
Automated Example Oriented REST API
Documentation at Cisco

S M Sohan
Security Group

Cisco Systems Ltd.
Calgary, Canada

sosohan@cisco.com

Craig Anslow
School of Engineering and Computer Science

Victoria University of Wellington
Wellington, New Zealand

craig@ecs.vuw.ac.nz

Frank Maurer
Department of Computer Science

University of Calgary
Calgary, Canada

frank.maurer@ucalgary.ca

Abstract—Generating and maintaining an up-to-date API
documentation is a challenging problem for evolving REST
APIs. At Cisco, we’ve used SpyREST, an automated REST API
documentation tool, via our functional tests to solve this problem
with one of our APIs for a cyber security application over the
past eighteen months. Using this approach, we’ve avoided the
need for extensive manual effort by leveraging our test code
to also generate a continuously updated API documentation as
the API evolved. Our always-updated API documentation has
helped creating a fast feedback loop between the developers and
QA engineers. The findings from this paper can be used by
practitioners to introduce automation to reduce the manual effort
associated to their REST API documentation process.

Keywords-API; REST; Documentation; Tool; Case study; Test;
Automation; HTTP; Web API;

I. INTRODUCTION

Researchers identified the documentation of APIs as both
the primary source of information as well as the key obstacle
for API usability [1]. To this regard, researchers have iden-
tified the qualities of “good API documentation” as follows:
complete, correct, includes thorough explanations and code
examples, provides consistent presentation and organization
[1], [2]. In our previous work, we introduced a novel technique
and SpyREST, an implementation, based on an HTTP proxy
server to automatically intercept example REST API calls and
synthesize the data to produce REST API documentation to
meet the aforementioned qualities [3].

The primary motivation of this paper is to share the results
of an evaluation of SpyREST and it’s underlying REST API
documentation technique based on its production use at Cisco.
While REST APIs are published and documented by a large
number of today’s Internet based software companies, we see
a lack of published literature on the topic of reusable and
automated documentation techniques for evolving APIs. By
sharing our lessons learned from a production use of a new
technique in an industry setting we aim to help practitioners
and researchers with a practical approach to generate and
maintain example oriented REST API documentation.

The team at Cisco was tasked to develop a REST API such
that it could frequently evolve to support incremental releases
and addition of new features with backward compatibility as
needed by the business. We compared several existing REST
API documentation tools to evaluate the features against the

documentation requirements for this evolving API. SpyREST
was selected because the team found it to provide better
automation support to achieve the requirements compared to
the alternatives. We expect the information on this paper to be
of use for other evolving REST APIs that need to maintain an
up-to-date documentation without duplicating developer effort.

SpyREST is being used in production at Cisco for the
documentation of a commercial REST API of a cloud based
Cyber security product. The first author of this paper is
affiliated with the team behind the product. It provides us with
a unique opportunity to analyze the impact of the industry
adoption of a tool developed in research. Production usage
over an eighteen month period also allows us to understand
the problem and opportunities presented by SpyREST in depth.

Our core contributions from this case study are as follows:

• Test driven REST API documentation. For practition-
ers, we discuss a reusable technique for producing ex-
ample oriented REST API documentation as a byproduct
from automated API test code.

• Evolution of API documentation. For practitioners, we
discuss a viable process to support evolution of API
documentation as the API evolves without duplicating
effort.

• Evaluation of SpyREST at Cisco. We present an indus-
trial evaluation of SpyREST and its underlying technique
of generating API documentation by intercepting API
examples based on our case study at Cisco. Using this
as evidence, researchers can extend the interception based
the API documentation technique to improve tool support
for the documentation of other forms of APIs beyond
REST.

The remainder of this paper is organized as follows: in
the following section we present related work to discuss the
current state of research on REST API documentation. Then,
we provide a brief overview of our REST API documentation
technique and the tool, SpyREST, followed by a case study of
using SpyREST at Cisco. Then, we discuss our lessons learned
and the limitations of this case study.

II. RELATED WORK

A. API Usability and Documentation

Several papers in the existing literature have focused on
identifying the characteristics that make an API usable based
on case studies. Robillard studied API usability by surveying
83 software developers at Microsoft [4]. They found that 78%
of the survey participants read API documentation to learn the
APIs, 55% used code examples, 34% experimented with the
APIs, 30% read articles, and 29% asked colleagues. Robillard
et al. found that the most severe API learning obstacles are
related to the API documentation. They suggested the follow-
ing requirements as must-have for API documentation: include
good examples, be complete, support many example usage
scenarios, be conveniently organized, and include relevant
design elements. Myers et al. also recognized the documen-
tation as a key component for API usability and suggested
using examples in the documentation to answer API related
questions [5]. Zibran et al. found that 27.3% of the reported
bugs are API documentation bugs studying repositories for
562 API usability related bugs from five different projects
[6]. Scheller et al. provided a framework for measuring API
usability based on the number and types of different objects
and methods that the API provides [7].

Kuhn et al. performed a user study with 19 professional
software developers to understand requirements for tool devel-
opment to support API learnability [8]. They recommended the
following as requirements for API documentation: trustworthi-
ness, confidentiality, lack of information overload and the need
for code examples as first-class documentation artifacts. Shi et
al. recommended API documentation tools to support editors
for custom content to provide simple ways to include API
usage examples without syntax errors [9]. Ko et al. found that
thorough introductions to the concepts, standards and ideas in
API documentation are a prerequisite for API usability [10].

