, J. et al. V09 Case Study
[S106] Evaluation of software visualization tool..., Sensalire, M. et al. V09 Experiment
[S107] The effect of layout on the comprehension of..., Sharif, B. et al. V09 Experiment

4.5. Selected studies

We included in our study the 181 papers listed in Tables 1 and 2.
The papers are identified by venue and evaluation strategy.

5. Results

We report the characteristics of the extracted data and the cate-
gories used to classify them for quantitative analysis. Fig. 2 shows the
distribution of the studies categorized by paper type (Munzner, 2008)
and research strategy used to evaluate visualizations. Table 3 presents
our classification of the evaluation strategy adopted by papers into one
of three main categories: (i) theoretical, (ii) no explicit evaluation, and
(iii) empirical. For evaluations that used an empirical strategy, we
classified them into one of five categories: (i) anecdotal evidence, (ii)
usage scenarios, (iii) survey, (iv) case study, and (v) experiment.

We report on characteristics of experiments such as data collection
methods, type of analysis, visual tasks, dependent variables, statistical
tests, and scope. The complete classification of the 181 included studies
is displayed in Tables 4-9.

5.1. Data collection methods

In Table 4 we list the various methods that researchers used to
collect data from experiments. The most frequent were questionnaires,
which are normally used to collect data of the background of partici-
pants at the beginning of experiments and final observations at the end.
Questionnaires are found across all types of evaluation strategies (i.e.,
survey, experiment, case study). Interviews are fairly frequent and
found mostly in case studies. We also found traditional observational
methods (e.g., think-aloud), but also fairly new methods (e.g., eye
tracking).

5.2. Evaluation strategies

In twenty-four (ie., 13%) studies we did not find an explicit eva-
luation that presents evidence for supporting the claim of effectiveness
of software visualization approaches. These studies indicate that the
evaluation of the proposed visualization is planned as future work. In
the remaining studies, we found that several strategies were used to
evaluate software visualization approaches. We observed that only two
studies (i.e., 1%) used theoretical references to support the claim of the
effectiveness of software visualizations. One technique paper [S1] that
proposes aesthetic criteria for class diagrams, considered their proposed
criteria effective since it was derived from the UML specification, and
one design study paper [S12] evaluated the visualization based on
previously proposed criteria for visualizing software in virtual
reality (Young and Munro, 1998). Both studies planned as future work
to conduct an experimental evaluation. The remaining 155 studies (i.e.,
86%) adopted an empirical strategy to evaluate software visualization
approaches. Amongst them, we found that multiple strategies were
used. We investigated the evidence of the effectiveness of visualization
approaches provided by those strategies.

Fig. 3 shows the relation between the data collection methods used in
evaluation strategies We observe that most case studies do not describe the
methods used to collect data; however, we presume they are observational
ones, such as one [S90] that reported to have conducted interviews. The
few surveys in the analysis collected data using interviews and ques-
tionnaires. One survey [S113] did not describe the method to collect data.
Experiments use multiple methods to collect data. They mainly use
questionnaires, interviews, and the think-aloud protocol. Recent experi-
ments have used video recording, and other methods such as sketch
drawing, eye tracking, log analysis, and emotion cards.

5.2.1. Anecdotal evidence
We found six studies (ie., 3%) that support the claim of

L. Merino et al. The Journal of Systems & Software 144 (2018) 165-180

Table 2

The papers included in the study [S108-S181].
Id and Reference Venue Evaluation
[S108] Beyond pretty pictures: Examining the benef..., Yunrim Park et al. V09 Experiment
[S109] Representing development history in s..., Steinbrueckner, F. et al. $’10 Usage Scenario
[S110] Visual comparison of software architectures, Beck, F. et al. S$’10 Usage Scenario
[S111] An automatic layout algorithm for BPEL processes, Albrecht, B. et al. S’10 -
[S112] Off-screen visualization techniques for clas..., Frisch, M. et al. S’10 Experiment
[S113] Jype - a program visualization and programm..., Helminen, J. et al. $’10 Survey
[S114] Zinsight: a visual and analytic environment..., de Pauw, W. et al. s’10 Case Study
[S115] Understanding complex multithreaded softwa..., Truemper, J. et al. $’10 Case Study
[S116] Visualizing windows system traces, Wu, Y. et al. S’10 Usage Scenario
[S117] Embedding spatial software visualization in th..., Kuhn, A. et al. S’10 Experiment
[S118] Towards anomaly comprehension: using structural..., Lin, S. et al. s$’10 Experiment
[S119] Dependence cluster visualization, Islam, S.S. et al. S’10 Usage Scenario
[S120] Exploring the inventor’s paradox: applying jig..., Ruan, H. et al. $’10 Usage Scenario
[S121] Trevis: a context tree visualization & anal..., Adamoli, A. et al. s$’10 Usage Scenario
[S122] Heapviz: interactive heap visualizati..., Aftandilian, E.E. et al. S’'10 Usage Scenario
[S123] AllocRay: memory allocation visualizati..., Robertson, G.G. et al. S’10 Experiment
[S124] Software evolution storylines, Ogawa, M. et al. S’10 -
[S125] User evaluation of polymetric views using a ..., Anslow, C. et al. s$’10 Experiment
[S126] An interactive ambient visualization fo..., Murphy-Hill, E. et al. $’10 Experiment
[S127] Follow that sketch: Lifecycles of diagrams an..., Walny, J. et al. Vi1 Experiment
[S128] Visual support for porting large code base..., Broeksema, B. et al. Vi1 Usage Scenario
[S129] A visual analysis and design tool for planning..., Beck, M. et al. V11 Case Study
[S130] Visually exploring multi-dimensional code coup..., Beck, F. et al. Vi1 Usage Scenario
[S131] Constellation visualization: Augmenting progra..., Deng, F. et al. Vi1 Experiment
[S132] 3D Hierarchical Edge bundles to visualize relations ..., Caserta, P. et al. V11 -
[S133] Abstract visualization of runtime m..., Choudhury, A.N.M.IL. et al. Vi1l Usage Scenario
[S134] Telling stories about GNOME with Complicity, Neu, S. et al. Vi1 Usage Scenario
[S135] E-Quality: A graph based object oriented so..., Erdemir, U. et al. Vi1 Experiment
[S136] Automatic categorization and visualization o..., Reiss, S.P. et al. V’13 Usage Scenario
[S137] Using HTML5 visualizations in software faul..., Gouveia, C. et al. Vv’13 Experiment
[S138] Visualizing jobs with shared resources in di..., de Pauw, W. et al. V’13 Usage Scenario
[S139] SYNCTRACE: Visual thread-interplay analysis, Karran, B. et al. V13 Usage Scenario
[S140] Finding structures in multi-type code c..., Abuthawabeh, A. et al. V13 Experiment
[S141] SourceVis: Collaborative software visualizat..., Anslow, C. et al. Vv’13 Experiment
[S142] Visualizing software dynamicities with heat..., Benomar, O. et al. V13 Usage Scenario
[S143] Performance evolution blueprint: Underst..., Sandoval, J.P. et al. V13 Usage Scenario
[S144] An empirical study assessing the effect of s..., Sharif, B. et al. Vv’13 Experiment
[S145] Visualizing Developer Interactions, Minelli, R. et al. V14 Usage Scenario
[S146] AniMatrix: A Matrix-Based Visualization of ..., Rufiange, S. et al. V'14 Usage Scenario
[S147] Visualizing the Evolution of Systems and The..., Kula, R.G. et al. V14 Usage Scenario
[S148] ChronoTwigger: A Visual Analytics Tool for Unde..., Ens, B. et al. V’14 Experiment
[S149] Lightweight Structured Visualization of Asse..., Toprak, S. et al. V14 Experiment
[S150] How Developers Visualize Compiler Messages: A..., Barik, T. et al. V’14 Experiment
[S151] Feature Relations Graphs: A Visualisation ..., Martinez, J. et al. V'14 Case Study
[S152] Search Space Pruning Constraints Visualizati..., Haugen, B. et al. V’14 Usage Scenario
[S153] Integrating Anomaly Diagnosis Techniques int..., Kulesz, D. et al. V14 Experiment
[S154] Combining Tiled and Textual Views of Code, Homer, M. et al. V'14 Experiment
[S155] Visualizing Work Processes in Software Engine..., Burch, M. et al. V’15 Usage Scenario
[S156] Blended, Not Stirred: Multi-concern Visua..., Dal Sasso, T. et al. V’15 Usage Scenario
[S157] CodeSurveyor: Mapping Large-Scale Software to..., Hawes, N. et al. V’15 Experiment
[S158] Revealing Runtime Features and Constituent..., Palepu, V.K. et al. V’15 Usage Scenario
[S159] A Visual Support for Decomposing Complex Featu..., Urli, S. et al. V’'15 Usage Scenario
[S160] Visualising Software as a Particle System, Scarle, S. et al. V’'15 Usage Scenario
[S161] Interactive Tag Cloud Visualization of Sof..., Greene, G.J. et al. V’15 Usage Scenario
[S162] Hierarchical Software Landscape Visualizati..., Fittkau, F. et al. V’15 Experiment
[S163] Vestige: A Visualization Framework for Eng..., Schneider, T. et al. V’'15 Usage Scenario
[S164] Visual Analytics of Software Structure and Met..., Khan, T. et al. V’15 Experiment
[S165] Stable Voronoi-Based Visualizations for Sof..., Van Hees, R. et al. V’15 Usage Scenario
[S166] Visualizing the Evolution of Working Sets, Minelli, R. et al. V’'16 Experiment
[S167] Walls, Pillars and Beams: A 3D Decompositio..., Tymchuk, Y. et al. Vv’1i6 Case Study
[S168] CuboidMatrix: Exploring Dynamic Structura..., Schneider, T. et al. V’16 Experiment
[S169] A Tool for Visualizing Patterns of Spread..., Middleton, J. et al. V’'16 Experiment
[S170] Jsvee & Kelmu: Creating and Tailoring Program Ani..., Sirkiae, T. V’'16 Usage Scenario
[S171] Visualizing Project Evolution through Abstr..., Feist, M.D. et al. V’16 Usage Scenario
[S172] Merge-Tree: Visualizing the Integration of Com..., Wilde, E. et al. V’'16 Usage Scenario
[S173] A Scalable Visualization for Dynamic Data in ..., Burch, M. et al. v'17 Experiment
[S174] An Empirical Study on the Readability of R..., Hollmann, N. et al. Vv’17 Experiment
[S175] Concept-Driven Generation of Intuitive Explana..., Reza, M. et al. v’17 Usage Scenario
[S176] Visual Exploration of Memory Traces and Call ..., Gralka, P. et al. v’17 Usage Scenario
[S177] Code Park: A New 3D Code Visualization Tool..., Khaloo, P. et al. v’17 Experiment
[S178] Using High-Rising Cities to Visualize Perform..., Ogami, K. et al. v'17 Usage Scenario
[S179] iTraceVis: Visualizing Eye Movement Data With..., Clark, B. et al. A% 4 Experiment
[S180] On the Impact of the Medium in the Effective..., Merino, L. et al. Vv'17 Experiment
[S181] Method Execution Reports: Generating Text and ..., Beck, F. et al. A% 4 Experiment

