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Abstract. A matroid is GF(q)-regular if it is representable over
all proper superfields of the field GF(q). We show that, for highly
connected matroids having a large projective geometry over GF(q)
as a minor, the property of GF(q)-regularity is equivalent to rep-
resentability over both GF(q2) and GF(qt) for some odd integer
t ≥ 3. We do this by means of an exact structural description of
all such matroids.

1. Introduction

For a field F0, we say a matroid M is F0-regular if M is representable
over every field F having F0 as a proper subfield.

Let n ≥ 2 be an integer, q be a prime power, and N be a PG(n−1, q)-
restriction of a matroid M ∼= PG(n− 1, q2). Let L0 be a line of N and

x ∈ clM(L0)−L0. We denote by P̂G(n− 2, q) any matroid isomorphic
to si((M/x)|E(N)). If n ≥ 3 and f ∈ E(N) − L0, then we denote
by PG(n − 1, q) any matroid isomorphic to M |(E(N) ∪ clM({x, f})).
(We will show later that these matroids are uniquely determined up
to isomorphism.) A matroid M is round if E(M) is not the union of
two hyperplanes, or equivalently if M is infinitely vertically connected.
Our main theorem is the following:

Theorem 1.1. Let q be a prime power and M be a round rank-r ma-
troid with a PG(12q12 + 19, q)-minor. The following are equivalent:

(1) M is GF(q)-regular;
(2) M is representable over GF(q2) and GF(qt) for some odd integer

t ≥ 3; and

(3) si(M) is a restriction of either P̂G(r − 1, q) or PG(r − 1, q).

This exactly characterises all GF(q)-regular matroids that are suf-
ficiently ‘rich’ and highly connected; the equivalence of (1) and (2) is
strongly reminiscent of Tutte’s characterisation of regular matroids of
the usual sort, and motivates our use of the word. This equivalence
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may hold for all matroids (this has essentially been conjectured for
q = 2 in [9, Conjecture 6.8]), but the characterisation in (3) requires
some extra hypotheses, and we briefly discuss the ones we chose.

As one could otherwise construct counterexamples by taking 2-sums
and 3-sums, some connectivity assumption is needed. However, the
hypothesis of roundness is probably overkill. The theorem likely holds
for vertically 4-connected matroids, and many of our techniques apply
in this more general setting. Proving a ‘vertically 4-connected’ ver-
sion of the theorem would require analysis of how the structure in (3)
propagates over 4-separations.

The hypothesis of having some sort of underlying ‘richness’, here a
large projective geometry minor, is also necessary; the structure in (3)
does not describe all vertically 4-connected GF(q)-regular matroids.
Indeed, Gerards [6] defined a class of signed-graphic matroids repre-
sentable over every field with at least three elements; this class con-
tains counterexamples to our theorem of arbitrarily high branch-width.
However, Gerards’ counterexamples are nearly planar; it is possible
that a very similar structure to that in (3) holds for all vertically 4-
connected matroids with a large enough clique minor. Round GF(q2)-
representable matroids of huge rank have a large clique minor [4], so in
the round setting it is possible that our hypothesis of a large projective
geometry minor could be replaced with a ‘large rank’ hypothesis with
few other changes to the theorem statement.

Though the material in this paper is self-contained, sections 6 and 7
make essential use of the theory of tangles and some currently unpub-
lished techniques due to Geelen, Gerards and Whittle [5].

2. Preliminaries

We largely follow the notation of Oxley [8]. We also write ε(M) for
| si(M)|. For a positive integer n, we denote the set {1, . . . , n} by [n].
Finally, if F0 is a subfield of a field F and A is an F matrix, we write
rowF0(A) for the vector space containing all linear combinations of the
rows of A with coefficients in F0. We define colF0(A) similarly.

The versions of connectivity we consider are all ‘vertical’; for k ∈
Z+∪{∞} a set A ⊆ E(M) is vertically k-separating in M if λM(A) < k
and min(rM(A), r(M \A)) ≥ k, and M is vertically k-connected if M
has no vertically k′-separating subsets for any k′ ≤ k. M is round if
it is vertically∞-connected; for example cliques, projective geometries
and non-binary affine geometries are round. A matroid M is vertically
k-connected if and only if its simplification is vertically k-connected.
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Moreover if M is vertically k-connected then M/e is vertically (k− 1)-
connected for each e ∈ E(M); in particular if M is round then so is
M/e. We will use the following slight strengthening of a well-known
result on connectivity; see [8, Theorem 8.5.7].

Theorem 2.1 (Tutte’s Linking Theorem). Let M be a matroid and
A,B ⊆ E(M) be disjoint sets. There is a minor N of M so that
E(N) = A ∪B, N |A = M |A, N |B = M |B and λN(A) = κM(A,B).

To avoid complications arising from inequivalent representations, we
will often consider matroids defined by a representation rather than
axiomatically. If F is a field, then an F-represented matroid on ground
set E is a pair M = (U,E), where U is a subspace of FE. This rep-
resented matroid has rank function given by rM(X) = dim(U [X]) for
each X ⊆ E, where U [X] is the projection of U onto FX . Where con-
fusion might arise, we refer to a matroid defined in the usual way as
an abstract matroid; if M is an F-represented matroid then we write
M̃ for the abstract matroid with the same rank function as M .

Given a matrix A ∈ FX×E, we write M(A) for the F-represented ma-
troid (row(A), E) and M̃(A) for the associated abstract matroid; here
A is an F-representation of M(A). We also need to formalize deletion
and contraction in this context; given an F-representation A of an F-
represented matroid M and a set X ⊆ E(M), we write M \X for the
F-represented matroid M(A[E(M)−X]). It is easiest to define contrac-
tion in terms of duality; if M = (U,E) is an F-represented matroid then
let M∗ = (U⊥, E), where U⊥ = {v ∈ FE : 〈v, u〉 = 0 for all u ∈ U},
and M/X = (M∗ \X)∗. Given a particular representation A, this is
equivalent to the usual matrix interpretation of contraction where we
row-reduce and take a submatrix of A. We extend these definitions to
define a minor and restriction of an F-represented matroid, as well as
extending all other usual matroidal notions such as connectivity.

If F0 is a subfield of F, then two F-matrices A1, A2 are F0-row-
equivalent if one can be obtained from the other by elementary row-
operations only involving coefficients in F0. Furthermore, the matrices
A1, A2 are F0-projectively equivalent if there is a matrix A′1 that is F0-
row-equivalent to A1 that can be obtained from A2 by scaling columns
by nonzero elements of F0. We also say that the F-represented matroids
M(A1) and M(A2) are F0-projectively equivalent. If F0 = F then we
just say the matrices or represented matroids are projectively equivalent,
and write A1 ≈ A2 and M(A1) ≈ M(A2). It is clear that if M ≈ M ′

then M̃ = M̃ ′. For each integer n, let PG(n − 1, q) denote the set of
GF(q)-matrices G with row-set [n] satisfying M̃(G) ∼= PG(n− 1, q).
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3. Algebra

We frequently consider an extension field F of a field F0; our main
theorem applies just when F0 = GF(q) and F = GF(q2), but some
lemmas apply for arbitrary F0. When the extension has degree 2 with
F = F0(ω), we often use the fact that F is a dimension-2 vector space
over F0 with basis {1, ω}. We require a few lemmas relating F0 and F
in various contexts; the first is proved in [7].

