
Swipe-and-Tap Functional Programming
Michael Homer
mwh@ecs.vuw.ac.nz

School of Engineering and Computer Science
Victoria University of Wellington

Wellington, New Zealand

Craig Anslow
craig.anslow@ecs.vuw.ac.nz

School of Engineering and Computer Science
Victoria University of Wellington

Wellington, New Zealand

(a)

(b)
(c)

Figure 1: The major editing process in the tool, with the user selecting values to work with, and functions to apply to them,
then obtaining a larger program to continue with.
(a) A horizontal swipe, represented by the blue arrow, selects a range of values highlighted in green, here a string “Hello” and
number “4”. (b) A menu of available functions compatible with the values selected in (a) is displayed. (c) The resulting program
after choosing “character-at” from the menu in (b), with the new cell spread below both the “Hello” and “4” cells.

ABSTRACT
Programming on touch-screen devices is notoriously difficult, with
conventional programming affordances typically unavailable or
unhelpful. Here we present a novel touch-screen programming en-
vironment for a style of functional programming that more closely
matches typical touch-screen needs, where all editing operations
are driven by concrete data values and selected by swipe and tap
gestures. The environment provides live editing and supports ex-
ploratory programming, with direct display of all calculation values
and earlier phases of development always available to edit in-place.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile com-
puting systems and tools; • Software and its engineering →
Functional languages; Development frameworks and environments.

KEYWORDS
touch-screen devices, functional programming, visual program-
ming

ISS ’22 Companion, November 20–23, 2022, Wellington, New Zealand
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Companion Proceed-
ings of the 2022 Conference on Interactive Surfaces and Spaces (ISS ’22 Companion), No-
vember 20–23, 2022, Wellington, New Zealand, https://doi.org/10.1145/3532104.3571459.

ACM Reference Format:
Michael Homer and Craig Anslow. 2022. Swipe-and-Tap Functional Pro-
gramming. In Companion Proceedings of the 2022 Conference on Interactive
Surfaces and Spaces (ISS ’22 Companion), November 20–23, 2022, Wellington,
New Zealand. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3532104.3571459

1 INTRODUCTION
Programming on touch-screen devices is notoriously difficult, and
typical affordances of desktop programming environments are not
helpful or even possible on such devices as they rely on keyboard
chording, unoccluded pointing, and multiple interaction buttons as-
sociated with that pointer. At the same time, touch-screen tablet or
phone devices are increasingly the primary or sole device for many
users, and it is worth exploring whether different approaches can
open up programming, or a form of programming, to these users,
who may not desire the full scope of desktop programming envi-
ronments but wish to express customisations, logic, or “end-user
programming” tasks. Different programming paradigms lend them-
selves to different interaction modalities, and investigating some
that are further off the beaten path may expose new affordances. We
present a novel touch-screen programming environment for a style

1

https://orcid.org/0000-0003-0280-6748
https://orcid.org/0000-0001-8064-6300
https://doi.org/10.1145/3532104.3571459
https://doi.org/10.1145/3532104.3571459
https://doi.org/10.1145/3532104.3571459


ISS ’22 Companion, November 20–23, 2022, Wellington, New Zealand Michael Homer and Craig Anslow

Figure 2: A small program being edited in the system.

of functional programming, where the user interacts using typical
touch gestures that map naturally onto the model of computation.

Previous work on touch-screen programming, such as TouchDe-
velop [4, 8], Pocket Code [7], and Multi-Device Grace [6], has fo-
cused on imperative languages, where programs are a sequence
of instructions. Under these programming models there is a wide
range of possible actions at any given point that the user must wade
through to select what they want, or rely on text entry that remains
awkward on such devices. In this work, we consider a functional
paradigm, and in particular begin with the concatenative or com-
positional approach. This approach operates in a more data-driven
way and so new affordances for selecting the next step in a program
can be explored.