Because REST APIs are a category of APIs, the strong
relationship between the documentation and usability of the
API as discussed in the aforementioned papers also applies to
the context of REST APIs.

B. Usage Examples in API Documentation

Several authors introduced tool support for including usage
examples with API documentation. Hoffman et al. recom-
mended using executable examples in API documentation [11].
They introduced the Roast test as tool support to combine
prosaic descriptions of Java APIs along with executable code
examples. Montandon et al. developed APIMiner as a search
tool for Java APIs and recommended providing production-
like API usage examples in the API documentation [12]. Zhu
et al. developed UsETeC to extract API usage examples by
automatically synthesizing JUnit test code of the APIs [13].
Stylos et al. presented Jadeite to provide developers with faster
access to relevant API documentation by using placeholders
for API methods [14].

Several authors presented techniques for linking official
API documentation with crowd-sourced API usage examples

that is otherwise fragmented. Nasehi et al. recommended
mining knowledge repositories such as StackOverflow and
developer forums should be considered for retrieving useful
code examples [15]. Parnin et al. found that examples of 87.9%
of all jQuery API methods are found by searching software
development blogs and forums [16]. Wu et al. presented an
Eclipse plugin called CoDocent that can automatically find
code examples using various online code search engines and
link with the relevant official API documentation [17]. Chen
et al. presented a technique to automatically link official docu-
mentation with crowd-sourced documentation by recording the
API related web searches that are performed by developers
[18]. Dagenais et al. presented a tool called RecoDoc to
link code-like elements from API mailing lists and developer
forums with their corresponding code elements [19]. Treude
et al. presented a machine learning based technique called
SISE to augment useful information from StackOverflow to
API documentation by using text similarity of API elements
and StackOverflow content [20].

We observed that the research on usage examples in API
documentation related tools have focused on local APIs such
as Java library APIs. While local APIs are defined by pro-
gramming language specific constructs such as classes, and
methods, REST APIS are defined by HTTP terminology such
as HTTP request, response, and headers. We found a lack
of published work on the tool support for including usage
examples with REST API documentation.

C. REST API Documentation

The concept behind RESTful API was introduced by Field-
ing [21]. Maleshkova found that most REST APIs are man-
ually documented which results in API underspecification,
and a lack of support for common tasks and reusable tools
[22]. Myers et al. performed a user study on the usability of
a complex API for enterprise SOA [2]. They recommended
providing a consistent look-and-feel with explanation for the
starting points and an overall map comprising of both text and
diagrams, providing a browsing experience with breadcrumb
trail following a hierarchy, an effective search interface, pro-
viding example code and a way to exercise the examples online
without writing code. In a previous case study, we found the
documentation of REST APIs are generated manually or using
bespoke tools [23].

Several authors have suggested machine readable specifica-
tion languages for REST APIs that can be used to transform
into API documentation and auto generated API client code
such as WADL (Web Application Description Language),
RIDDL, hRESTS, RESTdesc, and WIfL (Web Interface Lan-
guage), OmniVoke [24], [25], [26], [27], [28], [29]. Polak
proposed a specification format for REST API using the
Model-Driven Architectural principle [30]. In addition to the
existing literature, several REST API description languages
have been proposed by industry practitioners such as RAML,
API Blueprint, and Swagger1. Listing 1 shows a fragment of

1http://raml.org/ https://apiblueprint.org/ http://swagger.io/

REST API specification following swagger 2.

Listing 1: Example Swagger REST API Specification
1 b a s e P a t h : / v1
2 schemes :
3 − h t t p
4 consumes :
5 − a p p l i c a t i o n / j s o n
6 p r o d u c e s :
7 − a p p l i c a t i o n / j s o n
8 p a t h s :
9 / p e t s :

10 g e t :
11 summary : L i s t a l l p e t s
12 o p e r a t i o n I d : l i s t P e t s
13 t a g s :
14 − p e t s
15 p a r a m e t e r s :
16 − name : l i m i t
17 in : que ry

The primary advantage of these specification languages
is code generation and automatic transformation into REST
API documentation. For some strongly typed programming
languages, such as Java, it is possible to extract a schema
representation of the API objects from the code. However,
for dynamically typed languages, such as Ruby, the lack
of type information prevents automated API specification.
As a result, manual effort required from the developers to
maintain a separate API specification. Even when API schema
automatically extracted, API developers need to manually
maintain usage examples because the examples don’t exist in
the API code.

TABLE I: REST API Documentation

Desirable Property Current State
Detailed introduction Manually edited contents are commonly used.
Includes Examples Commonly include manually generated API ex-

amples.
Executable Examples Bespoke tooling is used to provide API explorers.
Automated Tools rely on manually written specifications.
Consistent
Presentation

Includes access information, resources, actions,
request and response structures and API exam-
ples.

Table I contrasts the current state of tool support for REST
API documentation against a set of properties that researchers
identified as required for API usability. In summary, practi-
tioners and researchers have attempted to solve the problem
of REST API documentation by proposing specifications for
describing REST APIs. Manual work is needed by REST API
developers to generate and maintain the API specifications.
These specification formats describe the structure of different
API elements (the syntax), but lacks support for automatically
generated executable API usage examples with realistic data
(the semantics). We found a lack of published papers on the
effectiveness of the aforementioned specification languages in
an industry setting. In this research, we aim to fill this gap
by sharing our experience of using an automated REST API
documentation technique in the industry.

