ODD CIRCUITS IN DENSE BINARY MATROIDS

JIM GEELEN AND PETER NELSON

ABSTRACT. We show that, for each real number $\alpha > 0$ and odd integer $k \ge 5$ there is an integer c such that, if M is a simple binary matroid with $|M| \ge \alpha 2^{r(M)}$ and with no k-element circuit, then M has critical number at most c. The result is an easy application of a regularity lemma for finite abelian groups due to Green.

1. INTRODUCTION

We prove the following:

Theorem 1.1. For each real number $\alpha > 0$ and odd integer $k \geq 5$, there exists $c \in \mathbb{Z}$ such that, if M is a simple binary matroid M with $|M| \geq \alpha 2^{r(M)}$ and with no k-element circuit, then M has critical number at most c.

The restriction to excluding *odd* circuits from a *binary* matroid here is natural. The geometric density Hales-Jewett theorem [2] implies that dense GF(q)-representable matroids with sufficiently large rank necessarily contain arbitrarily large affine geometries over GF(q), which contain all even circuits when q = 2 and all circuits when q > 2. So dense k-circuit free GF(q)-representable matroids of large rank only exist when q = 2 and k is odd.

Our main theorem (Theorem 3.1) is somewhat more general than Theorem 1.1; it bounds the critical number of any sufficiently dense binary matroid whose elements are each contained in at most $o(2^{(k-2)r})$ circuits of size k. Note that each element of PG(r-1,2) is contained in at most $2^{(k-2)r}$ circuits of size k, so our result is best possible up to a constant factor. We obtain the theorem as an easy application of Green's regularity lemma for finite abelian groups [3], which we review in Section 2.

Date: March 7, 2014.

¹⁹⁹¹ Mathematics Subject Classification. 05B35.

Key words and phrases. matroids, regularity.

This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].

GEELEN AND NELSON

 $\mathbf{2}$

Recall that, if M is a simple rank-r binary matroid considered as a restriction of the binary projective geometry $G \cong PG(r-1,2)$, then the *critical number* of M is the minimum $c \in \mathbb{Z}_0^+$ such that G has a rank-(r-c) flat disjoint from E(M). Equivalently, the critical number is the minimum number of "cocycles" needed to cover E(M), where by a cocycle we mean a disjoint union of cocircuits. Thus cocycles correspond to cuts in a graph and, hence, critical number is a geometric analog of chromatic number.

Theorem 1.1 is analogous to the following theorem due to Thomassen [6].

Theorem 1.2. For each real number $\alpha > 0$ and odd integer $k \ge 5$, there exists $c \in \mathbb{Z}$ such that every simple graph on n vertices with minimum degree at least αn and no k-cycle has chromatic number at most c.

Theorem 1.2 does not extend to the case that k = 3; for each $\varepsilon > 0$, Hajnal (see [1]) gave examples of triangle-free graphs G with minimum degree at least $(\frac{1}{3} - \varepsilon)|V(G)|$ and with arbitrarily large chromatic number. Nevertheless, we conjecture that Theorem 1.1 also holds for k = 3. That is:

Conjecture 1.3. For each real number $\alpha > 0$ there exists $c \in \mathbb{Z}$ such that, if M is a simple triangle-free binary matroid with $|M| \ge \alpha 2^{r(M)}$, then M has critical number at most c.

Green's regularity lemma gives a weaker outcome:

Theorem 1.4. For each real number $\varepsilon > 0$ there exists $c \in \mathbb{Z}$ such that, if M is a triangle-free restriction of a binary projective geometry $G \cong PG(r-1,2)$, then there is a flat F of G such that $r(F) \ge r(G) - c$ and $|F \cap E(M)| \le \varepsilon 2^{r(F)}$.

2. Regularity

We will largely use the standard notation of matroid theory [4], but it will also be convenient to think of a rank-r binary matroid as a subset of the vector space $V = GF(2)^r$. This change is purely notational; if $X \subseteq V$ then we write M(X) for the binary matroid on X represented by a binary matrix with column set X. If $0 \notin X$ then M(X) is simple. We define the *critical number* of X to be the critical number of M(X); that is, the minimum codimension of a subspace of V disjoint from X.