This environment is built around a compact two-dimensional
notation for composing functions with many arguments and return
values. The program can be edited live with direct feedback, and in
an exploratory fashion if desired, with direct support for a range of
high-level data types. The principal editing affordance is a horizon-
tal swipe selection, with all other interactions being simple taps,
and the available options and their effects are immediately visible.

Throughout the following sections, images of the working pro-
totype system are used to illustrate, and the prototype itself is
discussed in Section 4.

2 FUNCTIONS, COMPOSITION, AND
CONCATENATION

Functional languages are (in coarse summary) those where pro-
grams are constructed out of functions that take certain arguments
and return a result or results. A functional language focuses more
on transformation between inputs and outputs than on changes
of state. While these languages are often statically typed, often
side-effect-free, and often lazy, these are not essential features, and
not critical to what we want to discuss here.

A key operation in functional programming is the composition
of functions. This is the process of taking the output of one function
and using it as the input to another, and producing a new function
that performs the combined operation. Compositional functional
languages foreground this operation, while applicative languages
such as Haskell foreground applying functions instead [5]. These

languages are often called concatenative [1, 9] when focusing on an-
other aspect, that appending two subprograms together composes
their operations. Composing functions builds up a computation
step-by-step, without needing to explicitly name intermediate re-
sults or direct where they should go. There is thus less explicit
bookkeeping to get in the way, but simultaneously the execution
of the program is more opaque. Perhaps surprisingly, these lan-
guages make a good fit for touch-screen devices: the locality of
the operands allows for compact and contiguous layouts that both
make it easier to follow the program logic and lend themselves to
interaction with single touch gestures.

We will not discuss textual languages any further here, but in-
stead focus on the visual editing of composed function pipelines.
Some of the motivations for pieces of functionality were to support
these existing languages, but the system emerged as more general
and so we present it in that form. In particular, we will look at
the exploratory/live programming aspects of the system that are a
natural match for touch-screen interactions.

Figure 2 shows a small program being edited in our prototype,
consisting of only a few functions and operating only on trivial
data types. The program is laid out in two dimensions: functions
are spread out below their arguments, and above their return values
(for example, the greater function in Figure 2 ranges below the 5
and 4 cells, while its return value true spans its full width below).
Each function can span multiple cells above and below, and need
not have the same number of inputs and outputs. The return value
of one function can be used as the argument to another; in this
case, the second function will be on a different row to the first (for
example, length is used twice and both are used as arguments to
greater).

3 INTEGRATING TOUCH TO PROGRAMMING
The main editing operation is a horizontal swipe, depicted in Fig-
ure 3: dragging across a contiguous span of values, which present
large touch areas, selects them, and releasing the swipe will bring
up a menu of all available functions that can consume those val-
ues. The user can then select one of these functions to add to the
program, which will be inserted below spanning the full width of
the selected values, on a new row if necessary. The outputs of that
function will become available below it in turn. Figure 1 depicts
this full process: swipe, menu, and new function row.

Because the selection process begins with the arguments, the
list of functions to choose from will be tractable and only include
items that are usable there. This is a key difference from most other
touch-screen (quasi-)visual programming environments, where the

Figure 3: The primary editing operation is a horizontal swipe
across cells displaying values, which selects them (high-
lighted in green). Upon release, a menu offering functions
that can operate on those values will appear and selecting
one will add it to the program below the selected values.

2



Swipe-and-Tap Functional Programming ISS ’22 Companion, November 20–23, 2022, Wellington, New Zealand

Figure 4: Two radial function menus with different options.

user must generally work in the opposite direction, deciding what
to do and then choosing what to do it with. Here, the user can
explore the space of suitable functions and their effects based on
the data currently available in their program.

A button allows adding new uses of nullary functions, which
correspond to literals or constants. For example, a numeric literal
“123” is a nullary function that takes no arguments and produces
a single numeric output. These functions always appear in the
top row of the program. Their outputs will be available on each
row below until they are used. Supported nullary functions in the
prototype are integer, float, string, and boolean literals, as well as
colours and empty collections.

