
Towards Visual Software Analytics

Craig Anslow, James Noble,
Stuart Marshall

School of Mathematics, Statistics, and
Computer Science

Victoria University of Wellington
Wellington, New Zealand

{craig,kjx,stuart}@mcs.vuw.ac.nz

Ewan Tempero
Department of Compute Science

University of Auckland
Auckland, New Zealand
ewan@cs.auckland.ac.nz

Abstract
Since its inception, a large amount of software has been written
in Java and surprisingly little is known about the structure of Java
programs in the wild. There are very few software visualization
tools for analytical reasoning of Java software. We are creating
a visual software analytics tool that will help to characterize our
Java software corpus. Our tool will help to provide insight into a
collection of Java programs, detect the expected, and discover the
unexpected.

Keywords Visual Analytics, Software Visualization, Software
Corpus, Java

1. Introduction
Large amounts of Java software have been written since the lan-
guage was first created. We have almost no dependable data on
what software coding standards such as Java class names are ad-
hered to in practice (4). Creating visualizations will help to dis-
cover trends and commonalities in structure and behaviour of Java
software.

We have a corpus of Java software1 (10) used for conducting
empirical studies to help understand how software engineers cre-
ate code and the relationship between the code structure and qual-
ity attributes such as modifiability, reusability, maintainability, and
testability. The corpus contains 91 distinct open-source Java appli-
cations. 22 of these applications have multiple versions, comprising
233 versions total. Our project requires better techniques for under-
standing and mining the software from the corpus.

We are interested in visualizing the evolution of the Java API,
the characteristics of Java software, and the usage of the Java API
within Java software. We believe creating visual analytic tools and
techniques will help to derive insight about Java software.

This paper outlines our approach towards visual software ana-
lytics of Java software, our methodology for the thesis, and some
preliminary results of creating software visualizations from the
Java API and our software corpus.

1 http://www.cs.auckland.ac.nz/˜ewan/corpus/

[Copyright notice will appear here once ’preprint’ option is removed.]

2. The Need for Visual Analytics
Since the beginnings of software visualization research the field has
focused primarily on algorithm animation (1980s), software archi-
tecture (1990s), and software evolution and mining from software
repositories (2000s). As far as we are aware, to date no research has
considered applying visual analytic techniques to provide insight
into the structure and behaviour of large Java software corpora.

Visual analytics is a new research field and is defined as the
science of analytical reasoning facilitated by interactive visual in-
terfaces (14). The goal of visual analytics is the creation of tools
and techniques to enable people to:

• Synthesize information and derive insight from massive, dy-
namic, ambiguous, and often conflicting data.

• Detect the expected and discover the unexpected.
• Provide timely, defensible, and understandable assessments.
• Communicate assessment effectively for action.

Visual analytics is a multidisciplinary field that includes the
following focus areas (14):

• Analytical reasoning techniques that enable users to obtain deep
insights that directly support assessment, planing, and decision
making.

• Visual representations and interaction techniques that take ad-
vantage of the human eye’s broad bandwidth pathway into
the mind to allow users to see, explore, and understand large
amounts of information at once.

• Data representations and transformations that convert all types
of conflicting and dynamic data in ways that support visualiza-
tion and analysis.

• Techniques to support production, presentation, and dissemina-
tion of the results of an analysis to communicate information in
the appropriate context to a variety of audiences.

Some notable visual analytics systems include In-Spire (17),
Jigsaw (13), and Improvise (16). However, none of these systems
focus on the domain of software; they instead use document col-
lections. Most software visualization systems (5; 12; 18) in the past
have focused on visualizing just one piece of software at one time
and using one or more visualization techniques.

We view visual analytics as a superset of information visualiza-
tion, software visualization, and empirical software engineering. In
order to conduct analysis about collections of software we need to
visualize multiple data sets of software at once from our software
corpus. The visualizations will help provide insight into a collec-
tion of programs using multiple visualization techniques at once

1 2008/11/4



(e.g. tree maps, focus + context, node-link diagrams), as well as
various data representations (e.g. metrics, revision history, class hi-
erarchy, micro-patterns (7)).

