ODD CIRCUITS IN DENSE BINARY MATROIDS
JIM GEELEN AND PETER NELSON

ABSTRACT. We show that, for each real number o > 0 and odd
integer k > 5 there is an integer ¢ such that, if M is a simple binary
matroid with |M| > a2"™) and with no k-element circuit, then
M has critical number at most c. The result is an easy application
of a regularity lemma for finite abelian groups due to Green.

1. INTRODUCTION

We prove the following;:

Theorem 1.1. For each real number o« > 0 and odd integer k > 5,
there exists ¢ € 7Z such that, if M is a simple binary matroid M with
(M| > a2"™) and with no k-element circuit, then M has critical num-
ber at most c.

The restriction to excluding odd circuits from a binary matroid here
is natural. The geometric density Hales-Jewett theorem [2] implies
that dense GF(g)-representable matroids with sufficiently large rank
necessarily contain arbitrarily large affine geometries over GF(q), which
contain all even circuits when ¢ = 2 and all circuits when ¢ > 2. So
dense k-circuit free GF(g)-representable matroids of large rank only
exist when ¢ = 2 and k is odd.

Our main theorem (Theorem 3.1) is somewhat more general than
Theorem 1.1; it bounds the critical number of any sufficiently dense
binary matroid whose elements are each contained in at most o(2=2)")
circuits of size k. Note that each element of PG(r — 1,2) is contained
in at most 2(*=2" circuits of size k, so our result is best possible up
to a constant factor. We obtain the theorem as an easy application of
Green’s regularity lemma for finite abelian groups [3], which we review
in Section 2.
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Recall that, if M is a simple rank-r binary matroid considered as a
restriction of the binary projective geometry G = PG(r — 1,2), then
the critical number of M is the minimum ¢ € Z§ such that G has a
rank-(r — ¢) flat disjoint from E(M). Equivalently, the critical number
is the minimum number of “cocycles” needed to cover E(M), where
by a cocycle we mean a disjoint union of cocircuits. Thus cocycles
correspond to cuts in a graph and, hence, critical number is a geometric
analog of chromatic number.

Theorem 1.1 is analogous to the following theorem due to
Thomassen [6].

Theorem 1.2. For each real number o > 0 and odd integer k > 5,
there exists ¢ € Z such that every simple graph on n vertices with
minimum degree at least an and no k-cycle has chromatic number at
most c.

Theorem 1.2 does not extend to the case that £ = 3; for each € > 0,
Hajnal (see [1]) gave examples of triangle-free graphs G with minimum
degree at least (3 —e)|V(G)| and with arbitrarily large chromatic num-
ber. Nevertheless, we conjecture that Theorem 1.1 also holds for k£ = 3.
That is:

Conjecture 1.3. For each real number o > 0 there exists ¢ € 7 such
that, if M is a simple triangle-free binary matroid with |M| > a2r™M),
then M has critical number at most c.

Green’s regularity lemma gives a weaker outcome:

Theorem 1.4. For each real number € > 0 there exists ¢ € 7. such
that, if M is a triangle-free restriction of a binary projective geometry
G = PG(r—1,2), then there is a flat F' of G such that r(F) > r(G)—c
and |F N E(M)| <275,

2. REGULARITY

We will largely use the standard notation of matroid theory [4], but
it will also be convenient to think of a rank-r binary matroid as a subset
of the vector space V' = GF(2)". This change is purely notational; if
X C V then we write M (X) for the binary matroid on X represented
by a binary matrix with column set X. If 0 ¢ X then M (X) is simple.
We define the critical number of X to be the critical number of M (X);
that is, the minimum codimension of a subspace of V' disjoint from X.

Green used Fourier-analytic techniques to prove his regularity lemma
for abelian groups and to derive applications in additive combinatorics;
these techniques are discussed in greater detail in the book of Tao
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and Vu [5, Chapter 4]. Fortunately, although this theory has many
technicalities, the group GF(2)" is among its simplest applications.