Lemma 3.1. Let n ≥ 3 be an integer, q be a prime power, and F
be a field with a GF(q)-subfield. If A is an F-matrix with M(A) ∼=
PG(n− 1, q), then A is projectively equivalent to a GF(q)-matrix.

We will apply the next lemma in the case where j = 2 and h = 3.

Lemma 3.2. Let F = F0(ω) be a degree-2 extension field of a field
F0 and let j, h, t ∈ Z+ satisfy 2j > h and j, h ≤ t. If V is an h-
dimensional subspace of Ft

0 and U is a j-dimensional subspace of Ft

such that U ⊆ spanF(V ), then U ∩ V is nontrivial.

Proof. Let {b1, . . . , bh} be a basis for V and let W = spanF(V ), noting

that each w ∈ W is expressible in the form
∑h

i=1(λi + ωµi)bi for some
unique λ, µ ∈ Fh

0 . Let ϕ : W → F2h
0 be the invertible linear trans-

formation defined by ϕ
(∑h

i=1(λi + ωµi)bi

)
= (λ1, . . . , λh, µ1, . . . , µh).

Now ϕ(U) and ϕ(V ) are subspaces of F2h
0 with dim(ϕ(U)) = 2j and

dim(ϕ(V )) = h, so dim(ϕ(U) ∩ ϕ(V )) = 2j + h − 2h > 0. Therefore
U ∩ V is nontrivial, as required. �

Lemma 3.3. Let F0 be a field and F = F0(ω) be a degree-2 extension
field of F0. Let h, d, n ∈ Z+

0 satisfy h ≤ d and let A,B ∈ Fd×n
0 be

matrices such that rank(A+ ωB) = d. If rank
(
A
B

)
= 2d− h then there

is a rank-h matrix Q ∈ Fh×d such that Q(A+ ωB) is an F0-matrix.

Proof. Let ω2 = s + ωt for s, t ∈ F0. If rank
(
A
B

)
= 2d − h then there

are matrices Q1, Q2 ∈ Fh×d
0 such that (Q1|Q2)

(
A
B

)
= Q1A + Q2B = 0

and rank(Q1|Q2) = h. Let Q = (ω− t)Q1 +Q2; we have Q(A+ωB) =
(Q2A− tQ1A+ sQ1B) + ω(Q1A+Q2B) which is an F0-matrix.

It remains to show that rank(Q) = h. If not, then there are row
vectors x, y ∈ Fh

0 such that x+ ωy 6= 0 and (x+ ωy)Q = 0. This gives
(xQ2 − txQ1 + syQ1) + ω(xQ1 + yQ2) = 0, implying that

(1)

(
−t s
1 0

)(
x

y

)
Q1 +

(
x

y

)
Q2 = 0.

Note that the matrix J = ( 1 t
0 −1 ) satisfies ( 0 s

1 t ) J = J
(

t −s
−1 0

)
. Set(

u
v

)
= J

(
x
y

)
Q1; we will argue that u+ωv 6= 0 and (u+ωv)(A+ωB) = 0,
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which contradicts rank(A+ωB) = d. If u+ωv = 0, then
(
u
v

)
= 0 and,

since J is nonsingular,
(
x
y

)
Q1 = 0. This implies xQ1 = yQ1 = 0, which

together with (1) and the fact that rank(Q1|Q2) = h yields
(
x
y

)
= 0,

which is not the case. Therefore
(
u
v

)
6= 0. We have (u+ωv)(A+ωB) =

(uA+ svB) + ω(uB + vA+ tvB) =
〈(

1
ω

)
,
(
u
v

)
A+ ( 0 s

1 t )
(
u
v

)
B
〉
. Now(

u

v

)
A+

(
0 s
1 t

)(
u

v

)
B = J

(
x

y

)
Q1A+

(
0 s
1 t

)
J

(
x

y

)
Q1B

= J

((
x

y

)
Q1A+

(
t −s
−1 0

)(
x

y

)
Q1B

)
= −J

((
x

y

)
Q2 +

(
−t s
1 0

)(
x

y

)
Q1

)
B,

since Q1A = −Q2B. Now combining the above with (1) we see that
(u + ωv)(A + ωB) = 0, contradicting the fact that rank(A + ωB) = d
and u+ ωv 6= 0.

�

The above lemma has the following as a straightforward corollary.

Lemma 3.4. Let F = F0(ω) be a degree-2 extension field of a field
F0. Let h, d,m, n ∈ Z+

0 satisfy 0 ≤ h ≤ d ≤ n and A,B ∈ Fd×n
0

and P ∈ Fm×n
0 be such that rank

(
A+ωB

P

)
= m + d, rank(P ) = m and

rank
(

A
B
P

)
≤ m+ 2d− h. There exist matrices A′, B′ ∈ Fd×n

0 such that(
A+ωB

P

)
and

(
A′+ωB′

P

)
are row-equivalent and B′ has h zero rows.

4. Examples

We now investigate the two classes of GF(q)-regular matroids from
our main theorem. We define them differently from in the introduction
in order to prove that they are both well-defined and GF(q)-regular. We
will use the fact that projective geometries are modular ; that is, that
every pair of flats F1, F2 satisfies r(F1∩F2) = r(F1)+r(F2)−r(F1∪F2).

Let F be a field with a GF(q)-subfield, n ≥ 3 be an integer, A ∈
PG(n − 1, q) and N = M̃(A) ∼= PG(n − 1, q). Let L0 be a line of
N and v ∈ colF(A[L0]) be not parallel to any column of A[L0]. Let
f ∈ E(N) − L0 and L be the collection of lines of clN(L0 ∪ {f}) not
containing f , noting that |L| = q2. For each L ∈ L, let vL be a
nonzero vector in the rank-1 subspace colF(AL) ∩ colF(v|A[f ]). Let
X = {xL : L ∈ L} be a q2-element set and let A ∈ F[n]×(E(N)∪X) be the
matrix so that A[E(N)] = A and A[xL] = vL for each L ∈ L.
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Lemma 4.1. The matroid M̃(A) is determined up to isomorphism by
the choice of n and q.

Proof. Let M = M̃(A). We have M \X = N ∼= PG(n−1, q). Let FN be
the set of cyclic flats of N and FM be that of M . Let P = clN(L0∪{f}).
Note that every pair of lines of P intersect. It is easy to check the
following claim:

4.1.1.

FM = {F : F ∈ FN , |F ∩ P | ≤ 1}
∪{F ∪X : F ∈ FN , F ∩ P = {f}}
∪{F ∪ {xL} : F ∈ FN , F ∩ P = L ∈ L}
∪{F : F ∈ FN , rM(F ∩ P ) = 2, F ∩ P /∈ L}
∪{F ∪X : F ∈ FN , P ⊆ F}.