L. Merino et al.

80

70
60
50
40
30
20
| | —
0
Design Study Evaluation System Technique
= Theoretical No Explicit Evaluation = Survey
Anecdotal ¥ Case Study ¥ Experiment

B Usage Scenarios

Fig. 2. The distribution of the 181 included papers categorized by paper types
and research strategy used to evaluate software visualization approaches.

effectiveness of visualizations on anecdotal evidence of tool adoption.
Two papers [S55,573] proposed a visualization to support the student
audience and reported that tools were successfully used in software
engineering courses. The remaining four studies [S70,591,597,5103]
that focused on the developer audience reported that visualizations
were used intensively and obtained positive feedback.

5.2.2. Usage scenarios

Eighty-three studies (i.e., 46%) evaluated software visualizations via
usage scenarios. In this type of evaluation, authors posed envisioned
scenarios and elaborated on how the visualization was expected to be
used. Usually, they selected an open-source software system as the
subject of the visualization. The most popular systems that we found
were written in (i) Java, such as ArgoUML (4 X), Ant (4 X), JHotDraw
(3 x), Java SDK (2 x), and Weka (2 X); (ii) C+ +, such as Mogzilla
(7 x), VIK (2 x), and GNOME (2 X); and, (iii) Smalltalk Pharo
(4 x). We found that several names were used among the studies to
describe this strategy. We observed that sixty-seven studies (i.e., 37%)
labeled evaluations as case studies, while twenty-six (i.e., 14%) pre-
sented them as use cases. In the rest of the cases, authors used titles
such as: “application examples”, “usage examples”, “application sce-
narios”, “analysis example”, “example of use”, “usage scenarios”, “ap-
plication scenarios”, and “usage example”.

5.2.3. Survey

Only four studies (i.e., 2%) performed a survey, which is consistent
with the findings of related work (Mattila et al., 2016; Seriai et al.,
2014). Three of them [S13,571,5100] surveyed developers to identify
complex problems and collect requirements to design a proposed vi-
sualization approach: one focused on supporting development teams
who use version control systems [S13], another asked former students
of a course what they considered the most difficult subject in the lecture

The Journal of Systems & Software 144 (2018) 165-180

Table 4
Data collection methods used to evaluate software visualization approaches.
Method Reference #
Questionnaire S11, S13, S25, S32, S40, S47, S50, S61, S66, S72, S90, 37
$100, S106, S107, S108, S112, S125, S126, S127, S135,
S137, S140, S141, S144, S149, S150, S153, S154, S157,
S162, S164, S168, S173, S177, S179, S180, S181
Think-Aloud $40, S50, S100, S112, S117, S118, S123, S125, S126, 17
S135, S141, S148, S150, S169, S173, S179, S180
Interview $33, S71, §78, S90, S100, S106, S123, S127, S153, S174, 12
S177, S180
Video Recording S$33, S50, S117, S125, S127, S140, S141, S144, S180 9

w

Sketch Drawing S117, S127, S180

Others Eye Tracking (S144), Log Analysis (S§166), Feelings Cards 3
(5180)
Table 5
Type of analysis adopted in experiments.
Type of Analysis References #
Quantitative S21, S23, S24, S25, S71, S78, S101, S107, S137, 13
$150, S154, S164, S174
Qualitative S11, S13, S33, S61, S66, S96, S100, S106, S112, 22

S117, S123, S127, S135, S140, S141, S148, S149,
S153, S157, S166, S169, S181

Quantitative / S5, §32, S40, S47, S50, S72, S108, S118, S125, 18
Qualitative S126, S131, S144, S162, S168, S173, S177, S179,
$180

[S71], and another was concerned with understanding exception-
handling constructs [S100]. In one study [S113] students who used a
visualization approach were surveyed to collect anecdotal evidence of
its usefulness. Two surveys [S71,5113] were conducted for visualization
approaches that target the student audience in a software engineering
course, while the remaining two [S13,5S100] target the developer au-
dience.

We found that surveys are used to identify frequent and complex
problems that affect developers; such problems are then interpreted as
requirements for a new visualization approach. We conjecture whether
the low number of surveys has an effect on the disconnect between the
proposed software visualization approaches and the needs of devel-
opers that we found in the past (Merino et al., 2016a).

5.2.4. Case study

We classified twelve papers (i.e., 7%) in the case study category.
Usually, case studies are conducted to evaluate visualization ap-
proaches that target professional developers working on real-world
projects in an industrial setting. The case of the study describes the
context of the project in which difficulties arise, and shows how a vi-
sualization approach provides developers support for tackling them. We
observed that in three studies [S56,590,5114] some or all authors of the
study come from industry, while in the rest there seems to be a strong

Table 3
Research strategies used to evaluate software visualization approaches.
Category Strategy Reference #
Theoretical S1, S12 2
No Explicit Evaluation S4, S7, S15, S16, S17, S18, S19, S20, S29, S44, S46, S49, S51, S53, S54, S65, S67, S79, S89, S92, S93, S111, S124, S132 24
Empirical Survey $13, S71, S100, S113 4
Anecdotal Evidence S55, S70, S73, S91, S97, S103 6
Case Study S52, S56, S58, S59, S64, S90, S105, S114, S115, S129, S151, S167 12
Experiment S5, S11, S13, S21, S23, S24, S25, S32, S33, S40, S47, S50, S61, S66, S71, S72, S78, S96, S100, S101, S106, S107, S108, S112, 53
S117, S118, S123, S125, S126, S127, S131, S135, S137, S140, S141, S144, S148, S149, S150, S153, S154, S157, S162, S164,
S166, S168, S169, S173, S174, S177, S179, S180, S181
Example S57, S60, S62, S63, S68, S69, S74, S75, S76, S77, S80, S81, S82, S83, S84, S85, S86, S87, S88, S94, S95, S98, S99, S102, S104, 83

S109, S110, S116, S119, S120, S121, S122, S128, S130, S133, S134, S136, S138, S139, S142, S143, S145, S146, S147, S152,
S155, S156, S158, S159, S160, S161, S163, S165, S170, S171, S172, S175, S176, S178

L. Merino et al.

The Journal of Systems & Software 144 (2018) 165-180

Table 6
Classification of tasks used in experiments according to Munzner (2014).
Query\ Search Identify Compare Summarize
Lookup — S5, 58125 S108
Locate S$123, S131, S137, S153, S177, S168 S21, S71, S100, S112, S126, S149, S179
S$180
Explore S11, S173 S72 S13, S23, S24, S25, S32, S33, S40, S50, S61, S78, S96, S106, S117, S118, S127, S135, S140, S144, S148, S150, S154,
S157, S162, S166, S169, S174, S181
Browse S66, S101 S47 S$107, S141, S164

relation of authors with industrial companies. In all of them, the eva-
luation involved professional developers.

5.2.5. Experiment

Fifty-three studies (i.e., 29%) evaluated software visualization via
experiments. Although the level of detail varies, we identified a number
of characteristics such as (i) data collection methods; (ii) type of analysis;
(iii) participants; (iv) tasks; (v) dependent variables; and (vi) statistical
tests. In the following we describe the results of the extracted data.

i) Participants. We observed a high variance in the number of parti-

cipants in experiments (shown in Fig. 4). The highest number of

participants is found in a study [S25] that included 157 students.

The minimum number corresponds to a study [S100] that

involved three participants (graduate students with experience in

industry). The median was 13 participants. A similar analysis of

participants in the evaluation of information visualization
approaches (Isenberg et al., 2013) shows similar results. Most
evaluations of information visualization approaches involve 1-5
participants (excluding evaluations that do not report on the
number of participants). The second most popular group includes
11-20 participants, and the group that includes 6-10 is the third

most popular. Overall the median is 9 participants. Although many

evaluations in software visualization included a number of parti-
cipants in that ranges, the most popular ones are 6-10 and 11-20,
followed by 21-30. One reason that might explain the difference
could be that in our analysis we only included full papers that might

present more thorough evaluations including a higher number of

participants.