3. Methodology
The objective of our Software Process and Product Improvement
project2 is to develop and apply a range of software productiv-
ity techniques and tools to enhance the performance of the New
Zealand software industry. The key focus is software process and
product improvement using advanced, model-based software visu-
alisation methods and tools. Before we start to build our visual soft-
ware analytics tools we plan to conduct a survey and various user
studies with developers from industry. The survey and user studies
will help guide us in building our visual software analytics tools.

The aim of the survey is to provide an overview of the New
Zealand software development industry. The focus of the survey is
on the use of software visualization techniques and tools for soft-
ware comprehension. We want to discover what kind of software
comprehension strategies participants undertake (e.g. bottom-up,
top-down), what comprehension activities they are interested in
(e.g. investigating the internal structure of an artifact), and what
kind of questions they ask when comprehending a system (e.g.
what is the class structure of the software system?). We want to
find out what their definition of software visualization is and if
they use any of the tools mentioned in the books on software vi-
sualization (5; 12; 18). It will be useful to find out what stages of
the software development cycle they use the tools, what kind of ar-
tifacts they visualize, and what techniques they use. We also want
to know if they are building their own software visualization tools
or prototypes. Finally, we would like to know what tools and tech-
niques they would like and where would they liked the software
visualizations displayed (e.g. IDE, desktop, web).

After completing the survey we intend to do some observational
studies of developers programming. The aim of these studies will
be to observe what developers actually do on a daily basis and how
much time they spend doing the various development activities. We
plan to do some follow up in-depth interviews with participants of
our survey and observation studies, in particular ones who use any
software visualization techniques or tools. The questions for the
interviews will be developed once we have completed the survey
and observation studies. We plan on performing studies that track
the eyes of developers when they are developing and maintaining
software. Tracking the movement of the developer’s eyes will help
guide us to which parts of the code they are most interested in and
which features of the IDE and other tools they use most. Finally,
we plan to do some user studies on a selection of existing software
visualization tools (5; 12; 18) with our participants and fellow
students to highlight the good and bad points of each of these tools,
again as a guide to building our own tools.

4. Java Software Visualizations
Our main platform focus for software visualizations to date has
been to deliver visualizations over the web (1; 6; 9). There exist
very few web-based software visualization tools (3). Our platform
of choice may change due to the outcomes of our survey and user
studies. In the meantime we have decided to explore using a suc-
cessful web based visualization application called Many Eyes (15)
to see how a system such as this could potentially work for a visual
software analytics tool. Many Eyes is a web site provided by IBM
research that provides collaborative visualization services. The site
is set up to allow users to upload data in ASCII format, visualize it,
and then talk about their discoveries with other people.

2 https://wiki.auckland.ac.nz/display/csisppi

We have conducted experiments of visualizing the words used
in class names of the Java API JavaDoc and from our software
corpus (2) using Many Eyes. First, we have visualized the words
in the class names from the Java API version 1.6. Second, we have
visualized the ordering of words in the Java class names. Third,
we have visualized the evolution of words in class names from
Java version 1.1 and Java version 1.6. Finally, we have visualized
the words in public class names from the 91 open-source Java
applications in our software corpus. We do not distinguish between
interfaces and classes.

Figure 1 shows a Tag Cloud visualization of the words used in
the class names from the Java API version 1.6. For example the
CamelCase class name AbstractColorChooserPanel becomes Ab-
stract (position one), Color (two), Chooser (three), and Panel (four).
The tag cloud shows the most common words used in Java class
names are Exception (381 occurrences), UI (133), Helper (128),
Type (120), Event (116), and Factory (99). The word Exception is
used twice as many times as any other word in the Java API which
shows that the design of Java relies quite heavily on capturing ex-
ceptions at run-time.

Figure 1. Tag Cloud Visualization of the words used in the class
names from the Java API version 1.6.

Figure 2. Tree Map Visualization of the ordering of words used in
the class names from the Java API version 1.6.

Figure 2 is a Tree Map visualization which shows the ordering
of the words in class names from Java 1.6. The current screenshot
of the visualization shows the words in the class name ordered as
in a Java class name (e.g. AbstractColorChooserPanel represented

2 2008/11/4



as Abstract (position one), Color (two), Chooser (three), and Panel
(four)) and the word Exception highlighted. There are 1217 unique
words in position one, 761 in position two, 409 in three, 186 in four,
and 70 in five. The tree map allows a user to change the order of the
words in the class name to see which words are the most prominent
in each position in the class name. The tree map shows that the
most prominent word in position one is the word Metal followed by
Basic, Default, Order, and then Key. However, the most prominent
word in positions two, four and five are variants on the word Border.
The word Exception is most common in positions four and five.