Since a matroid is determined by its collection of cyclic flats, the
matroid M̃(A) is therefore determined, for a given n and q, by the
naming of elements in X and the choice of N,P and f . There is only
one choice for N up to isomorphism, and the lemma now follows from
the fact that the Aut(PG(n − 1, q)) acts transitively on pairs (P, f),
where P is a plane containing f . �

We write PG(n − 1, q) for any matroid isomorphic to M(A). Note
that M = PG(n − 1, q) arises from N = PG(n − 1, q) by adding q2

new points on a line, spanned by a plane P of M and spanning a single
point of P . The following is immediate from the definition and the
previous lemma.

Lemma 4.2. The matroid PG(n− 1, q) is GF(q)-regular.

We now turn to our second class, which is simpler to analyse. Let
F be a field with a GF(q)-subfield and let n ≥ 2. Let B ∈ PG(n, q)
and N = M̃(B). Let L0 be a line of N and v ∈ colF(B[L0]) be a
nonzero vector, not parallel to any column of B[L0]. Let e /∈ E(N) and
B+ ∈ F[n+1]×(E(N)∪{e}) be such that B+[E(N)] = B and B+[e] = v.

By modularity of N , the matroid M̃(B+) is isomorphic to the princi-
pal extension of L0 in N by the element e, and is therefore determined
up to isomorphism by n and q (due to transitivity of Aut(PG(n, q)) on

its set of lines). We write P̂G(n−1, q) for any matroid isomorphic to the
rank-n matroid si(M̃(B+)/e). The following is clear by construction:

Lemma 4.3. The matroid P̂G(n− 1, q) is GF(q)-regular.
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While we have specified these matroids abstractly to emphasise their
GF(q)-regularity and the fact that they are well-defined, we will only
be interested in their GF(q2)-representations. We first consider PG(n−
1, q). The line X we add is a U2,q2+1-restriction spanned by an element
f of N , together with an element xL0 that is spanned by L0 but not
contained in L0. Since there are at most q2 + 1 points on every line
in PG(n − 1, q2), there is only one way to add the points in X given
a choice of f and xL0 . By choosing a basis for GF(q2)n in which L0

and f correspond to the first three standard basis vectors, we see that
PG(n− 1, q) has the following as a representation:

A(n− 1, q) =



xL0
X−{xL0

} E(N)

1 α
ω ωα
0 1 A
0 0
...

...

,
where α ranges over GF(q2)− {0}, and A ∈ PG(n− 1, q) is such that
Af is the third standard basis vector.

Now we consider P̂G(n − 1, q). Let B ∈ PG(n, q) be a matrix con-
taining among its columns the standard basis vectors b1, . . . , bn+1 ∈
GF(q)n+1. If we choose L0 to be the line spanned by b1 and b2 and v to

be the vector b1−ωb2, the matroid P̂G(n−1, q), obtained by appending
v to B and contracting the corresponding element, has the following
representation:

Â(n− 1, q) =

(
(0 + 0ω)j (1 + 0ω)j . . . (s+ tω)j . . .

A A . . . A . . .

)
,

where A ∈ PG(n− 2, q), j = (1, . . . , 1) denotes the all-ones vector with
qn−1−1
q−1 entries, and s and t range over GF(q). Note that every vector

in GF(q2)n with all but the first entry in GF(q) is parallel to a column

of Â(n− 1, q).

We have defined P̂G(n − 1, q) and PG(n − 1, q) abstractly, not as
GF(q2)-represented matroids. When we refer to the associated GF(q2)-

represented matroids we will write M(Â(n−1, q)) and M(A(n−1, q)).

5. Non-examples

Let F = F0(ω) be a degree-2 extension field of a field F0. For a vector
w ∈ Ft, we write L(w) for the subspace spanF0

({u, v}), where u and
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v are the unique F0-vectors so that w = u + ωv. Note that L(w) has
dimension 2 if and only if w is not parallel to an F0-vector.

We now define an important class of rank-3 represented matroids
that will serve as obstructions to GF(q2)-regularity. Let O(q) denote
the set of GF(q2)-represented matroids M such that M ≈M(A | G3),
where the column set X of A has three elements, G3 ∈ PG(2, q), and
A ∈ GF(q2)[3]×X is a rank-3 matrix such that the three subspaces
L(Ax) : x ∈ X each have dimension 2 and together have trivial inter-
section.

More geometrically, if M ∈ O(q) then M̃ is obtained by extending a
projective plane R over GF(q) by a three-element independent set X
so that M̃ is GF(q2)-representable and there is no point of R common
to the three lines of R spanning the three points of X.

Lemma 5.1. If M ∈ O(q), then M̃ is representable over a field F if
and only if F has GF(q2) as a subfield.

Proof. Let M ∈ O(q) and X,A,G3 be defined as above. Let X =
{x1, x2, x3} and R = M \X, noting that R̃ ∼= PG(2, q). Each pair
of subspaces in {L(Ax) : x ∈ X} meet in dimension 1; let ei be the
unique element of E(R) so that G3[ei] ∈ ∩j∈[3]−{i}(L(xj)). Moreover by
Lemma 3.2 each pair of columns of A spans a nonzero GF(q)-vector;
for each i ∈ [3] let fi be the unique element of E(R) so that G3[fi] ∈
col(A[X − {xi}]). Note that M̃ is a simple rank-3 matroid, that R̃ ∼=
PG(2, q), and that the subspaces L(Ax) : x ∈ X correspond to three
lines L1, L2, L3 of R̃ so that xi ∈ clM̃(Li) and L1 ∩ L2 ∩ L3 = ∅.

Further observe that if i, j ∈ [3] and i 6= j, then fi /∈ Lj. Since M̃
is GF(q2)-representable it is also representable over all fields with a
GF(q2)-subfield, so it remains to show that M̃ is not representable
over any other fields.

Let F be a field over which M̃ is representable and assume for a con-
tradiction that F does not have a GF(q2)-subfield. Since R̃ is a minor
of M̃ it follows that F has GF(q) as a subfield. Let P ∈ F[3]×E(M) be
a F-representation of M̃ ; by Lemma 3.1 we may assume that P [E(R)]
is a GF(q)-matrix and by applying further GF(q)-row operations and
GF(q2)-column scalings we may assume (using the fact that fi /∈ Lj

for i 6= j) that P has the form

P =


e1 e2 e3 x1 x2 x3 f1 f2 f3

1 0 0 0 α2 α3 s1 1 1
0 1 0 1 0 1 1 s2 s4 . . .
0 0 1 α1 1 0 1 s3 s5

,
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where αi ∈ F − GF(q) for each i ∈ [3], s1 ∈ {0, 1} and sj ∈ GF(q) for
each j ∈ [5]. Since rM̃(x2, x3, f1) = 2, we have α2 + α3 = s1. The lines
clM̃({f2, x3}) and clM̃({x3, f2}) both intersect L2 at x1, so the vectors
(0, 1−α3s2,−α3s3) and (0,−α2s4, 1−α2s5) are both parallel to (0, 1, α1)
and thus α3s3α2s4 = (1− α3s2)(1− α2s5). Using α3 = s1 − α2, we see
that α2 is a zero of the function

p(z) = s3s4z(s1 − z)− (1− s2(s1 − z))(1− s5z).