2https://github.com/OAI/OpenAPI-Specification

III. REST API DOCUMENTATION TOOL SELECTION

A. Requirements

Tulach summarized developer feelings about writing API
documentation as follows: “Everyone who ever tried to
convince a developer to write documentation knows how
hard that is. As a result, the general feeling is that
developers don’t like and are not able to provide docu-
mentation for their own code.” [31]. At Cisco, a focused
group was formed involving five API developers and two QA
engineers to select an appropriate REST API documentation
tool that they would actually use. The group collected the
following requirements: R1. support multiple versions, R2.
support multiple environments, R3. easy to maintain, R4.
include executable API usage examples, R5. use familiar tools,
and R6. allow customization.

B. Evaluation of Tools

A list of REST API documentation tools were selected for
“spikes”, a practice used by the software engineers to better
understand how a tool fits a problem in context. The API
developers and QA engineers shared opinions based on their
spikes about three different tools, Swagger, API Blueprint, and
SpyREST. Swagger and Blueprint were researched because
of their maturity and industry adoption information as found
through online searches. The authors of this paper previously
developed SpyREST based on their past experience outside
the context of this specific Cisco API. The focused group
participated in the “spike” and discussed the pros and cons
of each selected tool. Table II summarizes the findings:

TABLE II: Comparison of Tools against the Requirements

Req. Swagger API Blueprint SpyREST
R1
(version)

Separate file /
version

Separate file /
version

API example /
version

R2 (env.) Separate file / en-
vironment

Separate file / en-
vironment

Automated

R3
(maint.)

Manually
maintain separate
artifact from code

Manually
maintain separate
artifact from code

Derived from au-
tomated tests

R4 (exe.
exampl.)

Automated (Web
UI and cURL)

Manual Automated
(cURL)

R5 (famil-
iarity)

Swagger API
Spec and code
inspection

Markdown Automated tests

R6
(custom.)

Manual Manual Automated tests
and Manual

As shown in Table II, the verdict to use SpyREST was
based on the observation that using Swagger or API blueprint
required us to manually maintain the REST API documenta-
tion as a separate static artifact from the API related code.
SpyREST was found to provide better support for R3, R4,
and R5 over Swagger or API Blueprint as the developers
could auto-generate the documentation from the functional
test suite instead of “writing separate documentation” that are
required to be written and maintained with the code. A round
of informal feedback on SpyREST was collected after the first
production release of the API and the team decided to continue
using SpyREST.

IV. SPYREST – OVERVIEW

We provide a brief overview of SpyREST, the REST API
documentation tool and the underlying technique used in this
case study [3], [32]. At the heart of the technique is a pass-
through HTTP proxy server which acts as an interceptor
between an API client and the API. This allows the proxy
server to inspect the raw HTTP request and response data
from the example API calls. However, for usable API docu-
mentation the raw HTTP data needs to be further processed
and enriched with meta data. For example, given the following
HTTP request and response data from an example API call to
create a Blog post:

Reques t Verb : POST
Reques t URL: / v2 / p o s t s
Reques t Headers :

Conten t−Type : a p p l i c a t i o n / j s o n
A u t h o r i z a t i o n : B a s i c dXNlcjpwYXNzd29yZA==

Reques t Body :
{

" t i t l e " : "My New Blog p o s t " ,
" c o n t e n t " : " Th i s i s a new b log p o s t "

}

Response Headers :
L o c a t i o n : " / v2 / p o s t s / 1 "
h o s t : " b log . example . com"

A series of transformation needs to take place to produce us-
able API documentation. The proxy server used by SpyREST
is customized to record and synthesize such example API calls.
The transformation process involves the following analyzers:
• API version analyzer. The version analyzer automatically

infers the API version used by the example API call. From
the aforementioned example, the version analyzer auto-
detects the API version as “v2” based on the URL.

• API resource analyzer. To generate a hierarchical represen-
tation of the API elements, it’s important to group multiple
API actions that correspond to a single API resource under
a single hierarchy. API resource analyzer automatically
detects post as the API resource for this example.

• API action analyzer. The API action analyzer automati-
cally infers the API action on a resource from example API
calls. For the given example, the action analyzer identifies
POST/v2/posts as the API action.

• API query parameter analyzer:. The query parameter
analyzer records each query parameter that is used by the
example API calls and automatically infers the data types
such as integer, string, timestamp, etc.

• API request header analyzer: The request header analyzer
removes standard authorization credentials from the API
documentation. For the given example, the API requests
header analyzer transforms the Authorization header’s
value as Authorization : BasicFILTERED.

• API body analyzer: The body analyzer captures the
request and response bodies and infers the structure of the
body as an object with auto-detected field names and data
types. The request body analyzers produces the following
information from the given example for API documentation:

Field Data Type Example
title String My New Blog post
content String This is a new blog post

• API response header analyzer: The response header ana-
lyzer automatically removes noisy headers such as (Server,
Pragma, etc.) from the documentation.