Green used Fourier-analytic techniques to prove his regularity lemma for abelian groups and to derive applications in additive combinatorics; these techniques are discussed in greater detail in the book of Tao and Vu [5, Chapter 4]. Fortunately, although this theory has many technicalities, the group $GF(2)^n$ is among its simplest applications.

Let $V = GF(2)^r$ and let $X \subseteq V$. Note that, if H is a codimension-1 subspace of V, then $|H| = |V \setminus H|$. We say that X is ε -uniform if for each codimension-1 subspace H of V we have

$$||H \cap X| - |X \setminus H|| \le \varepsilon |V|.$$

In Lemma 2.2 we will see that, for small ε , the ε -uniform sets are 'pseudorandom'.

Let *H* be a subspace of *V*. For each $v \in V$, let $H_v(X) = \{h \in H : h + v \in X\}$. For $\varepsilon > 0$, we say *H* is ε -regular with respect to *V* and *X* if $H_v(X)$ is ε -uniform in *H* for all but $\varepsilon |V|$ values of $v \in V$.

Regularity captures the way that X is distributed among the cosets of H in V. For $v \in V$, we let $X + v = \{x + v : x \in X\}$; thus X + vis a translation of X. Note that X + v is ε -uniform if and only if X is. Also note that $H_v(X) + v = X \cap H'$ where H' = H + v is the coset of H in V that contains v. Therefore, if $u, v \in H'$, then $H_u(X)$ and $H_v(X)$ are translates of one another. So H is ε -regular if, for all but an ε -fraction of cosets H' of H, the set $(H' \cap X) + v$ is ε -uniform in H for some $v \in H'$.

The following result of Green [3] guarantees a regular subspace of bounded codimension. Here W(t) denotes an exponential tower of 2's of height $\lceil t \rceil$.

Theorem 2.1 (Green's regularity lemma). Let $V = GF(2)^n$, $X \subseteq V$, and let $\varepsilon > 0$ be a real number. Then there is a subspace H of v that is ε -regular with respect to X and V and has codimension at most $W(\varepsilon^{-3})$ in V.

Let $A \subseteq V$ with $|A| = \alpha |V|$. For $x \in V$ and $k \in \mathbb{Z}$, we let S(A, k; x) denote the set of k-tuples in A^k with sum equal to x. Clearly $|S(A, k; x)| \leq \alpha^{k-1} |V|^{k-1}$. If A were a random subset of V, we would expect around a $|V|^{-1}$ -fraction of the tuples in A^k to sum to x, which would give $|S(A, k; x)| \approx \alpha^k |V|^{k-1}$; the next lemma, a corollary of [5, Lemma 4.13], bounds the error in such an estimate when A is uniform.

Lemma 2.2. Let $V = GF(2)^n$, let $x \in V$, and let $A \subseteq V$ with $|A| = \alpha |V|$. For each integer $k \geq 3$ and real $\varepsilon > 0$, if A is ε -uniform, then

$$|S(A,k;x)| \ge (\alpha^k - \varepsilon^{k-2})|V|^{k-1}.$$

Observe that, if $x \in A$ and $\{x, a_1, \ldots, a_{k-1}\}$ is a k-element circuit in M(A) that contains x, then $(a_1, \ldots, a_{k-1}) \in S(A, k-1; x)$. However the converse need not be true; if $(a_1, \ldots, a_{k-1}) \in S(A, k-1; x)$ then $\{x, a_1, \ldots, a_{k-1}\}$ is a k-element circuit unless some proper sub-tuple

GEELEN AND NELSON

of (a_1, \ldots, a_{k-1}) sums to zero. We let $S_0(A, k; x)$ denote the set of ktuples in S(A, k; x) having some proper nonempty sub-tuple with sum 0. We argue that $S_0(A, k; x)$ is small.