We noticed that experiments to evaluate software visualization
approaches for teaching software engineering (e.g., algorithms and
data structures) include a high number of participants since they
usually involve a whole course and sometimes several of them. This
type of experiment typically evaluates the effect of introducing vi-
sualization tools as a means for helping students to learn the subject
of the course. All of them found that visualizations do help students.
However, they do not provide insights into whether the particular

Table 8
Statistical tests used to analyze data from experiments.
1d. Test Reference #
T1 ANOVA S25, S32, S40, S107, S144, S164, S174, 9
S177, S180
T2 Pearson S25, S40, S50, S107, S108, S150 6
T3 Cohen $107, S150 2
T4 Wilcoxon S101, S107, S126, S150, S164 5
TS Student T S5, §72, §101, S137, S162 5
T6 Shapiro-Wilk $107, S162, S177, S180 4
T7 Kruskal-Wallis $25, S108, S180 3
T8 Mann-Whitney S25, S107, S168 3
T9 Descriptive S24, S78, S118, S125, S131, S141, S154, 9
Statistics and Charts S173, S179
T10 Levene S162, S180 2
T11-T18 Tukey (S180), Mauchly (S174), 8

Greenhouse-Geisser (5174), Friedman
(S21), Hotelling (S71), Kolmogorov-
Smirnov (S72), Spearman (S25), Regression
Analysis (S24)

ii

=

visualization technique tested in the experiment is the most suitable
one. All experiments include participants selected from a con-
venience sample. Normally, they are students and academics at
various levels with little experience working in industry.

Type of Analysis. Table 5 presents our classification of the type of
analysis adopted in experiments. We categorized the type of ana-
lysis into one of two categories: quantitative and qualitative. We
found thirteen studies that adopted a quantitative analysis, while
twenty-two used a qualitative one. In eighteen studies there was
both a quantitative and qualitative analysis. Common examples of
quantitative analyses in experiments include the measure of quan-
titative variables such as time and correctness.

Typically, experiments were described as being formative or ex-
ploratory, and adopted a qualitative analysis of results (i.e., 75%).
Several experiments also used a quantitative analysis to report
evidence that supports the effectiveness of software visualization
approaches. Although reporting on early results of preliminary
evaluations has contributed important knowledge to the software

Table 7
A summary of the dependent variables found in experiments.
Dependent Variable References #
User Performance Not Explicit $96, S108 2
Time S5, S11, S32, sS40, S71, S107, S125, S137, S144, S162, S164, S173, S174, S177, S180 15
Correctness S5, S11, S13, S21, S24, S25, S32, S33, S40, S47, S71, S72, S78, S101, S106, S107, S108, S118, S123, S125, S126, S137, S144, S150, 29
S162, S164, S168, S173, S179, S180
Effectiveness S13, S21, S50, S66, S72, S78, S100, S101, S112, S127, S131, S141, S148, S157, S162, S164, S166 17
Completion $50,5164 2
Recollection $150,5180 2
Others Visual Effort (§144), Scalability (S32), Efficiency (S32) 3
User Experience Not Explicit S96, 5126, S49 3
Usability S11, S13, S32, S40, S61, S117, S137, S140, S49, S153, S164, S169, S177, S181 14
Engagement S154, S177 2
Understandability ~ $118, S181 2
Feeling Enjoyment (S32), Intuitive (S137), Satisfaction (5164), Confidence (5107, S126) 5
Others Acceptability (S164), Learnability (S164), Difficulty (S180) 3

The Journal of Systems & Software 144 (2018) 165-180

(98pd 1x2u UO panunuU0d)

Burpuelsiopun surerdoxd ddueurtojrad s31 aaoxdur
61 syuednred 4 v ‘$S9UIIDILI0D BAR(JO S90BI) UOTINJAXD 9zATeue 0], SDS Jul[-apoN eAef 0] payipour aq ued weidoid ayl moHq SINJOId 8TIS
("peoe FI Y3 UI Pappaquia Ik Jey) SIA uonedrjdde
— 3 -pur) sjuedonred £ v ATIqesn YiIm J0BISIUL 'SASp moy uo Jydisur ured o], SDS puersy - uaA13 a1} Jo asodind a3 purg dejNepoDd ZIIS
(oreuay paysm3unsip are
- Z7)peIsypmssyg v SSOUAATIIRH sjuswRIMbal [entur ay) 1s9) 0, SDS TN — sarxoad J1 995 0] SISSE[D JDRIISqR JUNOD w31 $SDID TN T11S
(soreUIdy SIQWIOIMIU 32In0s uado ¢a8ueyd sty Aq
L1°2L 6) SIUSPNIS SO LT 9DIAON SS9UIDRII0) IOJ 'SIA JO S)PAuaq o) uo syydisur ured o, SOS MUI[-9pON — Pa31d3pJe A[I2IIp 3q [[IM SISSB[D YITYM m3ny sA 9911, UOISIDA 80TS
Qur], Juawambaz
9LpI-TL SJuapMIS SO S v ‘SS2UIDDII0D ‘DOUIPYUOD moAe[ay3 jo oedwr 9y jenfesd o], SDS TAN — ®ppe 0] padueyd aq 0] sasse[d AJuap] wSv1p SSPD TN LOTS
‘peoe 3 SoUBULIUTEW PUB UOISUSYRIduod
- “pur) syuedonred g6 v $S9UIIDLI0D 1001 © jo 1oedwr 9y enfesd o, SDS SNOLIBA - urexoxd o) paje[ar syse], SnoLeA 901S
surexderp
9ouanbas pauIope-UOIRZIUOIYIUAS JoTARYSq Pa1dIdap 9 saqLIdSIp
AN SIUSPMIS SD $Z IIIAON SSUIDALI0D JO S)Jouaq 9y} 9)en[ead o], SDS TN - 159q 1Y) dePIPUED) 19[S TNNES TOIS
syonnsuod Surjpuey-uondaoxa SIUDUIATD
- SJUSPNIS SO € IIAON SSOUQATIOR)H PUBISIDPUN 'SASP MOV Uo sjySisur ured o], SDS JUuI[-apoN — [eINIONIS U9MIdq saTduapuadap purg ueyuy 0TS
(‘peoe QouaLIadxy sarouapuadop pue 9pod 221nos-uado
— 3 pur) sjuedpnied g v 19S() ‘9OURWLIONDG SOLIPU ‘QIn3dalIydre uo syydisur ured o], SDS [PXId ‘gdH SMOpUI\ SULI9AUISUD-ISIDAAI 0] PIJR[aI SHSB], XAPIOS 968
9pod » ‘weidoxd
6L sjuedpnied 9 1\ $S9UIDDII0D) 1001 ® jo 10edwir 9] 91eN[RAd O], SDS 20mos ‘Sny - e Surdueyd jo 1oedurr oy szA[euy uedno 8/S
yoeoidde uonezijensia , ¢swpuode ensyiq pue wiig
9TLSL SJUIPNIS SO HE IIIAON $S9UIDALI0D aAnelLIRU 3 Jo 1oedwl 9Y) Jjenesd o, SDS JUuI-apoN — U29M)3q DUIIAYIP UTRW J) ST JBYM uouDZDNSIA WILIOS]Y LS
sD ur SurwrurerSoxd 9pod SIOLID [BOTIOBIUAS
SLL - 9JIAON QUILJ, ‘SSaUIIALIOD 3uryoeay Sunioddns uo syydisur ured o], SOS 201mos ‘Sny SNOLIBA -Uou 3 [[e }99110D pue pulj dseinl 1/8
$9UO UdBd puy NoA pIp
- SIUSPMIS SD T 9IIAON SSOUIATIDRH 1001 a3 jo 1oedwr 9y) Jjenfesd o, SIS J1U0d] - uayMm pue ‘puy NoA pIp sinej JeYm SIUa8D D10S 998
sjuapnIs SO spIeoqAay
- 8T ‘S)uapnis SO LI 9DIAON ssau[njas(‘AJAnoeIauf 1deouod 3ursn jo joedwir 9y} ajen[ead o, SOS NUI-9PON - sIsA[eue WILI03[e 0] paje[al syse], uonuDZYDNSIA UNJLOZY 19S
Burra)y paseq , Io1ARYaq paldadxad
ZL s1odofaaap areur £ 114 uonsduro)n -Team ursn jo 1oedwr o) ajen[eAd 0, SDS TN - ue ureiqo o) wrerdoid oy a8ueyn Supenf paspq-wapm 0SS
IN0AE[TN TeINId_NYDIR
- sjuspnmis S5 0¢ v $SaUjdRLI0) paseq-2dA3oaials jo oeduwil 9y} djen[ead 01, SOS TN - sse e[nonted e Jo 9[01 Y} YN IN0AD) wpLSDIp SSDD TN L¥S
(oreursy ssaurnyasn sauapuadap d[qeriea
TIIL €) sjuapnis SO 8¢ v ‘ouny, ‘ssauldai1Io) [eanpadoid-enur jo 1oedwr oyl ajenfead o, SDS TAN - uonduny paysrugun ue aduwoy fouapuadap a)qpLDA OFS
sD ur Surwrureidoxd 9pod
- SjuoOpnIsS §O 16 9JIAON $S9UII91LI0D) Buryoea) Suntoddns uo syydisur ured o], SDS 90Imos "8ny snoLep swpIod[e 3urios 0] paje[al syse], uyueld €€S
(oreway asseH A ssado1d
1L) sjuedonred g1 IV “L ‘ASusmiyy ‘ssaujoaiio) anbruyoa) e jo joedwr oY) aJenead o], SOS [UI-9pON - 0] own paje[a A[Tesned x ssad01d s| saipnbg8uimoln zes
ururea| 9pod
LILSLLLTL SJUSPMIS SO LGT IDIAON SSOUIDRLI0) UI UONEZI[EnsIA Jo 1oedwil ay) 2Jen[eAd O, SDS 901mos “Sny - sunpyuio3[e 3uryIos a1y 03 paje[al syse], uouDZDNSIA UPLIOS]Y GTS
sjuapnIs SO Surures| urp
SLlL € ‘S)uapnis SO ZI 9IIAON $S9UJDDII0D UT uomezifensia jo 1oedwr 9y enfesd o, SOS -9pON ‘wiuy - sisA[eue unyiLIo3[e o) paje[al SYSeL IS9]GIDIN SLISWDHSUUDG 4TS
(oreursy JTU0D] suoneInduwod
- G) SJUSpNIS SO O IDIAON SSAUIIILIOD Awouodd aANTUS0D djeN[esd O, SOS S[UI[-9PON - PaINqIISIp 0) paje[al sySe[, 20ff aamuBo) Sunpay €7S
s)9ayspeaids apod
PLL SJUSPNIS SD /8 9IIAON SSOUISNQOY ‘SSAUDATIIIH ur s[[92 Aymey uo syydisur ureS o, SOS 901nos “§ny - S[[92 A)[NeJ JO UOTIBZI[BDO] s1aysppauds 1ZS
- SJUSPMIS SO § v ANIqeS() ‘SSOUATIRYH sjusuraxmbar [entur oyl 1s9) 0, SDS JUI[-apoN - pasueyd ayy remonied e AYpm eIX €IS
Aymiqesn [ensiA ® WoJj UONJRULIOJUT JORIIXD dewr 3urzruedio-jos
- SJUapMIS SD H11 v ‘Quiny, ‘ssaulda1Io) 0] s1dsn Jo Ajiqeded 9y dzLLBIORIRYD O], SDS £1D — 9] UIYIIM P[3Y UONRULIOJUT JOJ [DILdS wosiey IS
ureiSeIp e soydjew uoneoydads e 0) puodsariod
SL SJUdPMIS SD GE l\% QwIL], ‘sSaUIIDLI0D uonedyroads e I9YIoYM djenfesd o, SDS TAN - urexderp TN Ue J1 AJnuap] uonpIOU WDISDID TN sS
159, [eO1ISIIRIS 1X91U0D 's19d snoog Liend asodmng ‘paNl anbruyda], AUy yselL Apmig Jo 13(q0 ‘JoM