• Custom content analyzer: SpyREST automatically infers
a human readable description for each API action. For the
given example, the auto detected description is as follows:
CreateaPost. The custom content analyzer allows API
developers to override the auto-detected attributes such as
the API version, resource, action and description by using
a set of SpyREST specific HTTP headers.
Fig. 1 shows SpyREST screenshots of the production REST

API documentation at Cisco. Fig. 1a shows a fragment of the
manually written overview information juxtaposed to the auto-
generated index of the API resources. Fig. 1b shows the output
of the different analyzers within SpyREST proxy server that
automatically detects the version (v1), API resource (Com-
puter), action (PATCH /v1/compouters/...), and the structure
of the response fields from the single example API call. Fig.
1c shows the transformed example API request headers, body,
and an executable cURL command that can be used to exercise
the API call. Fig. 1d shows the API response headers and body
for the example.

To summarize, SpyREST provides tool support to improve
the process of REST API documentation with usage exam-
ples, automatic updates, executable examples and a consistent
hierarchical representation of the API.

V. CASE STUDY: SPYREST AT CISCO

A. Methodology

For this case study, we use a specific REST API within
Cisco. SpyREST has been used over the past eighteen months
and is being used at the time of writing this paper to document
the REST API for a cloud delivered cyber security application
at Cisco named Advanced Malware Protection for Endpoints.
The API allows the customers of the cyber security application
to extract and modify security related data specific to their
businesses from the cloud to facilitate automation and custom
third-party integration. For example, some customers use the
API to automatically create an investigation ticket on their
ticketing system for each malware detection event.

The REST API is documented using SpyREST via auto-
mated tests. To evaluate the outcome of the documentation
process using SpyREST, we’ve incorporated stakeholder feed-
back as well as collected metrics from the various log files
associated with the development and deployment of API docs
and the actual API changes. 25 API stakeholders from Cisco
were invited via email to provide free form feedback about
the API documentation and its underlying process via emails
to the first author of this paper.

B. Context

1) The Stakeholders: The REST API has several stakehold-
ers as follows: customers, API client developers, customer

(a) API Overview in SpyREST

(b) SpyREST Analyzed API Structure (c) SpyREST Recorded API Request (d) SpyREST Recorded API Response

Fig. 1: Screenshots of the REST API documentation from Cisco using SpyREST

support team, product management, API developers, and qual-
ity assurance engineers. Customers and potential customers
are interested in an API so that custom tooling and business
specific integration can be performed. API client developers
are often employed by the customers to implement API
integrations. At present, over a hundred unique customers use
the API at least once a month as per the API usage logs.

Inside Cisco, the stakeholders are the customer support
team, product management team, API developers (including
the first author) and quality assurance engineers. At present,
a total of 25 people are involved as the Cisco stakeholders in
this case study.

2) Participants: We received a total of 9 feedback emails
comprising of the following: one project manager (PM), one
customer support engineer (SE), five API developers (D1-5)
and two QA engineers (QA1-2). Developer D2 has 5 years,
and the rest of the participants each have more than 10 years
of software industry experience.

3) API Properties: At present, the API is currently avail-
able under two different versions, v0 and v1. The API is also
served from three different Cisco managed cloud environments
for North America, Europe, and Asia Pacific. Additionally,
the API is shipped with a private cloud appliance, where
customers can host the software on-premise. Even though the
environments are designed to eventually serve the API with
identical features, the deployment of the API to each environ-
ment is independently managed. The underlying application,
introduced in 2010, uses Ruby on Rails 3 web framework, and
has a total of 120K lines of custom code with a code to test
ratio of 1:1.3.

In the latest version, v1, the API has nine different API
resources, and a total of twenty API actions, with multiple
variants per action, to be performed on those resources.
For example, the API has a resource named “Computer,”
and an action PATCH/v1/computers/: connectorguid for
updating a computer. The older version, v0, has 6 resources
and 10 API actions. Currently, v1 is backward compatible with
v0, but backward compatibility is not guaranteed with future
versions.

4) API Evolution: The API was first launched with version
v0 in February 2015, and a fully compatible version v1
was released in May, 2016. The monthly release notes have
mentioned at least one API related change for 12 times out of a
total of 18 publicly announced releases of the software. Inter-
nally, the automated functional tests for the API documentation
have changed 95 times by 6 contributors (as per the version
control logs). The actual number of internal API evolution
before they are released is unknown since they often happen
several times a day, and don’t always involve a change in
the functional tests. The version numbers v0 and v1 were left
unchanged to release backward compatible new features and
bug fixes. At present, the API serves 80,000 API calls on an
average per day (as per the API call logs) and is used by over
a hundred enterprise customers that are globally distributed.

3http://rubyonrails.org

The customers use the SpyREST generated documentation as
the sole information source for learning the API features. The
actual number of API client developers is not known at this
time since multiple API client developers can be involved in
writing an API client application for the customers.

C. The API Development Process

1) Documentation of a new API Action: The REST API
developers and quality assurance engineers of the cyber se-
curity product at Cisco use SpyREST to generate the API
documentation throughout the lifecycle of an API from the
developer workstation to a production instance as shown in Fig
2. When a new API action is introduced, the API developers
write one or more functional tests against the API to show an
intended usage example. If the functional test is run using
SpyREST proxy server, it automatically generates the API
documentation. Listing 2 provides an example of an automated
test fragment from the case study that renders part of the
documentation as shown in Fig. 1c 1d.