Lemma 2.3. Let $V = GF(2)^n$, let k be an integer, let $x \in V$, and let $A \subseteq V$. Then $|S_0(A, k; x)| \leq 2^k |A|^{k-2}$.

Proof. If some subtuple has sum 0 then its complementary tuple has sum x. Summing over all possible nonempty sub-tuples, we have

$$|S_0(A,k;x)| \leq \sum_{i=1}^{k-1} \binom{k}{i} |S(A,i;0)| |S(A,k-i;x)|$$

$$\leq \sum_{i=1}^{k-1} \binom{k}{i} |A|^{i-1} |A|^{k-i-1}$$

$$\leq 2^k |A|^{k-2}.$$

3. The Main Result

Theorem 3.1. For every real number $\alpha > 0$ and odd integer $k \ge 5$, there exists a real number $\beta > 0$ and integer c such that, if M is a simple binary matroid with $|M| \ge \alpha 2^{r(M)}$, then either M has critical number at most c, or some element of M is contained in at least $\beta 2^{(k-2)r(M)}$ distinct k-element circuits of M.

Proof. Let $\alpha > 0$ be real and let $k \ge 5$ be an odd integer. Choose $\varepsilon > 0$ so that

$$(\alpha - \varepsilon)^{k-1} - \varepsilon^{k-3} > 0,$$

let $\alpha_0 = \alpha - \varepsilon$, and then choose $r_0 \in \mathbb{Z}$ so that

$$\alpha_0^{k-1} - \varepsilon^{k-3} - 2^{k-1+W(\varepsilon^{-3})-r_0} > 0.$$

Let $s_0 = W(\varepsilon^{-3})$, let $c = \max(r_0, s_0)$ and let

$$\beta = \frac{2^{(2-k)s_0}}{(k-1)!} \left(\alpha_0^{k-1} - \varepsilon^{k-3} - 2^{k-1+s_0-r_0} \right).$$

By our choice of r_0 , we have $\beta > 0$.

Let M be a simple rank-r binary matroid with $|M| \ge \alpha 2^r$. Let $V = GF(2)^r$ and let $X \subseteq V$ such that $M \cong M(X)$. By Green's regularity lemma, there is an ε -regular subspace H of V with codimension $s \le c$.

Claim 1. There is some $a \in V$ such that $H_a(X)$ is ε -uniform in H and satisfies $|H_a(X)| \ge \alpha_0 |H|$.

Proof of claim: Let V_0 be the set of $v \in V$ for which $H_v(X)$ is not ε uniform; we have $|V_0| \leq \varepsilon |V|$ by regularity. In summing $|H_v(X)|$ over all $v \in V$, we count each $x \in X$ with multiplicity |H|, so

$$\sum_{v \in V} |H_v(X)| = |X||H| \ge \alpha |V||H|.$$

On the other hand, $\sum_{v \in V_0} |H_v(X)| \leq \varepsilon |V| |H|$. Thus there exists an element $a \in V \setminus V_0$ with

$$|H_a(X)| \ge \frac{\alpha |V||H| - \varepsilon |V||H|}{|V \setminus V_0|} \ge (\alpha - \varepsilon)|H| = \alpha_0 |H|,$$

as required.

Since $|H_a(X)|$ is constant as a ranges over each coset of H, we may choose a = 0 if $a \in H$. Let $A = H_a(X)$. We may assume that M has critical number greater than c and, hence, there exists $x \in H \cap X$.

Claim 2. $|S(A, k-1; x) \setminus S_0(A, k-1; x)| \ge \beta(k-1)! 2^{(k-2)r}$.