A single tap on a function cell will bring up a radial menu of
options for that function, as seen in Figure 4. These options will
vary depending on the function and where it is in the program, and
can include:

• Replacing the function with another with the same type,
selected from a pop-up menu in the same style as for adding
a function, but also limited to those with compatible return
types.

• Removing the function from the program. This is available
as long as none of the function’s outputs are in use.

• Editing the value of a literal/nullary function, such as a nu-
meric literal “123”, a string, boolean, or colour. This is only
available for the “top-row” functions that only produce out-
puts with no inputs.

• Going to the definition of a user-defined function.
The radial menu is intended to keep options close to the user’s

hand/finger. The only option that is always available is “Replace”,
which is applicable in all circumstances.

3.1 User-Defined Functions
The menu for adding a function includes a button to create a new
user-defined function that takes the selected values as inputs. Each

function exists in a separate sheet of the user interface. When
editing a function, its inputs are arranged across the top for use like
other values. For example, in the following (miniaturised) function
definition there are two parameters, an int and a string, in the very
top row. The second row now contains the functions that directly
consume the arguments, and also a nullary function on the far right.

int string
halve length false
int int boolean

In the current system, user functions cannot be recursive or
mutually recursive. They will not be made available in the menu
for adding function uses if they would cause a cycle in the program.
This is not a fundamental limitation, but is currently a pragmatic
one. There are also UX concerns about how best to display these.

3.2 Value Types
This hybrid system is able to display concrete values the program
operates over within the program itself. This is useful for debugging,
but also for exploratory programming. The display of these values
can provide a visual representation of the data being operated on,
and tailored editing operations to suit the interactive paradigm.

For example, in our prototype the “colour” data type has a colour
literal, chosen through a native colour picker, and colour values are
displayed inline as a colour swatch. Operating at this level permits
direct manipulation with native affordances for more accessible
program creation, and immediate feedback on the concrete result.

This direct display allows creation of a program to display the
resulting values easily, with the provenance of the calculation vis-
ible above. Because the environment is live, edits can be made to
the precursor values and the entire display will update automat-
ically, including these high-level data types. Figure 5 shows an
example program with a colour and image value, each displayed
inline within the program. Editing the string, or colour, literal at
the top would cause the images below to update accordingly.

3



ISS ’22 Companion, November 20–23, 2022, Wellington, New Zealand Michael Homer and Craig Anslow

Figure 5: An example programusing colour and image values,
manipulating an image obtained from the Wikipedia API.
Each darker cell represents a function processing the lighter
value(s) above it, so data flow runs downwards (e.g. “tint” is
a function consuming the image and the blue colour value
above, producing the blue-tinted image below).

4 PROTOTYPE
The prototype implementation of this system runs in commodity
web browsers, using single-pointer touch interactions, and available
at http://ecs.vuw.ac.nz/~mwh/demos/iss2022/. All code executes on
the client side, and is saved to local storage in the browser. While it
will run on any device with a touch screen, the nature of the system
creates relatively wide layouts and so it is more suited for tablet
than phone form factors.

This touch-based interface is a derivative of a system originally
developed for mouse-and-keyboard interaction [2]. That system
was initially designed to work specifically for linear textual con-
catenative programs, and to convert between the textual and visual
representations. The touch-screen version omits all of this text-
focused functionality, along with the restrictions that ensure that
programs remain linearisable, in favour of the broader exploratory
programming style. It uses large touch-friendly action areas and
text entry only for literals, with native widgets where possible.

It is possible to switch between displaying the dynamic values
themselves and the expected types in the grid. Each of these may
be useful, and in particular for programming the types are (approx-
imately) fixed-size and so provide a consistent layout and drag size,
while the concrete values can be varied in scale.

5 FUTUREWORK
As well as user studies, some extensions may be worth exploring.

The current prototype uses the horizontal and vertical directions
for pragmatic implementation reasons1, but it is possible that swap-
ping the two would be more convenient at times: laying values
and functions out in alternating columns instead of rows. Because
most values and function labels are wider than they are tall, this
would reduce the distance of a selection swipe, and may be more
accessible on narrower screens that could not otherwise display
the required arguments at once. However, the program would also
tend to become extremely wide for even moderately complex pro-
grams; it may be most suitable for landscape orientation of a tablet
device. Experimentation is required to determine whether both
orientations are worthwhile, and when.