Listing 2: Functional Test Code
1 c o n t e x t ' v1 ' do
2 d e s c r i b e ' Computer ' do
3 i t ' Moves computer t o a group wi th g i v e n

c o n n e c t o r _ g u i d and g r o u p _ g u i d ' do
4 r e s p o n s e = API . p a t c h (" / v1 / compu te r s / # {

c o n n e c t o r _ g u i d } " , {
5 h e a d e r s : ' x−spy−r e s t −a c t i o n ' => ' / v1 /

compu te r s / { : c o n n e c t o r _ g u i d } ' ,
6 body : { g r o u p _ g u i d : g r o u p _ g u i d } . t o _ j s o n
7 })
8 e x p e c t (r e s p o n s e . code) . t o e q l (2 0 2)
9 #more a s s e r t i o n s

10 end
11 end
12 end

This example code is written using RSpec4, a Ruby based
test framework. Line 1 mentions the API version, line 2
mentions the API resource of interest, and line 3 shows a
human readable description of the test. On lines 5-7, an
example HTTP patch API request is made using the method
API.patch. Then, an example assertion is added on line 8. the
API class has capabilities to make the patch HTTP request
over an HTTP Proxy server. While using the proxy server, the
API class also sends the test description “Moves computer
to a group with given connectorguid and groupguid” with a
SpyREST specific header to automatically map test description
as the description of the API usage example. As discussed
earlier, the SpyREST analyzers can inspect the HTTP request
and response information with the custom headers to produce
usable REST API documentation from this automated test
code.

This practice of using tests for documentation was men-
tioned as an advantage by 4 of the 9 participants. For example,
QA2 mentioned the following: “SpyREST was a useful tool
for us... as the (API) endpoints were documented using
unit tests, (API) developers would write the documentation

4http://rspec.info

Fig. 2: API Development workflow using SpyREST at Cisco

for a similar audience (API client developers).” The PM
mentioned the following feedback about the executable API
examples in the documentation: “The embedded examples
are great for allowing users to try API calls quickly and
easily to get a feel for how the API works.”

The next step in the lifecycle of the API documentation is
in the automated build server where the test suite is executed
against a deployed API on a staging server through a SpyREST
proxy. This promotes the REST API documentation from the
developer workstation to a shared instance that is used by the
quality assurance engineers, product management, and the peer
developers to verify against the acceptance criteria. This often
results in several loops between the developer workstations
and the staging servers until the API and its documentation
meets the acceptance criteria. During the team retrospective
following the API production release, the following comment
was captured in the meeting notes by one of the QA engineers
(QA1): “Up-to-date documentation using SpyREST helped
developing and collecting lots of input about the API in
small pieces during the weekly meetings before production
release”. The API developers and quality assurance engineers
add any custom content as needed to describe complex API
concepts and prerequisites that aren’t captured in the auto-
mated examples.

The next step in the lifecycle of the API is a release to one or
more of the production environments that customers use. With
the production release of an updated API, its documentation
is automatically promoted from the staging environment to
production. The promotion of the documentation is a three-step
process. First, the data from the staging server is exported in
a portable archive file. Then, a transformation is performed to
update staging specific data such as URLs, email domains, and
hostnames within the archive to match the desired production
environment. Finally, the transformed archive is published to
production as a read-only artifact.

2) Documentation of a new Version for an Existing API
Action: When API version v1 is launched, all the functional
tests for v0 are run on a loop, once per version. This code reuse
minimizes the effort required to document multiple versions
of the same API action when the API versions are backward
compatible. The rest of the lifecycle steps follow similar
process as the documentation of a new API action.

3) Documentation of an updated API Action: When an API
update requires a new example, a new automated test case is
written. For example, an API action was updated to receive a
new query parameter to support an additional operation.

When an API update doesn’t require a new API example to
describe the change, the API documentation is automatically
updated by the build server. For example, in the case study
an API action was updated to include a new field with the
response body and the API documentation was automatically
updated without needing a change in the test code.

4) REST API Evolution: In the case study we have observed
the evolution of the API and it’s documentation is triggered
by the following: new requirements, and internal reviews of
the API. For example, the primary difference between v0 and
v1 of the API is the addition of a new requirement to allow
API client developers the features to modify API objects in
v1 that only allowed read-only access on v0.

While the new requirements are developed, before they are
released to production, the API undergoes a more frequent
evolution, several times a day, triggered by internal reviews of
the API by the peer API developers and the quality assurance
team. The auto-generated API documentation using SpyREST
is used in the internal reviews to suggest alternatives and verify
API acceptance criteria.

API evolution before and after the production release of the
API has two opposing forces, yet one helps achieve the other.
After an API is published to production, we are unable to make
any breaking changes without affecting customers. To support
this feature, we found it important to be able to evolve the
API frequently before the API is published. The always up-to-
date API documentation with SpyREST has helped establish
a quick feedback loop between the API development and QA
teams throughout the life-cycle of the API.

VI. DISCUSSION

A. REST API Documentation from Test Code

API developers are required to write the tests for the APIs
even if not used for documentation. At Cisco, we have learned
that the documentation of the REST API from its functional
test code to be a welcome side-effect. Developer D3 mentioned
the following feedback: “Using a set of functional tests to
both ensure correctness of the API, as well as a source

of documentation is an excellent strategy”. When the data
from the tests are intercepted to generate API documentation,
API developers need to actively think about the API usage
scenarios against a realistic setup. For example, one of the
Cisco developers updated the test name for an API from “Finds
computers that have connected with an IP for v0” to “Fetches
list of computers that have connected to a given IP address”
to better reflect an API action for documentation based on
internal review. This enforces the need for a stable test suite
since a failing or incomplete test suite also breaks the API
documentation. Eight of the nine study participants mentioned
the executable API examples as a key feature of SpyREST that
helped them to review the details of the API without writing
code.