Proof of claim: By Lemma 2.2, we have

$$|S(A, k-1; x)| \ge (\alpha_0^{k-1} - \varepsilon^{k-3}) |H|^{k-2}$$

= $(\alpha_0^{k-1} - \varepsilon^{k-3}) 2^{(k-2)(r-s)}$

By Lemma 2.3 we have

$$|S_0(A, k-1; x)| \le 2^{k-1} |A|^{k-3}$$
$$\le 2^{k-1} |H|^{k-3}$$
$$= 2^{k-1+s-r} 2^{(k-2)(r-s)}$$

Combining these and using $r \ge r_0$ and $s \le s_0$, the claim follows. \Box

Let $w = (w_1, \ldots, w_{k-1}) \in S(A, k-1; x) \setminus S_0(A, k-1; x)$. The tuple $w' = (w_1 + a, w_2 + a, \ldots, w_{k-1} + a, x)$ is contained in X^k , sums to zero, and since no sub-tuple of w sums to zero, the elements of w' are distinct and have no sub-tuple summing to zero. (If a = 0 this is clear, and otherwise $a \notin H$ so the $w_i + a$ are distinct from x.) Therefore w' corresponds to a circuit of M(X) containing x. Taking into account permutations of w, it follows that x is in at least $\beta 2^{(k-2)r}$ distinct k-element circuits of M(X).

4. TRIANGLE-FREE BINARY MATROIDS

Finally, to prove Theorem 1.4, we need a variation on Lemma 2.2, also following from [5, Lemma 4.13]. Let $V = GF(2)^r$. For sets $A_1, A_2, A_3 \subseteq V$, let $T(A_1, A_2, A_3)$ be the set of triples in $A_1 \times A_2 \times A_3$ with sum zero.

Lemma 4.1. Let $V \in GF(2)^n$ and $\varepsilon > 0$. Let $A_1, A_2, A_3 \subseteq V$ with $|A_i| = \alpha_i |V|$. If A_1 is ε -uniform, then

$$|T(A_1, A_2, A_3)| \ge (\alpha_1 \alpha_2 \alpha_3 - \varepsilon)|V|^2.$$

Proof of Theorem 1.4. Let $\varepsilon > 0$. Let δ be a real number such that $\varepsilon(\varepsilon - \delta)^2 > \delta > 0$, and let $c = W(\delta^{-3})$.

Let M be a simple rank-r triangle-free binary matroid. If $|M| \leq \varepsilon 2^r$ then the theorem holds, so we may assume for a contradiction that $|M| > \varepsilon 2^r$. Let $V = GF(2)^r$ and $X \subseteq V$ be such that $M \cong M(X)$.

By Green's regularity lemma there is an δ -regular subspace H of V with codimension at most c. As in the first claim of the proof of Theorem 3.1, there is some $a \in Z$ such that $H_a(X)$ is δ -regular and satisfies $|H_a(X)| \ge \varepsilon - \delta$. We may choose a such that either a = 0 or $a \notin H$. Let $A = H_a(X)$.

If $|X \cap H| \leq \varepsilon |H|$, then the theorem holds. Otherwise, by Lemma 4.1, we have $|T(A, A, X \cap H)| \geq (\varepsilon(\varepsilon - \delta)^2 - \delta)|H|^2 > 0$, so there is some triple (x, y, z) with x + y + z = 0, where $x, y \in A$ and $z \in X \cap H$. Now $\{x + a, y + a, z\}$ is a triangle of M(X), a contradiction.

References

- [1] P. Erdős, M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323-334.
- [2] H. Furstenberg, Y. Katznelson, IP-sets, Szemerédi's Theorem and Ramsey Theory, Bull. Amer. Math. Soc. (N.S.) 14 no. 2 (1986), 275–278.
- [3] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geometric & Functional Analysis GAFA 15 (2005), 340–376.
- [4] J. G. Oxley, Matroid Theory, Oxford University Press, New York (2011).
- [5] T. C. Tao and V. H. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge (2006).
- [6] C. Thomassen, On the chromatic number of pentagon-free graphs of large minimum degree, Combinatorica 27 (2007), 241–243.

DEPARTMENT OF COMBINATORICS AND OPTIMIZATION, UNIVERSITY OF WA-TERLOO, WATERLOO, CANADA

DEPARTMENT OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH, VICTORIA UNIVERSITY OF WELLINGTON, WELLINGTON, NEW ZEALAND