Now p(z) is a polynomial in z with coefficients in GF(q) and degree
at most 2. However, α2 /∈ GF(q) and, since F has no GF(q2)-subfield,
α2 is not a zero of an irreducible quadratic over GF(q). Therefore p(z)
is identically zero. We have 0 = p(0) = 1 − s1s2, so s1s2 = 1; since
s1 ∈ {0, 1} this gives s1 = s2 = 1. Similarly we have 0 = p(s1) = s5−1,
so s5 = 1. Therefore p(z) = z(1 − z)(s3s4 − 1), so s3s4 = 1. Let
s3 = t and s4 = t−1. Since rM̃({x1, x3, f2}) = rM̃({x1, x2, f3}) = 2, we
have α1 = t(1 + α−12 ) and α1 + (1 − α2)

−1 = t. A computation gives
α2 = (1 + t)−1, contradicting α2 /∈ GF(q). �

We now precisely determine the matrices A which, when appended
to a matrix in PG(t− 1, q), yield a matroid with no O(q)-minor; these

matrices are all essentially restrictions of Â(t − 1, q) and A(t − 1, q).
We also give an alternative characterisation of these matrices in terms
of the subspaces L(x) defined as above. This is equivalent to a treat-
ment of the special case of our main theorem where M has a spanning
projective geometry restriction.

Lemma 5.2. Let q be a prime power, t ≥ 3 be an integer and Gt ∈
PG(t−1, q). If A ∈ GF(q2)[t]×Y and M = M(A | Gt) then the following
are equivalent:

(1) M has a minor in O(q);
(2) si(M) is not projectively equivalent to a restriction of either

M(Â(t− 1, q)) or M(A(t− 1, q));
(3) there exists a set Z ⊆ Y , independent in M , such that |Z| ∈
{2, 3} and the subspaces L(Az) : z ∈ Z each have dimension 2
and have trivial intersection.

Moreover, if t ≥ 5 and (3) is satisfied by a set Z of size 2, then the
matroid M/Z \(Y − Z) also has a minor in O(q).

We call a matrix A satisfying the conditions in this lemma q-bad and
if (3) holds with |Z| = 2 we call A strongly q-bad. Note that property
(3), and therefore (strong) q-badness, is invariant under GF(q)-row
equivalence.



10 PETER NELSON, STEFAN H.M. VAN ZWAM

Proof of Lemma 5.2: Let b1, . . . , bt be the standard basis vectors of

GF(q)t. We showed in Lemmas 4.2 and 4.3 that P̂G(n − 1, q) and
PG(n− 1, q) are GF(q)-regular and in Lemma 5.1 that the matroids in
O(q) are not, so (1) implies (2).

Suppose that (2) holds. Note that (3) and its negation are invariant
under GF(q)-row-equivalence. Let Y ′ = {y ∈ Y, dim(L(Ay)) = 2} and
L = {L(Ay) : y ∈ Y ′}, noting that every y ∈ Y − Y ′ is a loop or is
parallel to some column of Gt, so si(M\(Y −Y ′)) ∼= si(M). If there exist
z1, z2 ∈ Y ′ such that L(Az1) and L(Az2) are skew then Z = {z1, z2}
satisfies (3), so we may assume that Y ′ contains no such pair.

If all subspaces in L have a dimension-1 subspace in common, then,
by applying GF(q)-row-operations, we may assume that this subspace
is spanGF(q)(b1). This gives a matrix representation of si(M) that is,

up to column scaling, a submatrix of Â(t− 1, q), contradicting (2). We
may therefore assume that

⋂
L is trivial.

Therefore no pair of subspaces in L are orthogonal but there is no
dimension-1 subspace common to all subspaces in L. It follows rou-
tinely that there is some dimension-3 subspace P of GF(q)t containing
all subspaces in L, so rM(Y ′) ≤ 3.

If rM(Y ′) ≤ 2 then there is a dimension-2 subspace L0 of spanGF(q2)(P )
containing A[Y ′]. By Lemma 3.2, L0 contains a nonzero GF(q)-vector
v. Let {v, w} be a basis for L0. After GF(q)-row-operations we may
assume that {b1, b2, b3} is a basis for P , that v = b3, and that w ∈
clGF(q2)({b1, b2})−clGF(q2)(b2). Moreover, after row-scalings over GF(q2)
we may assume that either w = b1 or w = b1 + ωb2. Since rM(Y ′) =
2 it follows that si(M) is projectively equivalent to a restricition of

Â(t− 1, q) or A(t− 1, q), contradicting (2).
If rM(Y ′) = 3 then let Z = {z1, z2, z3} be a basis for Y ′. Let Li =

L(Azi) for each i ∈ {1, 2, 3}. Since rM(Z) = 3, the lines L1, L2, L3 are
not all equal, so we may assume that L1 /∈ {L2, L3}. If L1, L2, L3 have
no dimension-1 subspace in common then (3) holds, so we may assume
that L1 ∩ L2 ∩ L3 has dimension 1. Moreover we know that there is
some other subspace L4 = L(Az4) ∈ L not containing L1 ∩ L2 ∩ L3, as⋂
L is trivial. Now L1 ∩L2 ∩L4 and L1 ∩L3 ∩L4 are both trivial, and

either {z1, z2, z4} or {z1, z3, z4} has rank 3 in M . Therefore (3) holds.
Finally, suppose that (3) holds. If |Z| = 2 then let Z = {z1, z2}.

By applying GF(q)-row-operations if necessary we may assume that
L(z1) = spanGF(q)({b1, b2}) and L(z2) = spanGF(q)({b3, b4}). Let X
be the set of columns of Gt contained in spanGF(q)(L(z1) ∪ L(z2)) and
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N = M |(X ∪ {z1, z2}). We have

N ≈M


z1 z2 X

1 0
α1 0 . . .
0 1 . . .
0 α2

,
for some α1, α2 ∈ GF(q2) − GF(q), where the matrix contains exactly
one column from each parallel class in GF(q)4. Therefore, N/z1 is
represented by a matrix having a submatrix containing as columns at
least one nonzero vector from each parallel class of GF(q)3, as well
as columns parallel to (0, 1, α2)

T , (−α1, 1, 0)T and (−α1, 0, 1)T . Re-
stricting N/z1 to this submatrix yields a matroid in O(q). More-
over, if t ≥ 5 then let X ′ be the set of columns of t contained in
spanGF(q)(L(z1) ∪ L(z2) ∪ {t5}) and let N ′ = M |(X ′ ∪ {z1, z2}). It is
easy to see by a similar argument to the above that N ′/{z1, z2}, which
is a restriction of M/Z \(Y − Z), has a spanning restriction in O(q).