Continuously updated documentation improves its correct-
ness and verification of version compatibility as an API
evolves. A breaking change in the API fails the underlying
tests. For non-breaking changes, such as addition of new
REST API objects, the test suite helps proving backward
compatibility.

One limitation of this approach is that not all API tests
are suitable to be used in the REST API documentation. For
example, even though unhappy paths are commonly written
in tests, they are seldom included in the documentation for
brevity. API developers may need to select a subset of the
tests that are run through SpyREST proxy server that are
meaningful for documentation.

Based on our experience at Cisco, we recommend REST
API developers to utilize the automated test suite to drive API
usage examples in the API documentation using SpyREST.
SpyREST can intercept REST API calls irrespective of the
technology used to implement the API and the API test client
because it works as an HTTP proxy. The approach shared
in this paper can be applied to document REST APIs within
other organizations where the technology behind the API
implementation may differ.

B. Maintaining Custom Content

Based on the feedback on SpyREST by Cisco developers,
we’ve learned both the benefits and drawbacks of using a wiki-
like editor for custom content with the API documentation.
The wiki within SpyREST allows the API developers to
add rich content comprising of proses, images, tables, code
fragments, and web links, etc. to explain concepts that are
required to understand the API. One developer feedback (D1)
mentioned the following about the wiki: “Good customization
on the overview of each resource.” Developer D3 mentioned
the following: “Being able to edit the documentation in
place, similar to a wiki works really well, effectively
allowing an organization to crowd-source the job.” For
example, at Cisco, we’ve added an overview explaining API
access information, rate-limit, and common approaches to
perform pagination within the API actions as custom content.

The custom content using a wiki has a drawback as it’s
maintained as a separate artifact within SpyREST. Developer
D4 mentioned the following feedback: “Tests are great for

examples and showing lists of available endpoints and
parameters, but there also needs to be some explanation
of how to use the API in general.” Since the wiki-edited
custom content lives outside the code repository, manual effort
is needed to maintain the evolution of custom content when
needed. One of the Cisco developers (D2) mentioned the
following in the feedback about SpyREST: “It is helpful for
deployment if the content in the overview section on the
home page can be auto-generated through SpyREST code.”

We identify this as an opportunity to continue further re-
search to improve the collaborative editing of rich customized
content with auto-generated API documentation such that the
custom content can be put into the version control systems.

C. Handling Flexible API Elements

The API elements within REST are not restricted to follow
a strict structure. For example, in the case study, we have a
flexible API element of type “Event” to denote a malware
detection event. The actual structure of the “Event” API
element can be widely different based on the type of the event.
For example, a file detection event contains several file specific
data such as the fingerprint, name, path on disk, size. On
the other hand, a network detection event contains network
specific data such as the remote host, URL, IP, protocol. A
single API call may return a list of “Events” of such different
types. Incomplete list of API response attributes caused a
confusion to a customer and the SE mentioned the following
feedback: “The only criticism I have is making sure that
all of the returnable data that is available in the Response
Fields, because I have found some instances where this data
was missing”. We’ve incorporated this feedback and changed
SpyREST so that the “Event” API element is documented as a
union of all the different attributes of the different event types
(fingerprint, name, path on disk, size file, remote host, URL,
IP, protocol) from the intercepted example API calls.

We have learned the main advantage is, merging the
attributes of different types of API elements in an Array
provides a list of all possible attributes that are observed in
an API element. An API client developer reading the API
documentation gets a complete picture of the API element. On
the other hand, it may not clearly communicate the fact that
only a subset of the documented attributes may be returned
by an API call for each API element. In our case-study at
Cisco, the API usage examples captured by SpyREST shows
specific examples with different “Event” types to provide the
context around the event types. We recommend practitioners
to follow this pattern since it allows API client developers to
understand the implied structure of flexible API elements with
specific use cases.

D. API Documentation Life-cycle

We’ve learned that it is a critical feature that the API
documentation follows the API throughout its life-cycle stages
such as development, staging, and production environments
for each available API version. In our case study at Cisco,
we’ve achieved this requirement from the test suite that is

maintained under the same version control as the REST API
code. As a result, for any version of the API, corresponding
documentation can be generated from test code. The PM
provided the following feedback about the customer impact
of this auto-updated API documentation: “One of the great
values of a self-documented API is that it’s always current
and up to date. This simple, but valuable fact is not lost
on our customers who feel like companies often forsake
documentation and leave it as an afterthought.”

We’ve also learned that when REST API documentation
is published from a staging environment to production, the
data from the API examples may need to be obfuscated and
transformed. This need was mentioned on the feedback from
developer D5: “It would be cool if you could dynamically
re-write the hostname within the rails app (SpyREST),
so you could hit an internal server but show docs for a
public one.”. This idea was incorporated within SpyREST to
automatically rewrite all URLs and email domains within the
documentation during the production release process. How-
ever, there may be other confidential information auto-captured
by SpyREST that may need to be obfuscated. For example,
at Cisco, one of our API examples show the user login name
on a computer as an API response. To prevent the leakage of
such confidential data, we run the tests against a sandbox API
environment that serves dummy data. We suggest practitioners
to incorporate this idea of continuous API documentation
while working on APIs to improve collaboration and feedback.