Figure 3 shows a comparison of the class names between Java
version 1.1 (red colour) and 1.6 (blue colour). Java 1.1 contains 477
classes and Java 1.6 contains 3777 classes. This is an interesting
visualization as it shows how the words used in the Java API have
evolved over time. All of the words used in Java 1.1 have also been
used in Java 1.6, there is no word that has been so called deprecated.
There are, however, a number of additional words used in Java 1.6
which is to be expected being a more recent version. The word
Exception is the most prominent word in both versions. There are
no words associated with XML (e.g. XML, XPath) in the version
1.1 tags which suggests that this version of Java did not have any
XML libraries at that time.

Figure 3. Comparison Tag Cloud Visualization of the words used
in the class names of Java 1.1 (red) and Java 1.6 (blue).

Figure 4. Word Cloud Visualization of the words used in the class
names from our software corpus which contains 91 applications.

Figure 4 shows a visualization of the class names from the
91 open-source Java applications in our software corpus. We only
considered public class names. The visualization contains approx-
imately 51,000 classes. The most common words that are used
are Test (3847 occurences), Action (1541), Impl (1451), Factory
(1333), Exception (1089), and Data (948). This suggests that there

is an emphasis of testing in these applications and perhaps a test
driven development approach was followed.

Figure 5 shows a word tree visualization of the class names
from the software corpus. Selecting a word shows all the different
contexts in which it appears and displayed in a tree-like branch-
ing structure. Bean and Info, together appear 406 times, List and
Model, appear 125 times, Test and Case, appear 98 times, and fi-
nally Factory and Bean, appear 79 times. This technique is useful
for exploring which groups of words in class names are common
and is similar to the tree map visualization. Note that Bean (ap-
pears 804 times) nor Info are among the top five most common
words from Figure 4 but appear the most together. The word Test
seems to be used together with a wide variety of words as opposed
to Bean. Perhaps these applications make use of a lot of Java Beans
or the Hibernate framework.

Figure 5. Word Tree Visualization of the words used in the class
names from our software corpus which allows users to explore the
ordering of words.

To create our own visual software analytics tools we need to
either build our own visualization toolkits or use existing ones.
We are currently exploring creating visualizations using exist-
ing information visualization toolkits incuding: prefuse (8), Large
Graph Layout (LGL) and the Cairo graphics package, and Process-
ing (11). Figure 6 shows Java 1.6 class to package relationships
using prefuse (8). Packages are green, interfaces are red, classes
are blue, annotations are grey, and enums are yellow. Relationships
between packages are entities (e.g. classes) which belong to differ-
ent packages but have the same name. This visualization shows that
there are many entity names in Java 1.6 that have the same name
but are located in different packages. No one entity name stood out
more than the others.

Figure 6. Java Class to Package Relationships in Java 1.6.

Figure 7 shows inherited class relationships in Java 1.4.2 imple-
mented with Cairo and LGL. Nodes are classes and links represent
relationships between inherited classes. This kind of visualization
is very dense but it can give a quick overview to which are the most
common classes that are inherited. When viewing this visualization
in high definition greater details of the relationships are more visi-
ble. In this visualization the most inherited class is java.lang.Object
and one would suspect this given that this class is the root of all

3 2008/11/4



classes in Java. The java.lang.Object class node is located just to
the left of the centre of the image with many outgoing purple links.

Figure 7. Use of Inheritance in Java 1.4.2.

Viewing these visualizations on standard desktop machines lim-
its the amount of display screen space. We are beginning to use an
OptIPortal visualization cluster to display multiple visualizations at
once. The visualization wall has 12 screens arranged 4x3. Each in-
dividual display is 2560 x 1600 pixels for a total display of 10240
x 4800 pixels. The wall is useful for visual analysis of multiple
visualizations at once for discovering common trends, and video-
conferencing and collaboration with other portals. Figure 8 shows
some of our Java class name visualizations all displayed at once.

Figure 8. OptIPortal - Visualization Cluster displaying our visual-
izations.