If (3) holds for some Z of size 3 but for no 2-element subset of Z, then
Z contains three dimension-2 subspaces, all contained in a common
dimension-3 subspace, with trivial intersection. This dimension-3 sub-
space corresponds to a plane P of the spanning PG(t−1, q)-restriction
of M , and clearly M |(P ∪ Z) ∈ O(q). �

6. Tangles

Our tool for constructing minors in O(q) given a projective geometry
minor (rather than a spanning restriction as in Lemma 5.2) is the
tangle. Tangles were introduced for graphs, and implicitly for matroids,
by Robertson and Seymour [10] and were later extended explicitly to
matroids [1,3]. The techniques in this section and the next follow [5].

Let M be a matroid and let θ ∈ Z+. A set X ⊆ E(M) is k-separating
in M if λM(X) < k. A collection T of subsets of E(M) is a tangle of
order θ if

(1) Every set in T is (θ− 1)-separating in M and, for each (θ− 1)-
separating set X ⊆ E(M), either X ∈ T or E(M)−X ∈ T ;

(2) if A,B,C ∈ T then A ∪B ∪ C 6= E(M); and
(3) E(M)− {e} /∈ T for each e ∈ E(M).

We refer to the sets in T as T -small. Given a tangle of order θ on
a matroid M and a set X ⊆ E(M), we set κT (X) = θ − 1 if X is
contained in no T -small set, and κT (X) = min{λM(Z) : X ⊆ Z ∈ T }
otherwise. The proof of our first lemma appears in [3]:
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Lemma 6.1. If T is a tangle of order θ on a matroid M , then κT is
the rank function of a rank-(θ − 1) matroid on E(M).

This matroid, which we denote M(T ), is the tangle matroid. The
next lemma is easily proved:

Lemma 6.2. If N is a minor of a matroid M and TN is a tangle of
order θ on N , then {X ⊆ E(M) : λM(X) < θ − 1, X ∩E(N) ∈ TN} is
a tangle of order θ on M .

This tangle is the tangle on M induced by TN .
If M is a matroid and k is an integer, then we write Tk(M) for the

collection of (k−1)-separating sets of M that are neither spanning nor
cospanning. For example, if M ∼= PG(n− 1, q) and n ≥ k, then Tk(M)
is simply the collection of subsets of E(M) of rank at most k−2. Since

3 qn−2−1
q−1 < qn−1

q−1 , no three such subsets have union E(M), and we easily

have the following:

Lemma 6.3. If q is a prime power, n ∈ Z+, and M ∼= PG(n − 1, q),
then Tn(M) is a tangle of order n in M .

If M is a matroid with a PG(n − 1, q)-minor N , then we write
Tn(M,N) for the tangle of order n in M induced by Tn(N).

The next result is a slight variation of a lemma from [5].

Lemma 6.4. Let k ∈ Z+, let M be a matroid and let N be a minor
of M such that Tk(N) is a tangle. If X ⊆ E(M) is contained in a
Tk(M,N)-small set, then there is a minor M ′ of M such that M ′|X =
M |X, M ′ has N as a minor, and X is contained in a Tk(M ′, N)-small
set X ′ such that E(M ′) = E(N) ∪X ′ and λM ′(X

′) = κTk(M ′,N)(X) =
κTk(M,N)(X).

Proof. Let b = rTk(M,N)(X) and let M ′ be a minimal minor of M such
that N is a minor of M , M |X = M ′|X and rTk(M ′,N)(X) = b. Let T =
Tk(M ′, N) and X ′ = clM(T )(X). It remains to show that E(M ′) = X ′∪
E(N). If not, there is some e ∈ E(M ′)−X ′ ∪E(N). Since clM ′(X) ⊆
X ′, we know that M |X is a restriction of both M/e and M \e. If N is
a minor of M/e, and so by choice of M we have rTk(M/e,N)(X) ≤ b− 1.
Therefore there is some set Z ∈ Tk(M/e,N) such that λM ′/e(Z) ≤
b − 1 and X ⊆ Z. Therefore Z ∪ {e} ∈ T and λM ′(Z ∪ {e}) ≤ b so
rT (X ∪{e}) = rT (X) and e ∈ clT (X), a contradiction. The case where
N is a minor of M \e is similar. �

7. Using a Tangle

Our first lemma allows us to find an affine geometry restriction in
a dense GF(q)-representable matroid M after contracting a subset of
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an arbitrary set of bounded size. A stronger qualitative version of this
lemma (in which such a restriction is found in M itself) follows from
the density Hales-Jewett theorem [2], but the proof of this result is
much easier and we obtain a constructive bound.

Lemma 7.1. Let α ∈ R+, q be a prime power, and n, h, k ∈ Z+ satisfy
n ≥ (2 + k)h + logq(2/α) and k ≥ 2qh(1/α − 1). If M is a rank-r
GF(q)-representable matroid with r ≥ n and ε(M) ≥ α|PG(r − 1, q)|
then for each rank-hk independent set C in M , there exists C ′ ⊆ C
such that M/C ′ has an AG(h, q)-restriction.

Proof. Let (C1, C2, . . . , Ck) be a partition of C into sets of size h,
and for each i ∈ {0, . . . , k} let Mi = M/(C1 ∪ . . . ∪ Ci) and δi =
ε(Mi)/|PG(r(Mi) − 1, q)|, noting that δ0 ≥ α and δi ≤ 1 for each i.
Let x = 1

2
q−h and let j be maximal such that j ≤ k and δj ≥ α(1+x)j.

If j = k then we have δk ≥ α(1 +x)k > α(1 + kx) ≥ 1, a contradiction.
Therefore j < k, and we have δj ≥ α(1 + x)j and δj+1 < α(1 + x)j+1.

Let F = clMj
(Cj+1) and F be the collection of rank-(h + 1) flats

of Mj containing F ; we have ε(Mj+1) = |F| and ε(Mj) = ε(Mj|F ) +∑
H∈F(ε(Mj|H) − ε(Mj|F )). We may assume that Mj|H 6∼= AG(h, q)

for each H ∈ F , and therefore that ε(Mj|H) − ε(Mj|F ) < qh for each
H ∈ F . Let r = r(Mj) = n− hk. Now

α(1 + x)j
qr − 1

q − 1
≤ ε(Mj)

= ε(Mj|F ) +
∑
H∈F

(ε(Mj|H)− ε(Mj|F ))

≤ qh − 1

q − 1
+ (qh − 1)ε(Mj+1)

<
qh − 1

q − 1
+ α(qh − 1)(1 + x)j+1 q

r−h − 1

q − 1
.

Simplifying this inequality gives

x(qr − 1) +
qh − 1

(1 + x)jα
> (1 + x)(qh + qr−h − 2),

and so, using x > 0 and qh ≥ 2, we have xqr + qh/α > qr−h. This
implies that qr < 2q2h/α, contradicting r ≥ 2h+ logq(2/α). �

We now combine the previous lemma and the machinery of tangles
to show that, given a small restriction of M with given ‘connectivity’
to a large projective geometry minor of M , we can realise the same
connectivity to a projective geometry restriction in a minor of M . The
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‘qualitative’ version of this lemma, on whose proof ours is based, will
appear in [5].