Let V = GF(2)" and let X C V. Note that, if H is a codimension-1
subspace of V', then |H| = |V \ H|. We say that X is e-uniform if for
each codimension-1 subspace H of V' we have

[[HNX] = [X\H[| <e|V].

In Lemma 2.2 we will see that, for small e, the e-uniform sets are
‘pseudorandom’.

Let H be a subspace of V. For each v € V, let H,(X) ={h € H :
h+v € X}. For e > 0, we say H is e-reqular with respect to V and X
if H,(X) is e-uniform in H for all but ¢|V| values of v € V.

Regularity captures the way that X is distributed among the cosets
of HinV. ForveV,welet X+v={x+v:2ecX} thus X +v
is a translation of X. Note that X + v is e-uniform if and only if X
is. Also note that H,(X)+v = X N H' where H = H + v is the coset
of H in V that contains v. Therefore, if u,v € H’, then H,(X) and
H,(X) are translates of one another. So H is e-regular if, for all but
an e-fraction of cosets H' of H, the set (H' N X) 4 v is e-uniform in H
for some v € H'.

The following result of Green [3] guarantees a regular subspace of
bounded codimension. Here W (t) denotes an exponential tower of 2’s
of height [t].

Theorem 2.1 (Green’s regularity lemma). Let V = GF(2)", X C V,
and let € > 0 be a real number. Then there is a subspace H of v that is
e-reqular with respect to X and V and has codimension at most W (™)
n V.

Let A C V with |A] = «o|V|. For z € V and k € Z, we let
S(A, k; z) denote the set of k-tuples in A* with sum equal to . Clearly
IS(A, k;z)| < o HV|kL If A were a random subset of V, we would
expect around a |V|~!-fraction of the tuples in A* to sum to x, which
would give |S(A, k;x)| ~ of|V|*7!; the next lemma, a corollary of [5,
Lemma 4.13], bounds the error in such an estimate when A is uniform.

Lemma 2.2. Let V = GF(2)", let z € V, and let A C 'V with |A| =
alV|. For each integer k > 3 and real € > 0, if A is e-uniform, then

1S(A, k;2)] > (@F =) VP
Observe that, if z € A and {x,ay,...,a,_1} is a k-element circuit in
M (A) that contains x, then (a,...,ar_1) € S(A,k — 1;x). However

the converse need not be true; if (a,...,a,_1) € S(A,k — 1;x) then
{z,a1,...,ax_1} is a k-element circuit unless some proper sub-tuple
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of (ay,...,ar_1) sums to zero. We let Sy(A, k;x) denote the set of k-
tuples in S(A, k; x) having some proper nonempty sub-tuple with sum
0. We argue that Sy(A, k; x) is small.

Lemma 2.3. Let V = GF(2)", let k be an integer, let x € V', and let
ACV. Then |So(A, k;z)| < 2F|A|F2.

Proof. If some subtuple has sum 0 then its complementary tuple has
sum z. Summing over all possible nonempty sub-tuples, we have

k—1

k _ .

‘S@(A,k’,.’ﬂ)’ S Z <Z) ’S(A,Z,O)HS(A,k‘ - Z;QZ‘)’
=1
k—1

Z <k) |A|i—1|A|k—i—1

1
=1

2k|A|k—2‘

IN

IN

3. THE MAIN RESULT

Theorem 3.1. For every real number o > 0 and odd integer k > 5,
there exists a real number 5 > 0 and integer ¢ such that, if M is a simple
binary matroid with |M| > a2"™) | then either M has critical number
at most ¢, or some element of M is contained in at least F2H=2r(M)

distinct k-element circuits of M.