174

L. Merino et al.

‘(8 2[qE.L Ul UMOYS SWAUOIIR) 1S9) [EINISTILIS 9Xo3u0d Dandadsiad ‘snooy Lyenb ‘osodimd ‘(LI S2[qel YoNnol NNW pue ‘gl SIUSWUOIIAUD (€ SAISISWWI ‘SHS SU2IdS 1onduwiod prepue)s 9-1) WNIpIw
‘onbruyda) uonIeZI[ENSIA JUSWUOIIAUD ‘(SUOTIBN[BASD UT JID[[dXD punoj a1om ey sysel SSUIIUSPI A YIeW }IyD) yse) ‘Apmis Jo 193[qo ‘Douarajer :(3yS11-03-1J9) SUONBZI[ENSIA 2IeMIJOS U SJUdWLIAdXa Jo 9dods uonenyead ayJ,
6 2IqelL

http://www.cs.uef.fi/~saja/var_roles/planani/index.html
http://www.jgrasp.org/
http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
http://ftaiani.ouvaton.org/7-software/profvis.html

The Journal of Systems & Software 144 (2018) 165-180

L. Merino et al.

‘pese R ssaunyasn UOTINDIXD SPOYIUI JO UOTIRZLIBUILINS » 3ui83ngap pue Suryord
- pun) sjuedpnred 11 v ‘Aiqepuelsiapun Bunioddns uo syydisur ured o1, DS sueyD eAe[10j 110daI UOTINDAXD O} paje[al syse], s110doyuonnIXHPOYIRAN I8TS
L dOQ UI SOLIJOW U0 Paseq 2INIddIydIe T[ows ssepd
TLLOLLZLOLTL sjuedonred 1g IV~ ‘UOMD9[[0I9Y ‘SSAUIIALI0D) JoJ uonjezifensia uo syydisur ure o, SDS A1) N ‘oreyq poS oYyl 10J 2JePIPULD 159q I})BIOT YALDD 08IS
Burpeal apod Jo elep JUSWDAOUI , ¢poyiaul dues ay) 0] 10adsax
61 syuapmIs SO 01 v SSUIDALIOD 9o SurzAreue uo syydisur ure§ o, SDS deunesy osdipd UIIM JB YOO[JOU "ASP 3} PIP ISYM SIA®OBILI 6LIS
(oreway s, Juswadedus pue Afiqesn » 21mesj e 1oddns 01 21301
9ITL 9) sJuapnls S 87 9VMON JusurafeSuy ‘9sn-0)-aseqy uo [00) 3 jo edwr oY) Aenesd o, el LD - 9} ppe 9pod 3} Ul dI9YM AJIusp[NIed apoD L/LIS
(Jyess uy, xa3a1 e Jo AI[Iqepeal ay) uo 9pod , ¢uorssaidxa rengax
SILZILIL pue 'pms §)) "Ted gg 3d1A0N ‘AMIqepeay ‘ssauda11o) uonejou [edrydeld e jo joedwr 8yl 1s9) O, SDS 9o1mos Sny — & £Aq pauysp a3enduel ay) ur HgV SI oydpa8 sa jpmxa1 xXadoy LIS
(oreursy oy, surex8erp yui-opou M paredurod , '9m Ay
61 €) s112dxa SIA QT v ‘KITIqepeay ‘ssauldaLIo) onbruida) e jo joedwr 9y Aenfesd o, SDS PxXId - Ul 991qNS JLIIWIWAS ISOW JY) purg Ayoupaf paquapuy €L1S
uopeoynuenb pue ‘uoneiojdxa » @onoe1d e[nuLIoj snoladuep
- SJUSPMIS S § v Annqeorddy Jo 110ddns s,J00) "sia Jo syySisur ure§ oL, SDS JUI[-apoN - 1SOUI 3} PAUTEIUOD SIYS YPIYM suewrmbiad 691S
("Te3sa1 uorsuayaIdwod aremijos aqnd S $SISSE]D U9IMIaq ‘Dui)
81 R 'pmis §D) ‘1ed g v SSUIDALI0D ur (003 3y} jo oedwr Iy Aenesd o], SDS awn-adeds — Suofe ‘suondeIaUI [EINUSPT AJNUIP] XIIBAPIOGND 891S
$19s SUDIOM JO UOTIN[OAD 5195 SupLIOM J) JO SANIIUD
- s1adofaaap {1 v SSOUIATIIRH 9y jo uonezifensia uo syydisur ure8 o, SOS UuI[-apoN - uo £)1anoe 1adofeasp oy azAeuy 195 Sunom 991S
sjuowaImbal 03 3urpIodoe WISAS , {WRISAS 1BDWO], Y UT S)Iun
6LVILTL sjuapnIs S 12 IV QWi “3Mu] ‘SS9UIILII0) IBMIJOS B JO 'SIA PUR SOLIJSW d)BN[BAS O], SOS XIRN ‘A1) - uone[iduod jo Jaqunu a3 ST JeyM MIMIANIA +91S
, ¢cuorurdo
sisA[eue dInaw 1moA ur uonedrdde INIMdMMM
0LL9LSL SJUAPMIS SD ST v QL] ‘sSaUIIDLI0D UO paseq 2INIJAIYDIE U d)eN[esd O (€I £ QM a1 Jo asodind a3 ST JBYM. ZINJOTAXT Z9TS
(oreway swalsAs Sunediaeu pue Surures| 9seQapPOd 1) Juasaidol
- 1) s1adojoasp g v ssouaAndayy ur sdewr apod jo yioddns oy} 9jenfead oL, SDS pue[s| - 159q Jeyy sdewr apod a9y} yuey J03AINGOPOD /GTS
a3en3ue[aoe1n 21 ur Jurwrurerdoid o3en3ue|
6L SJuapNIsS SO €€ IJIAON ssaunyasn Juawedesuy Bunioddns uo syydisur ured o, SOS [ensip @M, weidoid e Jo I01ABYSq 9] 9qLIISIQ RINPI[LL HSIS
('peode a8en3ue| /1 10§ OLIBUDDS
- 3 pur) syuedpnred g v ssaupnyasn ‘ANIqesn se[nuLioj s)aayspeards 153 0], SDS TensIA 99X 1591 & AJads pue ainjrej e purg I94IS €STS
sa8essowr 10110 Jurpusyaidurod 9pod » siuawad pay3iydiy urzAeue
p1-CL SJUSPMIS SD 8 9IIAON UOIIDD[[099Y ‘SSAUIIALI0D uo ‘SA9p pre 0] anbruyda) e ajenfesd o, SOS 921nos “§ny - £q 10113 UE JO Isned Y AJusp] sadpssopy Jopdwio) OSTS
("Teasax *1dxa 1e[N33I JO MOTJ-[0NUOD a3enduey
- 3 °pmss)) red 01 v Annqesn 1e[quussse Supzoddns uo syydisur ured o, SOS [ensIA SMOPUIM 4 MO[] [01UOD [[BISAQ 3 JO YorlL SIAS21 6Y1S
(oTRWR) 3unsa) pue ssado1d juswrdoronsp pnoj no Sunjuny
- 1) s1adojasdp ¢ v SSOUAATIIRH 9} JO UOIBZI[ENSIA dJenfesd o], (gl Jul-apoN - 9MIYM 2IeMIJOS) d)eS1IsaAu] 33mrouoryd 8yIS
SUIR)ISAS BAR[JO 2INJ23)IYDIR Knrenb jurid 1ood
SILTL SJUIPNIS SD L6 IV 330JH [ensIA ‘@ui], “I110D) 10J uonezifensia uo syydisur ured o, SOS £1D osdipg e sonpoid wrerdoxd ayy Aym AJnuspl AELIP2S +HIS
("Teasarg SI9pUN UI "qe[[0d PIJeIO[-0 I0J SMITA ¢uo puadap
61 ‘pras §D) “red 9 v SSOUIATIOAYH "qe) Yonolnnur uo ‘sia uo syydisur ured o1, LININ JPwA[od — SSE[J SIY) SI0P SadejIajul Auew MOH SIA92INOS THIS
("pese uR)SAS umowyun ue SurpuelsIOpun , ¢°SIA 93 Ul puy nok
— 3 pur) syuedonied g v ssau[njasn Joj uonjezifensia uo sjydisur ure o, SDS NUI[-9PON — Op S2IMPNAS [ensiA SUNsaIalul JeYM AININI ‘AINd OV IS
‘s3o1d eaer 3uiddnqgap ne;
SL SyuapNIS SO OF IV QuI “IIu] ‘SSaUILI0D 10y uonezifedo[Jmey uo syydisur ured o, §OS deWAALL, OPI] CIPHBARL B JO 9POD dYI UI UOIEIO] 3} AJrusp] Ie1[0ZD LETS
sanmumuoddo ‘1oejo1 pue smeyj pli(en]] wrerdoid e jo sajepipued
- s1odofaaap 91 v ssauaAnIMuU] uSIsap Jo uonezifensia uo syydisur ured o], SOS SH[UI-9pON — 8unoyoeyar JuedyIUSIs 1S0W Y 1998 Aiend-4 GETS
uontudodar urened pue Surpuelsiopun ney
61 SJuapNIS SO 0E v SSOUAATIORH 21BMIJOS J0J anbruyda] 9jenfead 0oL, SDS UuI[-apoN — ®JO 9pod JY) UI UONEdO[Y} AJnuap] uonp)AIsU0) IEIS
("1e9s91 9[IAJ9J1] "3JOs Jo sweISeIp pue saYdIoNs s399foad ur aydoad paajoaur
- 3 'pis §D) ‘Ted g v SSOUAATIDRH MRIp 'sA9p moy uo sjydisur ured o], SDS Jul-apoN - JO SI[0I puB IX2)U0D Y} IZATRUY 210A2af1] “Adp aupmifos £TTS
‘peoe s[[ouwls apod uo paseq Ajenb apod
1 pun) syjuedpnied g1 v SS9UIDALI0D DIUIPYUOD aremyjos Sunioddns uo syydisur ured o], SOS 221mos “3ny asdrpy S[[oWS 9pod AJuUap| wosso[guoualS 9ZIS
("peoe Kerdsip [rem SMITA ¢SSB]D MOPUIM 3U) UBY) SSB[d
6l 2 pulwoy¢) red T v QUIL], ‘SSAUIIDILIOD B UO P2IOpUAI UONBZI[ENSIA 9JEN[RAd O], SDS JLawA[oq - juasuodwo) ayy st 108819 yonwr Moy MIIASIOASIOHWRISAS GZ TS
surd[qoxd Arourowr pue suzeljed
- s1odofaaap v $S9UIIDLI0D UONEBJO[[E JO UONBZI[ENSIA B 9JBN[RAd O], SDS [oxId - yea[AIouwdW B Jo UONEedO[Y} pulg Keyd0[y €21S
1S9, [eOTISIIRIS 1X91U0D) 's19d snooq Liend) asodmg ‘peINl anbruyda], ‘Aug yseL Apms jo 193[qQ ‘Joy

