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Abstract. We show that, for each real number α > 0 and odd
integer k ≥ 5 there is an integer c such that, if M is a simple binary
matroid with |M | ≥ α2r(M) and with no k-element circuit, then
M has critical number at most c. The result is an easy application
of a regularity lemma for finite abelian groups due to Green.

1. Introduction

We prove the following:

Theorem 1.1. For each real number α > 0 and odd integer k ≥ 5,
there exists c ∈ Z such that, if M is a simple binary matroid M with
|M | ≥ α2r(M) and with no k-element circuit, then M has critical num-
ber at most c.

The restriction to excluding odd circuits from a binary matroid here
is natural. The geometric density Hales-Jewett theorem [2] implies
that dense GF(q)-representable matroids with sufficiently large rank
necessarily contain arbitrarily large affine geometries over GF(q), which
contain all even circuits when q = 2 and all circuits when q > 2. So
dense k-circuit free GF(q)-representable matroids of large rank only
exist when q = 2 and k is odd.

Our main theorem (Theorem 3.1) is somewhat more general than
Theorem 1.1; it bounds the critical number of any sufficiently dense
binary matroid whose elements are each contained in at most o(2(k−2)r)
circuits of size k. Note that each element of PG(r − 1, 2) is contained
in at most 2(k−2)r circuits of size k, so our result is best possible up
to a constant factor. We obtain the theorem as an easy application of
Green’s regularity lemma for finite abelian groups [3], which we review
in Section 2.
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Recall that, if M is a simple rank-r binary matroid considered as a
restriction of the binary projective geometry G ∼= PG(r − 1, 2), then
the critical number of M is the minimum c ∈ Z+

0 such that G has a
rank-(r− c) flat disjoint from E(M). Equivalently, the critical number
is the minimum number of “cocycles” needed to cover E(M), where
by a cocycle we mean a disjoint union of cocircuits. Thus cocycles
correspond to cuts in a graph and, hence, critical number is a geometric
analog of chromatic number.

Theorem 1.1 is analogous to the following theorem due to
Thomassen [6].

Theorem 1.2. For each real number α > 0 and odd integer k ≥ 5,
there exists c ∈ Z such that every simple graph on n vertices with
minimum degree at least αn and no k-cycle has chromatic number at
most c.

Theorem 1.2 does not extend to the case that k = 3; for each ε > 0,
Hajnal (see [1]) gave examples of triangle-free graphs G with minimum
degree at least (1

3
−ε)|V (G)| and with arbitrarily large chromatic num-

ber. Nevertheless, we conjecture that Theorem 1.1 also holds for k = 3.
That is:

Conjecture 1.3. For each real number α > 0 there exists c ∈ Z such
that, if M is a simple triangle-free binary matroid with |M | ≥ α2r(M),
then M has critical number at most c.

Green’s regularity lemma gives a weaker outcome:

Theorem 1.4. For each real number ε > 0 there exists c ∈ Z such
that, if M is a triangle-free restriction of a binary projective geometry
G ∼= PG(r−1, 2), then there is a flat F of G such that r(F ) ≥ r(G)−c
and |F ∩ E(M)| ≤ ε2r(F ).

2. Regularity

We will largely use the standard notation of matroid theory [4], but
it will also be convenient to think of a rank-r binary matroid as a subset
of the vector space V = GF(2)r. This change is purely notational; if
X ⊆ V then we write M(X) for the binary matroid on X represented
by a binary matrix with column set X. If 0 /∈ X then M(X) is simple.
We define the critical number of X to be the critical number of M(X);
that is, the minimum codimension of a subspace of V disjoint from X.

Green used Fourier-analytic techniques to prove his regularity lemma
for abelian groups and to derive applications in additive combinatorics;
these techniques are discussed in greater detail in the book of Tao
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and Vu [5, Chapter 4]. Fortunately, although this theory has many
technicalities, the group GF(2)n is among its simplest applications.

Let V = GF(2)r and let X ⊆ V . Note that, if H is a codimension-1
subspace of V , then |H| = |V \H|. We say that X is ε-uniform if for
each codimension-1 subspace H of V we have

| |H ∩X| − |X\H| | ≤ ε|V |.
In Lemma 2.2 we will see that, for small ε, the ε-uniform sets are
‘pseudorandom’.

Let H be a subspace of V . For each v ∈ V , let Hv(X) = {h ∈ H :
h+ v ∈ X}. For ε > 0, we say H is ε-regular with respect to V and X
if Hv(X) is ε-uniform in H for all but ε|V | values of v ∈ V .

Regularity captures the way that X is distributed among the cosets
of H in V . For v ∈ V , we let X + v = {x + v : x ∈ X}; thus X + v
is a translation of X. Note that X + v is ε-uniform if and only if X
is. Also note that Hv(X) + v = X ∩H ′ where H ′ = H + v is the coset
of H in V that contains v. Therefore, if u, v ∈ H ′, then Hu(X) and
Hv(X) are translates of one another. So H is ε-regular if, for all but
an ε-fraction of cosets H ′ of H, the set (H ′ ∩X) + v is ε-uniform in H
for some v ∈ H ′.

The following result of Green [3] guarantees a regular subspace of
bounded codimension. Here W (t) denotes an exponential tower of 2’s
of height dte.

Theorem 2.1 (Green’s regularity lemma). Let V = GF(2)n, X ⊆ V ,
and let ε > 0 be a real number. Then there is a subspace H of v that is
ε-regular with respect to X and V and has codimension at most W (ε−3)
in V .