As the 2D grid represents a data-flow graph, a graph-based rep-
resentation of the same pipelines could be as or more usable than
the current approach, although node-and-wire systems are gener-
ally not well-suited for this interaction. Multiple-representation
environments have been found helpful for learner programmers [3]
and potentially an animated transition between grid and graph
representations would assist the user’s understanding.

“Function” cells need not be merely named references, but could
have more complex configuration within them. For example, a
single function could include a drop-down list or text-entry field
to genericise its operation, without needing to incorporate the
selected parameter within the program at run time. Currently, such
affordances only exist for the nullary functions where specifying
their value is the entire point, but tighter configuration of later
functions may be convenient, particularly on smaller screens.

REFERENCES
[1] Dominikus Herzberg and Tim Reichert. 2009. Concatenative programming-an

overlooked paradigm in functional programming. In International Conference on
Software and Data Technologies, Vol. 1. SCITEPRESS, 257–262.

[2] Michael Homer. 2022. Interleaved 2D Notation for Concatenative Programming. In
ACM SIGPLAN InternationalWorkshop on Programming Abstractions and Interactive
Notations, Tools, and Environments. https://doi.org/10.1145/3563836.3568722

[3] Michael Homer and James Noble. 2017. Lessons in Combining Block-Based and
Textual Programming. Journal of Visual Languages and Sentient Systems Volume 3
(2017). https://doi.org/10.18293/VLSS2017-007

[4] R Nigel Horspool, Judith Bishop, Arjmand Samuel, Nikolai Tillmann, Michał
Moskal, Jonathan de Halleux, and Manuel Fähndrich. 2013. TouchDevelop: Pro-
gramming on the Go. Microsoft Research.

[5] Timothy Jones and Michael Homer. 2018. The Practice of a Compositional Func-
tional Programming Language. In Asian Symposium on Programming Languages
and Systems. https://doi.org/10.1007/978-3-030-02768-1_10

[6] Ben Selwyn-Smith, Craig Anslow, Michael Homer, and James R. Wallace. 2019.
Co-located Collaborative Block-Based Programming. In IEEE Symposium on Visual
Languages and Human-Centric Computing. https://doi.org/10.1109/VLHCC.2019.
8818895

[7] Wolfgang Slany. 2014. Tinkering with Pocket Code, a Scratch-like programming
app for your smartphone. Proceedings of Constructionism (2014).

[8] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fahndrich.
2011. TouchDevelop: Programming Cloud-Connected Mobile Devices via Touch-
screen. In Proceedings of the 10th SIGPLAN Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward! 2011). Associa-
tion for Computing Machinery, 12 pages. https://doi.org/10.1145/2048237.2048245

[9] Manfred von Thun and Reuben Thomas. 2001. Joy: Forth’s Functional Cousin. In
Proceedings of the 17th EuroForth Conference.

Received 2022-09-30; accepted 2022-10-07

1It uses an HTML table for layout, where cells spanning multiple columns are signif-
icantly more tractable than those spanning multiple rows. This is an artifact of the
implementation strategy and not fundamental to the approach.

4

http://ecs.vuw.ac.nz/~mwh/demos/iss2022/
https://doi.org/10.1145/3563836.3568722
https://doi.org/10.18293/VLSS2017-007
https://doi.org/10.1007/978-3-030-02768-1_10
https://doi.org/10.1109/VLHCC.2019.8818895
https://doi.org/10.1109/VLHCC.2019.8818895
https://doi.org/10.1145/2048237.2048245

	Abstract
	1 Introduction
	2 Functions, Composition, and Concatenation
	3 Integrating Touch to Programming
	3.1 User-Defined Functions
	3.2 Value Types

	4 Prototype
	5 Future Work
	References