(panupu0d) 6 dqeL

175

https://github.com/DeveloperLiberationFront/refactoring-tools/tree/master/installables/update_sites/stench_blossom
http://www.gzoltar.com
https://github.com/davidmr/seeit3d
http://www.sts.tu-harburg.de/projects/regvis/regvis.html
https://github.com/kuleszdl/SIFEI
http://homepages.ecs.vuw.ac.nz/~mwh/
https://www.explorviz.net
https://github.com/SERESLab/iTrace-Archive
http://scg.unibe.ch/research/cityvr
https://github.com/fabian-beck/Method-Execution-Reports

L. Merino et al.

Questionnaire

Experiment: 53

Interview

Think-Aloud

Video Recording

Sketch Drawing | |

~ Eye Tracking
Survey: 4 .
~ Log Analysis
— Feelings Cards
Case Study: 12 S—
—— No Data Collection

Fig. 3. Sankey diagram showing the data collection methods (right) employed
in evaluation strategies (left) adopted in empirical evaluations.

6- 11-20 21-30 31-40 41-50 51-100 >100

Fig. 4. Histogram of the number of participants reported in evaluation.

visualization field, we believe that for software visualization ap-
proaches to become an actionable choice for developers, they have
to present sound evidence of their effectiveness via surveys, con-
trolled experiments, and case studies.

iii) Dependent Variables. Table 7 lists the dependent variables that were

measured in experiments. We adopted the classification proposed
by Lam et al. (2012) and classified the dependent variables based
on two of the proposed scenarios for evaluation of the under-
standing of visualizations: user performance and user experience. We
found 35 (i.e., 66%) studies that evaluated user performance, 8 (i.e.,
15%) evaluated user experience, and 10 (i.e., 19%) that evaluated
variables of both. To evaluate performance most experiments de-
fined as dependent variables correctness and time, some others
specified that the experiment aimed at evaluating effectiveness
without presenting details, and a few described multiple variables

The Journal of Systems & Software 144 (2018) 165-180

such as recollection, visual effort, scalability, and efficiency. To
evaluate user experience researchers asked participants their per-
ception of various variables such as usability, engagement, under-
standability, and emotions.

iv) Statistical Tests. Table 8 summarizes the statistical tests used in ex-

A%

—

periments for the quantitative analysis of data. We observed that

the choice of the test is governed primarily by the number of de-

pendent variables, their treatment and the type of the collected data

(i.e., categorical, ordinal, interval). For instance, a questionnaire

that uses a 5-step Likert scale to ask participants how suitable they

find particular characteristics of a software visualization approach
for a certain task would be ordinal. In that case, there would be one
dependent variable, with five levels of ordinal data, for which the

Kruskal-Wallis test would be a suitable match. Also, ANOVA is a

common choice to test hypotheses. However, we observed that in

some cases researchers found that parametric assumptions do not
hold. Although there are alternative tests for non-parametric data,
we observe that for data that do not follow a normal distribution,
they can perform an Aligned Rank Transform (Wobbrock et al.,

2011) [S177].

Task.In Table 9 the column Task summarizes exemplary tasks that

we extracted from the design of each experiment. In almost half of

the experiments (i.e., 26) we found explicit tasks that we identify
with a check mark v. The remaining tasks that we list correspond to
rationales that we inferred from analyzing the goals of experiments.

We observed that in several studies participants were asked to use a

visualization to lookup some aspects of the system. Although in

some cases a database query might be a more effective tool than a

visualization, we observed that these tasks are often used as a

stepping stone towards complex tasks, in which developers cer-

tainly benefit from visualizing the context. For instance, partici-
pants used a visualization to answer questions where they had to:

a) count elements such as “how many packages are in the Java API?”
[S125], “what is the number of packages?” [S164], “determine the
total number of packages this system has” [S180], “how many
methods does the largest class have (in terms of LOC)?” [S144], and

b) find outliers such as “find the process with the longest duration.”

[S32], “who are the top three most active code contributors?”

[S108], “what are the two largest classes?” [S141], “name three

applications that have a high fan-in” [S162], “find the three classes

with the highest NOA” [S180].

We also observe that most studies build on these answers and ask

participants to complete tasks that require them to explore. We

believe that visualizations inherently excel in such tasks in
contrast to text-based approaches. For instance, participants
used visualizations to answer questions that involve:

Feature location such as “which method contains the logic to in-

crease the speed?” [S50], “locate the feature that implements the

logic: users are reminded that their accounts will be deleted if they do
not log in after a certain number of months” [S117],

b) Change impact analysis such as “which classes of the package
dependencywill be directly affected by this change?” [S108],
“analyze the impact of adding items to a playlist” [S78],

c) Analyze the rationale of an artifact such as “find the purpose of the
given application” [S117], “what is the purpose of the application”
[S162], and

d) Pattern detection such as “can you identify some interactions that

are identical, along time, between groups of classes?” [S168], “find
the most symmetric subtree in the tree” [S169], “locate the best
candidate for the god class smell” [S180].
Moreover, we classify these tasks according to the taxonomy
proposed by Munzner (2014). In it, she proposed that the task
that motivates a visualization be classified using the following
dimensions:

a) Analyze. The goal of a visualization can be to consume, that is, to
discover new knowledge, present already discovered knowledge,

a)

L. Merino et al.

and enjoy it; or it can be to create new material, which could be
to annotate elements in the visualization, record visualization
elements, and derive data elements from the existing ones.

b) Search. All analyses require users to search. However, the type of
search can differ depending on whether the target of the search
and the location of that target are known. When both the target
and its location are known, it is called lookup. When the target is
known but not its location, it is called locate. When the target is
unknown but its location is known, it is called browse. Finally,
when both target and its location are unknown, it is called ex-
plore.

c) Query. Once the searched targets are found, users query them. In

tasks that involve a single target, the type of query is referred to
as to identify. In tasks that involve two targets, it is referred to as
to compare. Finally, in tasks that involve more than two targets,
it is referred as to summarize.
We classify all tasks collected from the studies into the discovery
category. The results of the classification in the remaining two
dimensions is presented in Table 6. We observed that most of the
tasks were designed to explore and summarize, that is, partici-
pants have to summarize many targets that they neither know,
nor for which they know the location in the visualization. Almost
half of the twenty-seven tasks in this category were explicitly
described in the studies, while for the other half we only found a
rationale. Tasks in this category tackle:

a) Comprehension [S23], [S24], [S25], [S32], [S33], [S40], [S61],
[S96], [S106], [S148], [S154], [S174];

b) Change impact analysis [S50], [S78], [S118];

c) Debugging [S144], [S150], [S181];

d) Code Structure [S140], [S157],

e) Project Management [S166], [S169];

f) Rationale [S13], [S117], [S127], [S162]; and

g) Refactoring [S135].