Proof. Let a > 0 be real and let £ > 5 be an odd integer. Choose ¢ > 0
so that

(a—e)ft =2 >0,

let ap = a — €, and then choose rg € Z so that

0/571 _ k=3 2k71+W(5*3)7r0 < 0.
Let so = W(e™3), let ¢ = max(rg, sg) and let
2(2—k)80

8=

k=1 _ _k=3 _ ok—l+so—r
1) (ao € 2 0 0).
By our choice of 1y, we have > 0.

Let M be a simple rank-r binary matroid with |M| > a2". Let V =
GF(2)" and let X C V such that M = M(X). By Green’s regularity
lemma, there is an e-regular subspace H of V' with codimension s < c.

Claim 1. There is some a € V such that H,(X) is e-uniform in H
and satisfies |H,(X)| > ap|H|.
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Proof of claim: Let V; be the set of v € V' for which H,(X) is not e-
uniform; we have |Vy| < e|V| by regularity. In summing |H,(X)| over
all v € V| we count each x € X with multiplicity |H|, so

> H(X)| = |X[|H| > a|V||H|

veV

On the other hand, >’
element a € V'\Vj with

| H,(3)| > AWUHAVIHL > (o — o)|H| = a|H],

| H,(X)

Ve < ¢|V||H|. Thus there exists an

as required. O

Since |H,(X)| is constant as a ranges over each coset of H, we may
choose a =0if a € H. Let A = H,(X). We may assume that M has
critical number greater than ¢ and, hence, there exists z € H N X.

Proof of claim: By Lemma 2.2, we have
IS(A k= 1;2)] > (af " —"7%) [H|*

_ (alg—l . €k_3) 2(]6—2)(7“—8)'

By Lemma 2.3 we have
1So(A k — 1;z)| < 2571 AR
< k1| fg|k=3
— gh—l4s—ro(k=2)(r—s)

Combining these and using r > rg and s < sq, the claim follows. O

Let w = (wy,...,wg_1) € S(A, k — 1;2)\ So(A, k — 1;z). The tuple
w = (wy + a,ws + a,...,wp_1 + a,x) is contained in X* sums to
zero, and since no sub-tuple of w sums to zero, the elements of w’" are
distinct and have no sub-tuple summing to zero . (If @ = 0 this is clear,
and otherwise a ¢ H so the w; 4+ a are distinct from z.) Therefore w’
corresponds to a circuit of M(X) containing x. Taking into account
permutations of w, it follows that z is in at least 522" distinct k-

element circuits of M (X). O

4. TRIANGLE-FREE BINARY MATROIDS

Finally, to prove Theorem 1.4, we need a variation on Lemma 2.2,
also following from [5, Lemma 4.13]. Let V = GF(2)". For sets
Al, A27 A3 - V, let T(Al, AQ, Ag) be the set of triples n A1 X AQ X A3

with sum zero.
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Lemma 4.1. Let V € GF(2)" and ¢ > 0. Let Ay, Ay, A3 C V with
|A;| = au|V|. If Ay is e-uniform, then

IT(Ay, As, Ag)| > (aranas — )| V]2

Proof of Theorem 1.4. Let ¢ > 0. Let 6 be a real number such that
e(e —6)2>6>0, and let c = W(573).

Let M be a simple rank-r triangle-free binary matroid. If [M| < 2"
then the theorem holds, so we may assume for a contradiction that
M| > 2", Let V= GF(2)" and X C V be such that M = M(X).

By Green’s regularity lemma there is an d-regular subspace H of
V' with codimension at most ¢. As in the first claim of the proof of
Theorem 3.1, there is some a € Z such that H,(X) is d-regular and
satisfies |H,(X)| > ¢ — . We may choose a such that either a = 0 or
a¢ H. Let A= H,(X).

If | XNH| < ¢|H]|, then the theorem holds. Otherwise, by Lemma 4.1,
we have |T(A, A, X N H)| > (e(e — 6)? — §)|H|? > 0, so there is some
triple (z,y, z) with z +y+ 2z = 0, where z,y € A and z € X N H. Now
{x+a,y+a,z}is a triangle of M(X), a contradiction. O
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