5. Conclusion
Our approach to understanding and comprehending existing Java
software is to apply visual analytics techniques. We intend to cre-
ate a visual software analytics tool to understand the Java software
in our corpus. We will be surveying software developers to find
out what software visualization practices are used in industry; con-
ducting user studies to see what they do on a daily basis, if any
software visualization tools are used in practice, and what com-
prehension activities and strategies are followed. So far we have
created some visualizations of the class names used in the Java API
JavaDoc and form our software corpus which contains 91 open-
source Java applications. Our visualizations detected that the most

common words used in Java class names are Test, Action, Impl,
and Exception. Knowing what the most common words in Java can
help developers create coding standards for their class names.

Acknowledgements
This work is supported by the New Zealand Foundation for Re-
search Science and Technology for the Software Process and Prod-
uct Improvement project, and a TelstraClear scholarship. Hayden
Smith for implementing the inheritance visualizations.

References
[1] Craig Anslow, James Noble, Stuart Marshall, and Robert Biddle. Web

Software Visualization Using Extensible 3D (X3D) Graphics. In Pro-
ceedings of SoftVis, pages 213–214. ACM, 2008.

[2] Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. Vi-
sualizing the Word Structure of Java Class Names. In Companion to
OOPSLA, pages 777-778. ACM, 2008.

[3] Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. To-
wards End-User Web Software Visualization. In Proceedings of Gradu-
ate Consortium at VLHCC. IEEE, 2008.

[4] Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden
Smith, Matt Visser, Hayden Melton, and Ewan Tempero. Understanding
the Shape of Java Software In Proceedings of OOPSLA, pages 397–412.
ACM, 2006.

[5] Stephan Diehl. Software Visualization Visualizing the Structure, Be-
haviour, and Evolution of Software. Springer, 2007.

[6] Matthew Duignan, Robert Biddle, and Ewan Tempero. Evaluating Scal-
able Vector Graphics For Use in Software Visualisation. In Proceedings
of APVIS, pages 127–136. ACS, 2003.

[7] Joseph (Yossi) Gil and Itay Maman. Micro patterns in Java code. In
Proceedings of OOPSLA, pages 97–116. ACM, 2005.

[8] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a Toolkit
for Interactive Information Visualization. In Proceedings of CHI, pages
421–430. ACM, 2005.

[9] Stuart Marshall, Kirk Jackson, Robert Biddle, Michael McGavin, Ewan
Tempero, and Matthew Duignan. Visualising reusable software over the
web. In Proceedings of APVIS, pages 103–111. ACS, 2001.

[10] Hayden Melton and Ewan Tempero. The CRSS metric for package
design quality. In Proceedings of ACSC, pages 201–210. ACS, 2006.

[11] Casey Reas, Ben Fry, and John Maeda. Processing: A Programming
Handbook for Visual Designers and Artists. MIT Press, 2007.

[12] John T. Stasko, John B. Domingue, Marc H. Brown, Blaine A. Price.
Software Visualization Programming as a Multimedia Experience. MIT
Press, 1998.

[13] John Stasko, Carsten Görg, and Zhicheng Liu. Jigsaw: Supporting
Investigative Analysis through Interactive Visualization. In Information
Visualization, pages 118–132, Vol. 7, No. 2. Palgrave Macmillan, 2008.

[14] James J. Thomas and Kristing A. Cook. Illuminating the Path: The
Research and Development Agenda for Visual Anaytics. IEEE, 2005.

[15] Fernanda B. Viegas, Martin Wattenberg, Frank van Ham, Jesse Kriss,
and Matt McKeon. ManyEyes: a Site for Visualization at Internet Scale.
In Transactions on Visualization and Computer Graphics (TVCG), pages
1121–1128, Vol. 13, No. 6. IEEE, 2007.

[16] Chris Weaver. Building Highly-Coordinated Visualizations in Impro-
vise. In Proceedings of InfoVis, pages 159–166. IEEE, 2004.

[17] J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur,
and V. Crow. Visualizing the non-visual: spatial analysis and interaction
with information from text documents. In Proceedings of InfoVis, pages
51–58. IEEE 1995.

[18] Kang Zhang. Software Visualization: From Theory to Practice.
Kluwer, 2003.