Lemma 7.2. Let q be a prime power, let h, a ∈ Z+ satisfy a ≤ h and
let n = 2h(1 + qh+a) + a + 2. If M is a matroid with a PG(n − 1, q)-
minor N and X ⊆ E(M) is a set such that rM(X) ≤ a and M \X is
GF(q)-representable, then there is a minor M ′ of M and a PG(h−1, q)-
restriction N ′ of M ′ such that E(M ′) = E(N ′)∪X, M ′|X = M |X and
λM ′(X) = κTk(M,N)(X).

Proof. Let k = 2qh+a and α = (qa + 1)−1, noting that h, k, n and α
satisfy the numerical conditions in Lemma 7.1. Let b = κTn(M,N)(X).
By Lemma 6.4 there is a minor M1 of M having N as a minor and a
Tn(M1, N)-small set X1 containing X such that E(M1) = E(N) ∪X1

and λM1(X1) = κTn(M1,N)(X) = b.
Note for each independent set C of N that Tn−|C|(N/C) is a tangle

of order n − |C| on N/C. Let C be a maximal independent set of
N \(X ∩ E(N)) so that

(1) |C| ≤ hk,
(2) M1|X = (M1/C)|X, and
(3) κTn−|C′|(M1/C′,N/C′)(X) = b for all C ′ ⊆ C.

Let M2 = M1/C, N2 = N/C, T = Tn−|C|(M2, N2) and X ′ = clM(T )(X).

7.2.1. |C| = hk.

Proof of claim: Suppose that |C| ≤ hk − 1. Since κT (X ′) = b ≤ n −
hk < n−|C|, we have X ′ ∈ T , so E(N2)−X ′ is spanning in N2. Further
note that rM2(X) = a < n − |C|; let e ∈ E(N2) − X ′ − clM2(X). By
choice of C and e, we may assume that X has rank at most b − 1
in Tn−|C′∪{e}|(M2/e,N2/e) for some C ′ ⊆ C, so there is some set Z
such that C ′ ∪ {e} ⊆ Z, λM2/e(Z) ≤ b − 1 and Z ∩ E(N2/e) is not
spanning in N2/e. Therefore (Z∪e)∩E(N2) is not spanning in N2 and
λM2(Z∪{e}) ≤ b. It follows that e ∈ clT (X) = X ′, a contradiction. �

Since X1 ∩ E(N) is not spanning in N and N is round, it follows
that rN(X1 ∩ E(N)) = λN(X1 ∩ E(N)) ≤ λM1(X1) = b. Therefore
n ≤ r(M1|E(N)) ≤ n+ b. Now

ε(M1 \X1) ≥
qn − 1

q − 1
− qb − 1

q − 1

≥ (qb + 1)−1
qn+b − 1

q − 1

≥ α|PG(r(M1|E(N))− 1, q)|.
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The matroid M1|E(N) is a minor of M \X and is therefore GF(q)-
representable. Moreover, C is an hk-element independent subset of
E(N), so by Lemma 7.1 there is a set C ′ ⊆ C such that (M1|E(N))/C ′

has an AG(h, q)-restriction (M1/C
′)|A. Let T ′ = Tn−|C′|(M1/C

′, N/C ′).
Now N/C ′ is GF(q)-representable and ε((N/C ′)|A) = qh, so r(N/C′)|A ≥
h + 1 > b. Therefore κT ′(A) ≥ κTn−|C′|(N/C′)(A) ≥ b. It follows that

κM1/C′(X,A) = b, as otherwise M1/C
′ has a b-separation for which

neither side is T ′-small.
By Theorem 2.1, there is a minor M ′

1 of M1/C
′ with E(M ′

1) = X∪A,
M ′

1|X = (M1/C
′)|X = M |X, M ′

1|A = (M1/C
′)|A ∼= AG(h, q) and

λM ′1(X) = b. Since r(M ′
1|A) = h+1 > b, there is some e ∈ A−clM ′1(X).

Contracting e and simplifying yields the required minor M ′. �

Note in the above lemma that, in the special case where M is round
we have κTk(M,N)(X) = rM(X); it follows that N ′ is spanning in M ′.

8. Augmenting Structure

We now consider a matroid M and an element e ∈ E(M) such that

si(M/e) is a restriction of P̂G(r(M) − 2, q) or PG(r(M) − 2, q); we
essentially argue that M itself either has one of these two structures,
or satisfies some constructive condition certifying otherwise. Unfortu-
nately these hypotheses and outcomes are somewhat opaque in the two
lemmas that follow; Theorem 9.1 will unify them.

We consider a slight variation of contraction in this section for ease
of notation. If e is a nonloop of a represented matroid M , then we
let M//e denote the represented matroid M ′/e′, where M ′ is obtained
from M by extending e in parallel by an element e′. Thus, e is a loop
of M//e, and we have M/e = (M//e) \e and E(M//e) = E(M). Note
that if M//e ≈M(A) for some F-matrix A, then M ≈M(A′) for some
matrix A′ obtained by appending a single row to A.

Lemma 8.1. Let F = F0(ω) be a degree-2 extension field of a field F0.
Let M be a vertically 5-connected F-represented rank-r matroid and e

be a nonloop of M such that M//e ≈M
(
u0+ωv0

R

)
for some u0, v0 ∈ FE(M)

0

and R ∈ F[r−2]×E(M)
0 . Then there are matrices P,Q ∈ F[2]×E(M)

0 such
that M ≈M

(
P+ωQ

R

)
and either

(1) there is a partition (I, J) of E(M) such that

rank(R[I]) + rank(Q[J ]) ≤ 1,

or
(2) the matrix
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W+ =


S X E(M)

[2] I2 0 −ωI2 P
[2] 0 I2 I2 Q

[r−2] 0 0 0 R


satisfies κM(W+)(S ∪X,K) = 4 for every set K ⊆ E(M) such
that rM(K) ≥ 4. (Here |S| = 4 and |X| = 2.)

Proof. Since M//e ≈ M
(
u0+ωv0

R

)
, we have M ≈ M

(
P1+ωQ1

R

)
for some

P1, Q1 ∈ F[2]×E(M)
0 . Let W+ be the matrix in (2) with P,Q = P1, Q1

and let M+ = M(W+). Note that M ≈M+/X \S and r(M+) = r+2.
If (2) does not hold for P1, Q1, then there are sets Z,K ⊆ E(M+) such
that rM(K) ≥ 4, with S ∪ X ⊆ Z ⊆ E(M+) − K and λM+(Z) ≤ 3.
Let (I, J) = (E(M) ∩ Z,E(M)− Z).

Note that rM+(Z) ≥ rM+(S) = 4. We have λM(I) ≤ λM+(Z) ≤ 3,
so vertical 5-connectivity of M gives min(rM(I), rM(J)) ≤ 3. But
rM(J) ≥ rM(K) ≥ 4, so rM(I) ≤ 3. This gives rM+(Z) ≤ 5 and, by
vertical 5-connectivity of M , rM(J) = r.

Note that 0 ≤ rM+(J) − rM(J) ≤ r(M+) − r(M) = 2. We have
r = rM(J) = rank

((
P1+ωQ1

R

)
[J ]
)

and rM+(J) = rank(W+[J ]). By

Lemma 3.4,
(
P1+ωQ1

R

)
[J ] is row-equivalent to a matrix

(
P ′+ωQ′

R[J ]

)
, where

rank(Q′) = rank(W+[J ])− rank
((

P1+ωQ1

R

)
[J ]
)

= rM+(J)− r.