We found seven other studies with tasks in which participants
were asked to summarize targets but in which the targets were
known, and therefore we classified them in the locate category.
Studies in this category involve tasks that deal with:

a) Comprehension [126];

b) Debugging [S21], [S71];

c) Dependencies [100], [149];

d) Code structure [112]; and

e) Project Management [S179].

Only five studies involved tasks that asked participants to com-
pare two targets. All of these tasks related to comprehension.
Finally, the tasks of ten studies involved identifying a single
target. These tasks deal with:

a) Comprehension [S11], [S101], [S173], [S180];

b) Change impact analysis [S177]; and

c) Debugging [S66], [S123], [S131], [S137], [S153].

6. Discussion

We now revisit our research questions. Firstly, we discuss the main
characteristics that we found amongst the analyzed evaluations.
Secondly, we discuss whether the conducted evaluations are appro-
priate considering their scope. Finally, we discuss the threats to the
validity of our investigation.

RQ1.) What are the characteristics of evaluations that validate the ef-
fectiveness of software visualization approaches?

Beyond traditional data collection methods. The methods used to
collect data during the evaluation have to facilitate the subsequent
analysis. Consequently, in a formative experiment researchers interview
participants to freely explore aspects of complex phenomena. In a case
study researchers can interview developers in their work environment,
which can help researchers to formulate hypotheses that can be tested in
experiments. Questionnaires can be used in surveys for exploration,

177

The Journal of Systems & Software 144 (2018) 165-180

reaching a higher number of participants who can provide researchers
feedback of past experiences. We observed that several studies record
sessions with participants. Afterwards, these records are used to dissect a
user’s performance (e.g., correctness of answers and their completion
time) and experience (e.g, level of engagement of participants with a
tool). We observed that few non-traditional methods are used: (i) eye
tracking to capture how participants see the elements in visualizations;
(ii) log analysis to investigate how participants navigate visualizations;
and (iii) emotion cards to help participants to report their feelings in a
measurable fashion. Finally, we believe that the capabilities of recent
devices used to display visualizations (Merino et al., 2017a) (e.g., mobile
phones, tablets, head-mounted displays (Merino et al., 2017b)) can
complement the standard computer screen, and provide researchers with
useful data for investigating both user performance and user experience.

Thorough reports of anecdotal evidence and usage scenarios .
Tool adoption can be considered the strongest evidence of the usability
of an application (Alves et al., 2010). However, we observe a lack of
rigor amongst studies that reported anecdotal evidence. Normally,
these studies report that tools were used, but often they do not specify
the context, for instance, whether the tools are freely adopted or en-
forced as a requirement in a software engineering teaching course.
Moreover, they describe subjective feedback from users using expres-
sions such as “the tool was used with much success” [S55], “feedback
was positive” [S97] We propose that also reporting objective evidence,
for instance number of downloads, would help them in making a
stronger case to support the effectiveness of visualizations.

We also observed that one third of studies employed usage scenarios to
demonstrate the effectiveness of the software visualization approaches.
Typically they describe how the approach can answer questions about a
software system. Normally, usage scenarios are carried out by the re-
searchers themselves. Although researchers in the software visualization
field are frequently both experts in software visualization and also ex-
perienced software developers, we believe they are affected by construc-
tion bias to perform the evaluation. Usage scenarios can help researchers
to illustrate the applicability of a visualization approach. In fact, use cases
that drive usage scenarios can reveal insights into the applicability of an
visualization approach in an early stage (Hornbzk et al., 2007). None-
theless, we believe they must involve external developers of the target
audience who can produce a less biased evaluation, though related
work (Host et al., 2000) found that software engineering students can be
used instead of professional software developers under certain conditions.
We found multiple subject systems in usage scenarios, of which the most
popular are open source. We reflect that open source software systems
provide researchers an important resource for evaluating their proposed
visualization approaches. They allow researchers to replicate evaluations
in systems of various characteristics (e.g., size, complexity, architecture,
language, domain). They also ease the reproducibility of studies.
However, we think that defining a set of software systems to be used in
benchmarks would facilitate comparison across software visualization
evaluation (Maletic and Marcus, 2003; Merino et al., 2017a).

The value of visualizations beyond time and correctness . We
believe that it is necessary to identify the requirements of developers and
evaluate whether the functionality offered by a visualization tool is ap-
propriate to the problem. Indeed, past research has found a large gap
between the desired aspects and the features of current software visua-
lization tools (Bassil and Keller, 2001). A later study (Sensalire et al.,
2008) analyzed desirable features of software visualization tools for
corrective maintenance. A subsequent study (Kienle and Miiller, 2010)
analyzed the requirements of visualization tools for reverse engineering.
We observed, however, little adoption of the proposed requirements.
Usability is amongst them the most adopted one. Scalability was adopted
only in one study [S32]. Others such as interoperability, customizability,
adoptability, integration, and query support were not found amongst the
variables measured in experiments (see Table 7). We observed that even
though none of the studies proposed that users of software visualizations
should find answers quickly (i.e., time) and accurately (i.e., correctness),

L. Merino et al.

there are many evaluations that only considered these two variables.

We observed that evaluations in most studies aimed at proving the
effectiveness of software visualization approaches. However, some studies
do not specify how the effectiveness of the visualization is defined. Since
something effective has “the power of acting upon the thing designated”,
we reflect that effective visualization should fulfill its designated re-
quirements. Then we ask what are the requirements of software visualization?
We extract requirements from the dependent variables analyzed in ex-
periments. We observed that the two main categories are user perfor-
mance and user experience. Indeed, practitioners who adopt a visualiza-
tion approach expect to find not only correct answers to software concerns,
they expect that the visualization approach is also efficient (ie., uses a
minimal amount of resources), and helps them to find answers in a short
amount of time (Van Wijk, 2006). However, they also aim at obtaining a
good experience in terms of (i) engagement when the target audience is
composed of students of a software engineering course; (ii) recollection
when the audience involves developers understanding legacy
code (Bloom, 1956); and (iii) positive emotions in general.

We believe that effective software visualization approaches must
combine various complementary variables, which depend on the ob-
jective of the visualization. That is, variables used to explicitly define
effectiveness relate to the domain problem and the tasks required by a
particular target audience. We think that a deeper understanding of the
mapping between users’ desired variables to usage scenarios of visua-
lization can bring insights for defining quality metrics (Bertini et al.,
2011) in the software visualization field.

The case in case studies. We classified twelve papers into the case
study category. In these papers, we identified a case that is neither hy-
pothetical nor a toy example, but a concrete context that involves a real
world system in which developers adopted a visualization approach to
support answering complex questions. In only one paper [S90] did we
find a thorough evaluation that describes the use of various research
methods to collect data such as questionnaires and interviews. In con-
trast, in others we found less detail and no explicit description of the
methods employed to collect data. In particular, in three papers
[S52,5114,S151] a reference was given to a paper that contains more
details. We observed that in studies in which authors come from industry
[5§56,590,5114] there are many details provided as part of the evalua-
tion. In all of them, (i) users who evaluated the proposed visualization
approach were senior developers from industry, and the evaluation
adopted a qualitative analysis. Case studies are often accused of lack of
rigor since biased views of participants can influence the direction of the
findings and conclusions (Yin, 2013). Moreover, since they focus on a
small number of subjects, they provide little basis for generalization.

In summary, we reflect on the need for conducting more case studies
that can deliver insights into the benefits of software visualization ap-
proaches, and highlight the compulsion of identifying a concrete real-
world case.

The scope of experiments in software visualization. Table 9
summarizes our extension to the framework proposed by
Wohlin et al. (2012) to include key characteristics of software visuali-
zations. We believe that the extended framework can serve as a starting
point for researchers who are planning to evaluate a software visuali-
zation approach. Each row in the table can be read as follows:

“Analyze [Object of study] executing in a [Environment] to
support the [Task] using a [Technique] displayed on a
[Medium] for the purpose of [Purpose] with respect to [Quality
Focus] from the point of view of [Perspective] in the context of
[Context].”

S “effective, adj. and n.” OED Online. Oxford University Press, June 2017. Accessed

October 27, 2017.

The Journal of Systems & Software 144 (2018) 165-180

We used the framework to describe the scope of a recent experiment
of 3D visualization in immersive augmented reality (Merino et al.,
2018).