E. API Changelog

We found the manual process of generating API changelog
to be both error-prone and time consuming. For an evolving
API, a changelog is the primary information source for existing
API client developers to learn about the API changes. To
verify the changes during rapid development, we’ve found a
changelog to be a necessary communication artifact between
stakeholders. SpyREST can automatically detect API changes
when API objects such as query parameters, headers, request,
and response objects are introduced or removed between
versions because it records the API objects for each version.
We have used the data from SpyREST and version control
history of the tests as interim changelogs before a production
release.

For production release, we manually inspect the API docu-
mentation and the interim changelogs to write a new changelog
for customers. The manually written changelogs show the
high level API changes leaving out the details. For example,
the v1 changelog includes the following “Move a computer
from one group to another”, but further details were absent in
the changelog. The underlying data model within SpyREST
can be utilized to bridge the API reference documentation
with relevant changelog for each version. Future work needs
to be done to extend automation support for API changelog
generation for evolving REST APIs.

F. Cross-Referencing API Elements

The primary navigation offered by SpyREST automatically
presents a hierarchical view of the API elements comprising
of API version, resources, actions on resources, and spe-
cific examples for each action. While this allows API client
developers to get a quick index into the API elements, it
may not provide the conceptual cross-references between API
elements. Developer D2 suggested following enhancement
about the SpyREST generated API Index: “Is it possible to
manually order the resources on the API doc site? Right
now, the ordering is ensured in the SpyREST code.”

We’ve learned that cross-referencing the API elements may
provide useful alternative navigation experiences. For example,
the API in the case study has the API resources “Group” and
“Computer,” where a “Computer” belongs to a “Group”. This
nesting relationship is not captured in the SpyREST generated
navigation. Similarly, the “Group” resource is related to a
“Policy” resource since a “Policy” is applied on a “Group.”
In the API documentation for both “Group” and “Policy” re-
sources there are references to one another in the API response
example. This dependency relationship is not captured within
the SpyREST generated API navigation. Future work needs
to be carried out to automatically surface such dependency
relationships among API elements to help the API client
developers.

G. Extending beyond REST API Documentation

From this case study, we’ve learned that it is feasible to
use interception to generate REST API documentation with
examples. While an HTTP proxy server cannot intercept non-
HTTP APIs, the core concept of interception can be applied
to such APIs. For example, to document a local API, an
interceptor can be written to intercept example API calls in
memory to generate API documentation with examples.

We identify several benefits of this approach over pub-
lishing the existing unit test code as documentation. First,
organizations may not allow publishing their test code to
external API users due to intellectual property issues. Second,
even if unit tests are published as API documentation, the
API client developers may not be familiar with the unit test
framework and external dependencies. Third, unit tests often
use test specific code such as complex setup, tear down, stubs
and mocks, that may not be useful in the documentation.
Fourth, the use of interception technique transforms task of
documentation to writing executable code, a welcome change
for developers. Researchers can extend the interception based
documentation technique on non-REST APIs to document
such APIs with executable examples.

H. Limitations

The first author on this paper is a member of the team at
Cisco where the case study is performed. While it provides
us with a unique insights, it also introduces a confirmation
bias. Our results may include a selection bias since the results
are based on a single single set of REST APIs. While the

aforementioned feedback shows that REST API documenta-
tion process is effective for us, we have a lack understanding of
the impact of the documentation on the API client developers.
This case study needs to be replicated against REST APIs
that are implemented by other organizations using different
technologies to reduce our limitations.

VII. CONCLUSION

In this research, we presented the results of using SpyREST
at Cisco to maintain an up-to-date documentation with usage
examples for an evolving REST API. Our primary findings
provide an evidence that SpyREST can be used as a practical
REST API documentation tool. By leveraging automated func-
tional tests to document REST APIs, we have reduced human
efforts with automation in the API documentation process
while improving the test suite. We discussed techniques to
deal with custom content, flexible API elements and including
the documentation of the REST API with every life-cycle
step to establish a quick feedback loop. We presented our
case for extending the interception based API documentation
technique beyond REST APIs. In future, we plan to improve
SpyREST by incorporating the ideas from this case study. We
will perform an experiment to evaluate the impact of usage
examples on REST API client developers.

ACKNOWLEDGMENTS

We express our gratitude to Cisco Systems Ltd. and the University of
Calgary.

REFERENCES

[1] M. Robillard, “What makes APIs hard to learn? the answers of devel-
opers,” Software, IEEE, vol. PP, no. 99, pp. 1–1, 2011.

[2] B. Myers, S. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens,
A. Efeoglu, and D. K. Busse, “Studying the documentation of an api for
enterprise service-oriented architecture,” J. Organ. End User Comput.,
vol. 22, no. 1, pp. 23–51, 2010.

[3] S. Sohan, C. Anslow, and F. Maurer, “Spyrest: Automated restful API
documentation using an HTTP proxy server,” in Proc. of IEEE/ACM
International Conference on Automated Software Engineering, ASE,
Lincoln, NE, USA, 2015, pp. 271–276.