Therefore
(
P1+ωQ1

R

)
is row-equivalent to a matrix

(
P+ωQ

R

)
where Q[J ] =

Q′. Now M = M
(
P+ωQ

R

)
and

3 ≥ λM+(Z)

= rM+(Z) + rM+(J)− r(M+)

= (4 + rank(R[I])) + (r + rank(Q′))− (r + 2),

= 2 + rank(R[I]) + rank(Q[J ])

so rank(R[I]) + rank(Q[J ]) ≤ 1. Therefore (1) holds. �

Lemma 8.2. Let F = F0(ω) be a degree-2 extension field of a field
F0. Let M be a rank-r, vertically 9-connected F-represented matroid

and e be a nonloop of M . If there are matrices P0, Q0 ∈ F[2]×E(M)
0 and

R ∈ F[r−3]×E(M)
0 and a partition (I0, J0) of E(M) such that M//e ≈

M
(
P0+ωQ0

R

)
, rM//e(I0) ≤ 2, rank(R[I0]) ≤ 1 and Q0[J0] = 0, then there

are matrices P,Q ∈ F[3]×E(M)
0 such that M ≈M

(
P+ωQ

R

)
and either

(1) M and e satisfy the hypotheses of Lemma 8.1,
(2) there is a partition (I, J) of E(M) such that Q[J ] = 0 and

rM(I) ≤ 4, or
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(3) the matrix

W+ =


S X E(M)

[3] I3 0 −ωI3 P
[3] 0 I3 I3 Q

[r−2] 0 0 0 R


satisfies κM(W+)(S ∪ X,K) ≥ 5 for each set K ⊆ E(M) such
that rM(K) ≥ 5. (Here |S| = 6 and |X| = 3.)

Proof. By hypothesis, there are matrices P1, Q1 ∈ F[3]×E(M)
0 such that

M ≈ M
(
P1+ωQ1

R

)
, where P1 =

(
u
P0

)
and Q1 =

(
v
Q0

)
for some vectors

u, v ∈ FE(M)
0 . Let W+ be the matrix in (3) with P,Q = P1, Q1 and let

M+ = M(W+). As before, we have M ≈M+/X \S, r(M+) = r+3 and
we may assume that there are sets Z,K ⊆ E(M+) with rM(K) ≥ 5
such that S ∪X ⊆ Z ⊆ E(M)−K and λM+(Z) ≤ 4.

Now λM(E(M)∩Z) ≤ λM+(Z) ≤ 4, so vertical 6-connectivity of M
gives min(rM(E(M) ∩ Z), r(M \Z)) ≤ 4, but r(M \Z) ≥ rM(K) ≥ 5,
so rM(E(M)∩Z) ≤ 4 and thus rM+(Z) ≤ 7 and rM+(Z) ∈ {6, 7}. Let
F = clM+(Z), let (I1, J1) = (E(M) ∩ F,E(M) − F ) and let (I, J) =
(I0 ∪ I1, J0 ∩ J1).

We have rM(I) ≤ (rM//e(I0)+1)+rM(I1) ≤ 3+4 = 7, so by vertical 9-
connectivity of M we get rM(J) = r. Therefore rM+(J) ≥ r. Moreover
rM+(J1) = r(M+) + λM+(J1) − rM+(F ) ≤ (r + 3) + 4 − rM+(F ) =
r + 7 − rM+(Z), so rM+(J1) ∈ {r, r + 1}. We consider the two cases
separately.

If rM+(J1) = r then rM+(J) = r and W+[J ] is a rank-r matrix
with (r+ 3) rows, so by Lemma 3.4,

(
P1+ωQ1

R

)
[J ] is row-equivalent to a

matrix
(

P ′

R[J ]

)
where P ′ ∈ F[3]×J

0 . Therefore
(
P1+ωQ1

R

)
is row-equivalent

to a matrix
(
P+ωQ

R

)
where Q[J ] = 0. Now M ≈M

(
P+ωQ

R

)
and rM(I) ≤

rM+(Z)− 3 ≤ 4, so (2) holds.
If rM+(J1) = r + 1 then rM+(F ) = 6 = rM+(S) so F = clM+(S).

It follows that R[I1] = 0. Also, W+[J1] is a rank-(r + 1) matrix with
r+ 3 rows, so by Lemma 3.4 the matrix

(
P1+ωQ1

R

)
[J1] is row-equivalent

to a matrix
(
P ′+ωQ′

R[J1]

)
where P ′, Q′ ∈ F[3]×J1

0 and Q′[J1] has two zero

rows. Therefore
(
P1+ωQ1

R

)
is row-equivalent to a matrix

(
P+ωQ

R

)
where

P,Q ∈ F[3]×E(M)
0 and Q[J1] = Q′. Since R[e] = 0, it follows that M//e ≈

M
(
P ′0+ωQ′0

R

)
for some matrices P ′, Q′ ∈ F[2]×E(M)

0 with rank(Q′0[J1]) ≤
rank(Q′) ≤ 1. We may assume (by applying F0-row operations to
P ′0 + ωQ′0 if necessary) that the second row of Q′0[J1] is zero. Now

R[I1] = 0, so we can scale each column of
(
P ′0+ωQ′0

R

)
[I1] to have its
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second entry in F0. This yields an matrix
(
u0+ωv0

R′

)
where u0, v0 are

F0-vectors, R′ is an F0-matrix, and M//e ≈M
(
u0+ωv0

R′

)
, so (1) holds.

�

9. The Main Theorem

By Lemma 5.1, the abstract matroids corresponding to the repre-
sented matroids inO(q) are not GF(q)-regular. By Lemmas 4.2 and 4.3,

restrictions of PG(r−1, q) and P̂G(r−1, q) are GF(q)-regular. The fol-
lowing result, which applies to arbitrary GF(q2)-represented matroids,
thus has Theorem 1.1 as a corollary.

Theorem 9.1. Let q be a prime power. If M is a round rank-r GF(q2)-
represented matroid with a PG(12q12 + 19, q)-minor and no minor in
O(q), then si(M) is projectively equivalent to a restriction of either

M(Â(r − 1, q)) or M(A(r − 1, q)).

Proof. Let n = 12q12 + 20 and N be a PG(n − 1, q)-minor of M . Let
T = Tn(M,N).

If N is spanning in M then, by Lemma 3.1, we have M ≈M(A | Gr)
for some matrices Gr ∈ PG(r − 1, q) and A, and the result follows
from Lemma 5.2. We may thus assume inductively that there exists
e ∈ E(M) so that N is a minor of M/e and si(M/e) is a restriction

of either P̂G(r − 2, q) or PG(r − 2, q). We consider these cases in two
mutually exclusive claims.

9.1.1. If the matroid si(M/e) is projectively equivalent to a restriction

of M(Â(r − 2, q)) then the theorem holds.