RQ2.) How appropriate are the evaluations that are conducted to va-
lidate the effectiveness of software visualization?

Explicit goal of evaluations. We observed that studies often
do not explicitly specify the goal of the evaluation. They formulate
sentences such as “To evaluate our visualization, we conducted
interviews...” [S100]. We investigate what aspects of the visualization
are evaluated. We reflect that a clear and explicit formulation of the
goal of the evaluation would help developers to assess if the evaluation
provides them enough evidence that support the claimed benefits of a
proposed visualization approach. Although in most studies we infer that
the goal is to evaluate the effectiveness of a visualization, in only a few
studies is there a definition of effectiveness. For instance, one study
[S131] defines effectiveness of a visualization in terms of the number of
statements that need to be read before identifying the location of an
error; however, we believe this definition suits better the definition of
efficiency. Indeed, practitioners will benefit from effective and efficient
software visualization. Nonetheless, we believe the game-changing at-
tribute of a visualization resides in the user experience, for which
multiple variables should be included in evaluations (e.g., usability,
engagement, emotions).

Experiments’ tasks must be in-line with evaluations’ goal.
Software visualizations are proposed to support developers in tasks
dealing with multiple development concerns. A problem thus arises
for developers willing to adopt a visualization but who need to match a
suitable visualization approach to their particular task at
hand (Merino et al., 2016b). We investigate how suitable a visualization
approach is for the tasks used in evaluations. We reflect that proving a
software visualization approach to be effective for tasks for which there
exist other more appropriate tools (but not included in the evaluation)
can lead to misleading conclusions. Since many evaluations included in
our analysis do not state an explicit goal, and some of the remaining
ones refer to rather generic terms (e.g., effectiveness, usability) without
providing a definition, understanding whether the tasks used in ex-
periments are in-line with the goals of evaluations is still uncertain.

Beyond usage scenarios . Related work concluded that describing a
case study is the most common strategy used to evaluate software vi-
sualization approaches. Indeed, we found many papers that contain a
section entitled case study; however, we observed that most of them
correspond to usage scenarios used to demonstrate how the proposed
visualization approach is expected to be useful. In all of them, the au-
thors (who usually are also developers) select a subject system and
show how visualizations support a number of use cases. For example,
one study [S158] describes the presence of independent judges, but
without providing much detail about them. In the past, such a self-
evaluation, known as an assertion (Zelkowitz and Wallace, 1998), has
been used in many studies, and is not considered an accepted research
method for evaluation (Wohlin et al., 2000). Instead, we prefer to refer
to them as usage scenarios (as they are called in many studies). This
name has also been adopted in the information visualization
community (Isenberg et al., 2013), and therefore its adoption in soft-
ware visualization will ease comparison across the two communities.
Nonetheless, usage scenarios do not represent solid evidence of the
benefits of proposed software visualization, and should be used only as
a starting point to adjust requirements, and improve an approach.

Surveys to collect software visualization requirements. We ob-
served that surveys are adequate to identifying requirements for soft-
ware visualizations. Through a survey, the problems that arise in the
development tasks carried out by a target audience that involve a par-
ticular data set can be collected as assessed as potential candidates for
visualization. Then, researchers can propose an approach that defines
the use of a visualization technique displayed in a medium. We observed
that a main threat in software visualization is the disconnect between
the development concerns that are the focus of visualization, and the

L. Merino et al.

most complex and frequent problems that arise during real-life devel-
opment.

Report on thorough experiments. Although formative evaluations
can be useful at an early stage, evidence of the user performance and
user experience of a software visualization approach should be col-
lected via thorough experiments (when variables included in the eva-
luation can be controlled) . Experiments should include participants of
a random sample of the target audience and real-world software sys-
tems. Experiments should aim at reproducibility, for which open source
software projects are suitable. Moreover, open source projects boost
replicability of evaluations across systems of various characteristics.
The tasks used in experiments should be realistic, and as already dis-
cussed, consistent with the goal of the evaluation, otherwise conclu-
sions can be misleading. Finally, we observed that standardizing eva-
luations via benchmarks would promote their comparison.

In summary, we observed that the main obstacles that prevent re-
searchers from doing more appropriate evaluations are (i) the lack of a
ready-to-use evaluation infrastructure, e.g., visualization tools to com-
pare with; (ii) the lack of benchmarks that ease comparison across tools,
e.g., quality metrics; (iii) the tradeoff between the effort of conducting
comprehensive evaluations and little added value to paper acceptance;
and (iv) the difficulties to involve industrial partners willing to share
resources, e.g., include participants of the target audience.

6.1. Threats to validity

Construct validity. Our research questions may not provide complete
coverage of software visualization evaluation. We mitigated this threat
by including questions that focus on the two main aspects that we found
in related work: (1) characterization of the state-of-the-art, and (2)
appropriateness of adopted evaluations.

Internal validity. We included papers from only two venues, and may
have missed papers published in other venues that require more thor-
ough evaluations. We mitigated this threat by identifying relevant
software visualization papers that ensure an unbiased paper selection
process. Therefore, we selected papers from the most frequently cited
venue dedicated to software visualization: SOFTVIS/VISSOFT. We
argue that even if we would have included papers from other venues
the trend of the results would be similar. Indeed, related work did not
find important differences when comparing software visualization
evaluation in papers published in SOFTVIS/VISSOFT to papers pub-
lished in other venues (Mattila et al., 2016; Seriai et al., 2014). More-
over, our results are in line with the conclusions of related work that
have included papers from multiple venues (Lopez-Herrejon et al.,
2018; Novais et al., 2013; Shahin et al., 2014). We also mitigated the
paper selection bias by selecting peer-reviewed full papers. We assessed
the quality of these papers by excluding model papers (i.e., commen-
tary, formalism, taxonomy) that are less likely to include an evaluation.
However, since software visualization papers do not specify their types,
we may have missed some. We mitigated this threat by defining a cross-
checking procedure and criteria for paper type classification.

External validity. We selected software visualization papers pub-
lished between 2002 to 2017 in SOFTVIS/VISSOFT. The excluded pa-
pers from other venues or published before 2002 may affect the gen-
eralizability of our results.

Conclusion validity. Bias in the data collection procedure could ob-
struct reproducibility of our study. We mitigated this threat by estab-
lishing a protocol to extract the data of each paper equally, and by
maintaining a spreadsheet to keep records, normalize terms, and
identify anomalies.

7. Conclusion
We reviewed 181 full papers of the 387 that were published to date

in the SOFTVIS/VISSOFT conferences. We extracted evaluation strate-
gies, data collection methods and other various aspects of evaluations.

The Journal of Systems & Software 144 (2018) 165-180

We found that 62% (i.e., 113) of the proposed software visualization
approaches do not include a strong evaluation. We identified several
pitfalls that must be avoided in the future of software visualization: (i)
evaluations with fuzzy goals (or without explicit goals), for which the
results are hard to interpret; (ii) evaluations that pursue effectiveness
without defining it, or that limit the assessment to time, correctness
(user performance) and usability (user experience) while disregarding
many other variables that can contribute to effectiveness (e.g., re-
collection, engagement, emotions); (iii) experiment tasks that are in-
consistent with the stated goal of the evaluation; (iv) lack of surveys to
collect requirements that explain the disconnect between the problem
domains on which software visualization have focused and the domains
that get the most attention from practitioners; and (v) lack of rigor
when designing, conducting, and reporting on evaluation.

We call researchers in the field to collect evidence of the effective-
ness of software visualization approaches by means of (1) case studies
(when there is a case that must be studied in situ), and (2) experiments
(when variables can be controlled) including participants of a random
sample of the target audience and real-world open source software
systems that promote reproducibility and replicability.

We believe that our study will help (a) researchers to reflect on the
design of appropriate evaluations for software visualization, and (b)
developers to be aware of the evidence that supports the claims of
benefit of the proposed software visualization approaches. We plan in
the future to encapsulate the characterization and insights from this
study in a software visualization ontology that will allow developers to
find suitable visualizations for development concerns as well as re-
searchers to reflect on the domain.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software Analysis”
(SNSF project No. 200020-162352, Jan 1, 2016 - Dec. 30, 2018).
Merino has been partially funded by CONICYT BCH/Doctorado
Extranjero 72140330.

References

Alves, V., Niu, N., Alves, C., Valenca, G., 2010. Requirements engineering for software
product lines: a systematic literature review. Inf. Softw. Technol. 52 (8), 806-820.

Amar, R., Stasko, J., 2004. A knowledge task-based framework for design and evaluation
of information visualizations. Proc. of INFOVIS. IEEE, pp. 143-150.

Bassil, S., Keller, R., 2001. Software visualization tools: survey and analysis. Proc. of
IWPC. pp. 7-17.

Bertini, E., Tatu, A., Keim, D., 2011. Quality metrics in high-dimensional data visuali-
zation: an overview and systematization. Trans. Visualization Comput. Graph. 17
(12), 2203-2212.

Bloom, B.S., et al., 1956. Taxonomy of educational objectives. vol. 1: Cognitive domain.
McKay, New York, pp. 20-24.

Elmgvist, N., Yi, J.S., 2015. Patterns for visualization evaluation. Proc. of INFOVIS 14 (3),
250-269.

Fink, A., 2003. The survey handbook. vol. 1. sage.

Forsell, C., 2010. A guide to scientific evaluation in information visualization. Proc. of IV.
IEEE, pp. 162-169.

Greene, G.J., Esterhuizen, M., Fischer, B., 2017. Visualizing and exploring software ver-
sion control repositories using interactive tag clouds over formal concept lattices. Inf.
Softw. Technol. 87, 223-241.