[4] M. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[5] B. Myers and J. Stylos, “Improving API usability,” Commun.
ACM, vol. 59, no. 6, pp. 62–69, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2896587

[6] M. F. Zibran, F. Z. Eishita, and C. K. Roy, “Useful, but usable? factors
affecting the usability of APIs,” in Proc. of IEEE Working Conference
on Reverse Engineering (WCRE), 2011, pp. 151–155.

[7] T. Scheller and E. Kühn, “Automated measurement of api usability:
The API concepts framework,” Information and Software Technology,
vol. 61, pp. 145–162, 2015.

[8] A. Kuhn and R. DeLine, “On designing better tools for learning APIs,”
in In Proc. of ICSE Workshop on Search-Driven Development - Users,
Infrastructure, Tools and Evaluation (SUITE), 2012, pp. 27–30.

[9] L. Shi, H. Zhong, T. Xie, and M. Li, “An empirical study on evolution
of API documentation.” in Proc. of Conference on Fundamental Ap-
proaches to Software Engineering (FASE), vol. 6603. Springer, 2011,
pp. 416–431.

[10] A. Ko and Y. Riche, “The role of conceptual knowledge in api usability,”
in Proc. of IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2011, pp. 173–176.

[11] D. Hoffman and P. Strooper, “API documentation with executable
examples,” J. Syst. Softw., vol. 66, no. 2, pp. 143–156, May 2003.

[12] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting
APIs with examples: Lessons learned with the APIMiner platform,” in
Proc. of IEEE Working Conference on Reverse Engineering (WCRE),
2013, pp. 401–408.

[13] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining api
usage examples from test code,” in Proc. of 2014 IEEE International
Conference on Software Maintenance and Evolution (ICSME),. IEEE,
2014, pp. 301–310.

[14] J. Stylos, B. Myers, and Z. Yang, “Jadeite: Improving API documenta-
tion using usage information,” in Proc. of Extended Abstracts on Human
Factors in Computing Systems, ser. (CHI EA). ACM, 2009, pp. 4429–
4434.

[15] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
Proc of. IEEE International Conference on Software Maintenance, 2012,
pp. 25–34.

[16] C. Parnin and C. Treude, “Measuring API documentation on the web,”
in Proceedings of the International Workshop on Web 2.0 for Software
Engineering, ser. (Web2SE). ACM, 2011, pp. 25–30.

[17] Y.-C. Wu, L. W. Mar, and H. C. Jiau, “Codocent: Support api usage with
code example and api documentation,” in Proc. of IEEE International
Conference on Software Engineering Advances (ICSEA), 2010, pp. 135–
140.

[18] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced faqs
into api documentation,” in Companion Proc. of the ACM International
Conference on Software Engineering, ser. ICSE Companion 2014, 2014,
pp. 456–459.

[19] B. Dagenais and M. Robillard, “Recovering traceability links between an
api and its learning resources,” in Proc. of 2012 International Conference
on Software Engineering (ICSE). IEEE, 2012, pp. 47–57.

[20] C. Treude and M. Robillard, “Augmenting api documentation with
insights from stack overflow,” in Proc. of ACM International Conference
on Software Engineering, ser. ICSE ’16, New York, NY, USA, 2016, pp.
392–403.

[21] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[22] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Proc. of ieee investigat-
ing web APIs on the world wide web,” in Proc. of European Conference
on Web Services (ECOWS), 2010, pp. 107–114.

[23] S. Sohan, C. Anslow, and F. Maurer, “A case study of Web API
evolution,” in Proc. of IEEE World Congress on Services (SERVICES).
IEEE, 2015, pp. 245–252.

[24] M. J. Hadley, “Web application description language (WADL),” 2006.
[25] J. Mangler, P. P. Beran, and E. Schikuta, “On the origin of services

using RIDDL for description, evolution and composition of RESTful
services,” in Proc. of IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), 2010, pp. 505–508.

[26] J. Kopecky, K. Gomadam, and T. Vitvar, “hRESTS: An HTML micro-
format for describing RESTful web services,” in Proc. of International
Conference on Web Intelligence and Intelligent Agent Technology (WI-
IAT), vol. 1. IEEE, 2008, pp. 619–625.

[27] R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. d. Walle, and
J. Gabarro Valles, “Capturing the functionality of web services with
functional descriptions,” Multimedia Tools and Applications, vol. 64,
no. 2, pp. 365–387, 2013.

[28] P. Danielsen and A. Jeffrey, “Validation and interactivity of web API
documentation,” in International Conference on Web Services. IEEE,
2013, pp. 523–530.

[29] N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, and J. Domingue,
“OmniVoke: A framework for automating the invocation of web APIs,”
in Proc. of IEEE International Conference on Semantic Computing,
2011, pp. 39–46.

[30] M. Polák and I. Holubová, “REST API management and evolution using
MDA,” in Proc. of ACM International Conference on Computer Science
& Software Engineering, ser. C3S2E ’15, New York, NY, USA, 2008,
pp. 102–109.

[31] J. Tulach, “Teamwork,” in Practical API design: Confessions of a java
framework architect, C. Andres, Ed. Berkeley, CA: Apress, 2008, pp.
291–302.

[32] S. Sohan, C. Anslow, and F. Maurer, “Spyrest in action: An automated
RESTful API documentation tool,” in Proc. of IEEE/ACM International
Conference on Automated Software Engineering, ASE, Lincoln, NE,
USA, 2015, pp. 813–818.