Proof of claim: The matroid M is round (so is vertically 5-connected)
and has a GF(q2)-representation projectively equivalent to a subma-

trix of Â(r − 2, q); it follows that M and e satisfy the hypotheses of
Lemma 8.1; Define matrices P,Q,R as in the conclusion of the lemma,
so M ≈M(W ) where W =

(
P+ωQ

R

)
.

If outcome (1) of Lemma 8.1 holds then there is a partition (I, J) of
E(M) so that rank(R[I]) + rank(Q[J ]) ≤ 1, so one of these matrices is
zero and the other has rank at most 1. If R[I] = 0 and rank(Q[J ]) ≤ 1
then we may perform GF(q)-row-operations in the first two rows so
that only the first row of Q[J ] is nonzero and then scale each column
in I so that the second entry is in {0, 1}; since R[I] = 0 it follows that

si(M) is projectively equivalent to a restriction of M(Â(r − 1, q)), as
required.

If Q[J ] = 0 and rank(R[I]) ≤ 1, then let A = W [I]. Note that
rM(I) ≤ 3. Since Q[J ] = 0, if the matroid si(M(A | Gr)) is projectively
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equivalent to a restriction of M(Â(r− 1, q)) or M(A(r− 1, q)) then so
is si(M). Otherwise, A is q-bad (recall Section 5 for a definition). By
roundness of M and Lemma 7.2 applied with a = h = 3, there is a
rank-3 minor M ′ of M with a PG(2, q)-restriction N ′ so that E(M ′) =
E(N ′) ∪ I and M ′|I = M |I. However M ′ is obtained from M by
contracting and deleting only columns in W [J ], so if G3 ∈ PG(2, q)
then M ′ ≈M(A′ | G3) for some matrix A′ that is GF(q)-row-equivalent
to A; the matrix A′ is also q-bad, so by Lemma 5.2, the matroid M ′

has a minor in O(q).
If outcome (2) of the lemma holds then let W+ be the given matrix

and M+ = M(W+), noting that M ≈ M+/X \S and that W+[S ∪
X] is strongly q-bad (with Z = X). Let T + = Tn(M+, N). Since
κM+(S ∪ X,K) ≥ 4 for each basis or cobasis K of N , it follows that
κT +(S ∪X) = 4 and so, by Lemma 7.2 applied with a = 4 and h = 5,
M+ has a minor M ′ with a PG(4, q)-restriction N ′ so that E(M ′) =
E(N ′) ∪ (S ∪ X) and M ′|(S ∪ X) = M |(S ∪ X). Similarly to the
previous case, we have M ′ ≈ M(B | G5) for some G5 ∈ PG(4, q) and
some matrix B that is GF(q)-row-equivalent to W+[S ∪X] and hence
strongly q-bad. By Lemma 5.2, the matroid M ′/X \S, which is a minor
of M , has a minor in O(q), again a contradiction. �

9.1.2. If the matroid si(M/e) is projectively equivalent to a restriction

of M(A(r − 2, q)) but not to a restriction of M(Â(r − 2, q)) then the
theorem holds.

Proof of claim: Since M it is vertically 9-connected. Since si(M/e) is
projectively equivalent to a restriction of M(A(r − 2, q)), it is easy to
see that M and e satisfy the hypotheses of Lemma 8.2. (The required
partition (I0, J0) is induced by the line L0 and its complement in the
column set of A(r − 2, q).) If outcome (1) of the lemma holds then

si(M/e) is projectively equivalent to a restriction of M(Â(r − 2, q)),
a contradiction. Therefore (2) or (3) holds. Let M ≈ M(W ) where
W =

(
P+ωQ

R

)
as in the lemma.

Suppose that (2) holds, and let (I, J) be the associated partition of
E(M). If si(M((W [I] | Gr))) is projectively equivalent to a restriction

of M(Â(r − 1, q)) or M(A(r − 1, q)) then, as W [J ] is a GF(q)-matrix,
so is si(M). Therefore we may assume that this is not the case, so
W [I] is q-bad. By roundness of M we have κT (I) = rM(I) ≤ 4,
so Lemma 7.2 with a = h = 4 gives a rank-4 minor M ′ of M with
a PG(3, q)-restriction N ′ satisfying E(M ′) = E(N ′) ∪ I and M ′|I =
M |I. Now E(M) − E(M ′) ⊆ J and so M ′ ≈ M(B | G4) for some
G4 ∈ PG(3, q) and some matrix B that is GF(q)-row-equivalent to
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W [I] and hence q-bad. Lemma 5.2 implies that M ′ has a minor in
O(q), a contradiction.

Finally, suppose that (3) holds. Let W+ be the matrix given and let
M = M(W+), noting that M = M+/X \S. Let T + = Tn(M+, N).
Since κM+(S ∪ X,K) ≥ 5 for each basis or cobasis K of N , we have
κT +(S ∪X) ≥ 5. By Lemma 7.2 with a = h = 6 there is a minor M ′ of
M+ and a PG(5, q)-restriction N ′ of M ′ so that E(M ′) = E(N ′)∪X∪S,
M ′|(X ∪ S) = M |(X ∪ S) and λM ′(X ∪ S) ≥ 5, from which it follows
that 6 ≤ r(M ′) ≤ 7.

Since W+[E(M)] is a GF(q)-matrix, we have M ′ ≈M(B | G), where
B is obtained by appending a row of zeroes above W+[S ∪X] and G
is a GF(q)-representation of N ′ ∼= PG(5, q) with 7 rows. (If r(M ′) = 6
then the first row of G is also zero). Let v0, . . . , v6 denote the row
vectors of G, so M ′/X \S ≈M(W ′), where

W ′ =


v0

v1 + ωv4
v2 + ωv5
v3 + ωv6

 .

For each i ∈ {0, . . . , 6} let Gi be the matrix obtained by removing
the ith row of G. Since M̃(G) ∼= PG(5, q), there is some i ∈ {0, . . . , 6}
so that M̃(Gi) ∼= PG(5, q). Furthermore, unless v0 = 0 we may choose i
to be nonzero. If v0 = 0 then, since M̃(G0) ∼= PG(5, q), every vector in
GF(q2)4 with first component zero is a GF(q)-multiple of some column
of W ′, so si(M(W ′)) ∼= PG(2, q2) and M ′/X \S clearly has a restriction
in O(q), a contradiction.

Otherwise, we can choose i nonzero such that M̃(Gi) ∼= PG(5, q).
We will suppose that i = 6; the other cases are similar. Since G6

contains a column from every parallel class in GF(q)5, there is some
f ∈ E(N ′) so that G6[f ] has all entries zero except its v3-entry which is
nonzero. Therefore W ′[f ] has all entries zero except its last entry which
is nonzero. Now consider a representation W ′′ of M(W ′)/f given by
removing the f -column and last row from W ′. Since the matrix with
rows v0, v1, v2, v4, v5 has a column in every parallel class in GF(q)5, it
follows that W ′′ contains a column from every parallel class in GF(q2)3,
and so si(M(W ′′)) ∼= PG(2, q2) and M(W ′′) has a restriction in O(q),
a contradiction. �

The result now follows from the two claims. �
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