Hornbek, K., Hgegh, R.T., Pedersen, M.B., Stage, J., 2007. Use Case Evaluation (UCE): A
Method for Early Usability Evaluation in Software Development. Proc. of IFIP.
Springer, pp. 578-591.

Host, M., Regnell, B., Wohlin, C., 2000. Using students as subjects — a comparative study
of students and professionals in lead-time impact assessment. Empir. Softw. Eng. 5,
201-214.

Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Moller, T., 2013. A systematic review on
the practice of evaluating visualization. Trans. Visualization Comput. Graphics 19
(12), 2818-2827.

Kienle, H.M., Miiller, H.A., 2010. The Tools Perspective on Software Reverse Engineering:
Requirements, Construction, and Evaluation. Advances in Computers. Vol. 79.
Elsevier, pp. 189-290.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam, K.E.,
Rosenberg, J., 2002. Preliminary guidelines for empirical research in software en-
gineering. IEEE Trans. Softw. Eng. 22 (8), 721-734.

Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S., 2012. Empirical studies in

http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0014

L. Merino et al.

information visualization: seven scenarios. Trans. Visualization Comput. Graph. 18
(9), 1520-1536.

Lopez-Herrejon, R.E., Illescas, S., Egyed, A., 2018. A systematic mapping study of in-
formation visualization for software product line engineering. J. Softw. 30 (2),
el912.

Mackinlay, J., 1986. Automating the design of graphical presentations of relational in-
formation. Trans. Graphics 5 (2), 110-141.

Maletic, J.I., Marcus, A., 2003. CFB: A Call for Benchmarks-for Software Visualization.
Proc. of VISSOFT. Citeseer, pp. 113-116.

Mattila, A.L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M., V&itdja, H., 2016.
Software visualization today: systematic literature review. Proc. of International
Academic Mindtrek Conference. ACM, pp. 262-271.

Merino, L., Bergel, A., Nierstrasz, O., 2018. Overcoming issues of 3d software visualiza-
tion through immersive augmented reality. Proc. of VISSOFT. IEEE. P. in review
Merino, L., Fuchs, J., Blumenschein, M., Anslow, C., Ghafari, M., Nierstrasz, O., Behrisch,
M., Keim, D., 2017a. On the impact of the medium in the effectiveness of 3D software

visualization. Proc. of VISSOFT. IEEE, pp. 11-21. http://scg.unibe.ch/archive/
papers/Meril7b.pdf.

Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O., 2017b. CityVR: Gameful Software
Visualization. Proc. of ICSME. IEEE, pp. 633-637. http://scg.unibe.ch/archive/
papers/Meril7c.pdf.

Merino, L., Ghafari, M., Nierstrasz, O., 2016a. Towards Actionable Visualisation in
Software Development. Proc. of VISSOFT. IEEE. http://scg.unibe.ch/archive/papers/
Meril6a.pdf.

Merino, L., Ghafari, M., Nierstrasz, O., Bergel, A., Kubelka, J., 2016b. Metavis: Exploring
actionable visualization. Proc. of VISSOFT. IEEE. http://scg.unibe.ch/archive/
papers/Meril6c.pdf.

Merino, L., Lungu, M., Nierstrasz, O., 2015. Explora: A visualisation tool for metric
analysis of software corpora. Proc. of VISSOFT. IEEE, pp. 195-199. http://scg.unibe.
ch/archive/papers/Meril5b.pdf.

Merino, L., Seliner, D., Ghafari, M., Nierstrasz, O., 2016c. Communityexplorer: A fra-
mework for visualizing collaboration networks. Proc. of IWST. pp. 2:1-2:9. http://
scg.unibe.ch/archive/papers/Meril6b.pdf.

Miiller, R., Kovacs, P., Schilbach, J., Eisenecker, U.W., Zeckzer, D., Scheuermann, G.,
2014. A Structured Approach for Conducting a Series of Controlled Experiments in
Software Visualization. Proc. of IVAPP. IEEE, pp. 204-209.

Munzner, T., 2008. Process and Pitfalls in Writing Information Visualization Research
Papers. Information visualization. Springer, pp. 134-153.

Munzner, T., 2014. Visualization analysis and design. CRC press.

Novais, R.L., Torres, A., Mendes, T.S., Mendonca, M., Zazworka, N., 2013. Software
evolution visualization: a systematic mapping study. Inf. Softw. Technol. 55 (11),
1860-1883.

Panas, T., Epperly, T., Quinlan, D., Sebjgrnsen, A., Vuduc, R., 2016. Comprehending
software architecture using a Unified Single-view Visualization. In: Antonakos, J.L.
(Ed.), Data Structure and Software Engineering: Challenges and Improvements. CRC
Press, pp. 22-41. Ch. 2.

Razali, N.M., Wah, Y.B., et al., 2011. Power comparisons of shapiro-wilk, kolmogorov-
smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and
Analytics 2 (1), 21-33.

Runeson, P., Host, M., 2009. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14 (2), 131.

Schots, M., Vasconcelos, R., Werner, C., 2014. A quasi-systematic review on software
visualization approaches for software reuse. Technical report.

Schots, M., Werner, C., 2014. Using a task-oriented framework to characterize visuali-
zation approaches. Proc. of VISSOFT. IEEE, pp. 70-74.

Sensalire, M., Ogao, P., Telea, A., 2008. Classifying desirable features of software

180

The Journal of Systems & Software 144 (2018) 165-180

visualization tools for corrective maintenance. Proc. of SOFTVIS. ACM, pp. 87-90.

Sensalire, M., Ogao, P., Telea, A., 2009. Evaluation of software visualization tools:
Lessons learned. Proc. of VISSOFT. IEEE, pp. 19-26.

Seriai, A., Benomar, O., Cerat, B., Sahraoui, H., 2014. Validation of software visualization
tools: A systematic mapping study. Proc. of VISSOFT. pp. 60-69.

Shahin, M., Liang, P., Babar, M.A., 2014. A systematic review of software architecture
visualization techniques. J. Syst. Softw. 94, 161-185.

Sjgberg, D.I., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg, N.K.,
Rekdal, A.C., 2005. A survey of controlled experiments in software engineering.
Trans. Softw. Eng. 31 (9), 733-753.

Storey, M.A.D., Cubrani¢, D., German, D.M., 2005. On the Use of Visualization to Support
Awareness of Human Activities in Software Development: A Survey and a
Framework. Proc. of SOFTVIS. ACM Press, pp. 193-202. http://portal.acm.org/
citation.cfm?id = 1056018.1056045.

Van Wijk, J.J., 2006. Views on visualization. Trans. Visualization Comput. Graphics 12
(4), 421-432.

Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J., 2011. The aligned rank transform
for nonparametric factorial analyses using only anova procedures. Proc. of SIGCHI.
ACM, pp. 143-146.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000.
Experimentation in Software Engineering. Kluwer Academic Publishers.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer Science & Business Media.

Yin, R. K., 2013. Case study research: Design and methods. sage publications.

Young, P., Munro, M., 1998. Visualising software in virtual reality. Proc. of IWPC. IEEE,
pp. 19-26.

Zelkowitz, M.V., Wallace, D.R., 1998. Experimental models for validating technology.
Comput. (Long Beach Calif) 31 (5), 23-31.

Leonel Merino is a Research Assistant in the Software Composition Group at the
University of Bern, Switzerland. He obtained his M.Sc. degree in computer science from
the Vrije Universitaet Brussel in Belgium and from the Ecole des Mines de Nantes in
France in 2008. His research interests are software visualization, software comprehen-
sion, and the impact of media used to display visualizations.

Mohammad Ghafari is a Senior Research Assistant in the Software Composition Group at
the University of Bern, Switzerland. He is also a lecturer in the Institute of Computer
Science at the University of Bern. He obtained his PhD in software engineering from
Politecnico di Milano in Italy in 2015. His research interest is in software engineering
with focus on developing tools and techniques to improve programmers productivity
during software development.

Craig Anslow is an Assistant Professor in software engineering within the School of
Engineering and Computer Science at Victoria University of Wellington, New Zealand.
Craig obtained a PhD in software engineering from Victoria University of Wellington in
2013. His research interests are human computer interaction, software engineering, and
visualization.

Oscar Nierstrasz is a Full Professor and Head of the Software Composition Group at the
Institute of Computer Science of the University of Bern. He obtained his Ph.D. in
Computer Science from the University of Toronto in 1984. His current research focus is
enabling software developers to quickly and effectively analyze complex software systems
with the help of tools to rapidly construct, query and manipulate software models.

http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0020
http://scg.unibe.ch/archive/papers/Meri17b.pdf
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0021
http://scg.unibe.ch/archive/papers/Meri17c.pdf
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0022
http://scg.unibe.ch/archive/papers/Meri16a.pdf
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0023
http://scg.unibe.ch/archive/papers/Meri16c.pdf
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0024
http://scg.unibe.ch/archive/papers/Meri15b.pdf
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0025
http://scg.unibe.ch/archive/papers/Meri16b.pdf
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0039
http://portal.acm.org/citation.cfm?id=1056018.1056045
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30123-7/sbref0045

	A systematic literature review of software visualization evaluation
	Introduction
	Related work
	Background
	Methodology
	Data sources and search strategy
	Inclusion and exclusion criteria
	Quality assessment
	Data extraction
	Selected studies

	Results
	Data collection methods
	Evaluation strategies
	Anecdotal evidence
	Usage scenarios
	Survey
	Case study
	Experiment

	Discussion
	Threats to validity

	Conclusion
	Acknowledgments
	References