Let A ⊆ V with |A| = α|V |. For x ∈ V and k ∈ Z, we let
S(A, k;x) denote the set of k-tuples in Ak with sum equal to x. Clearly
|S(A, k;x)| ≤ αk−1|V |k−1. If A were a random subset of V , we would
expect around a |V |−1-fraction of the tuples in Ak to sum to x, which
would give |S(A, k;x)| ≈ αk|V |k−1; the next lemma, a corollary of [5,
Lemma 4.13], bounds the error in such an estimate when A is uniform.

Lemma 2.2. Let V = GF(2)n, let x ∈ V , and let A ⊆ V with |A| =
α|V |. For each integer k ≥ 3 and real ε > 0, if A is ε-uniform, then

|S(A, k;x)| ≥ (αk − εk−2)|V |k−1.

Observe that, if x ∈ A and {x, a1, . . . , ak−1} is a k-element circuit in
M(A) that contains x, then (a1, . . . , ak−1) ∈ S(A, k − 1;x). However
the converse need not be true; if (a1, . . . , ak−1) ∈ S(A, k − 1;x) then
{x, a1, . . . , ak−1} is a k-element circuit unless some proper sub-tuple
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of (a1, . . . , ak−1) sums to zero. We let S0(A, k;x) denote the set of k-
tuples in S(A, k;x) having some proper nonempty sub-tuple with sum
0. We argue that S0(A, k;x) is small.

Lemma 2.3. Let V = GF(2)n, let k be an integer, let x ∈ V , and let
A ⊆ V . Then |S0(A, k;x)| ≤ 2k|A|k−2.

Proof. If some subtuple has sum 0 then its complementary tuple has
sum x. Summing over all possible nonempty sub-tuples, we have

|S0(A, k;x)| ≤
k−1∑
i=1

(
k

i

)
|S(A, i; 0)||S(A, k − i;x)|

≤
k−1∑
i=1

(
k

i

)
|A|i−1|A|k−i−1

≤ 2k|A|k−2.
�

3. The Main Result

Theorem 3.1. For every real number α > 0 and odd integer k ≥ 5,
there exists a real number β > 0 and integer c such that, if M is a simple
binary matroid with |M | ≥ α2r(M), then either M has critical number
at most c, or some element of M is contained in at least β2(k−2)r(M)

distinct k-element circuits of M .

Proof. Let α > 0 be real and let k ≥ 5 be an odd integer. Choose ε > 0
so that

(α− ε)k−1 − εk−3 > 0,

let α0 = α− ε, and then choose r0 ∈ Z so that

αk−10 − εk−3 − 2k−1+W (ε−3)−r0 > 0.

Let s0 = W (ε−3), let c = max(r0, s0) and let

β =
2(2−k)s0

(k − 1)!

(
αk−10 − εk−3 − 2k−1+s0−r0

)
.

By our choice of r0, we have β > 0.
Let M be a simple rank-r binary matroid with |M | ≥ α2r. Let V =

GF(2)r and let X ⊆ V such that M ∼= M(X). By Green’s regularity
lemma, there is an ε-regular subspace H of V with codimension s ≤ c.

Claim 1. There is some a ∈ V such that Ha(X) is ε-uniform in H
and satisfies |Ha(X)| ≥ α0|H|.
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Proof of claim: Let V0 be the set of v ∈ V for which Hv(X) is not ε-
uniform; we have |V0| ≤ ε|V | by regularity. In summing |Hv(X)| over
all v ∈ V , we count each x ∈ X with multiplicity |H|, so∑

v∈V

|Hv(X)| = |X||H| ≥ α|V ||H|.

On the other hand,
∑

v∈V0 |Hv(X)| ≤ ε|V ||H|. Thus there exists an
element a ∈ V \V0 with

|Ha(X)| ≥ α|V ||H|−ε|V ||H|
|V\V0| ≥ (α− ε)|H| = α0|H|,

as required. �

Since |Ha(X)| is constant as a ranges over each coset of H, we may
choose a = 0 if a ∈ H. Let A = Ha(X). We may assume that M has
critical number greater than c and, hence, there exists x ∈ H ∩X.

Claim 2. |S(A, k − 1;x)\S0(A, k − 1;x)| ≥ β(k − 1)! 2(k−2)r.

Proof of claim: By Lemma 2.2, we have

|S(A, k − 1;x)| ≥
(
αk−10 − εk−3

)
|H|k−2

=
(
αk−10 − εk−3

)
2(k−2)(r−s).

By Lemma 2.3 we have

|S0(A, k − 1;x)| ≤ 2k−1|A|k−3

≤ 2k−1|H|k−3

= 2k−1+s−r2(k−2)(r−s)

Combining these and using r ≥ r0 and s ≤ s0, the claim follows. �

Let w = (w1, . . . , wk−1) ∈ S(A, k − 1;x)\S0(A, k − 1;x). The tuple
w′ = (w1 + a, w2 + a, . . . , wk−1 + a, x) is contained in Xk, sums to
zero, and since no sub-tuple of w sums to zero, the elements of w′ are
distinct and have no sub-tuple summing to zero . (If a = 0 this is clear,
and otherwise a /∈ H so the wi + a are distinct from x.) Therefore w′

corresponds to a circuit of M(X) containing x. Taking into account
permutations of w, it follows that x is in at least β2(k−2)r distinct k-
element circuits of M(X). �

4. Triangle-free binary matroids

Finally, to prove Theorem 1.4, we need a variation on Lemma 2.2,
also following from [5, Lemma 4.13]. Let V = GF(2)r. For sets
A1, A2, A3 ⊆ V , let T (A1, A2, A3) be the set of triples in A1 ×A2 ×A3

with sum zero.
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Lemma 4.1. Let V ∈ GF(2)n and ε > 0. Let A1, A2, A3 ⊆ V with
|Ai| = αi|V |. If A1 is ε-uniform, then

|T (A1, A2, A3)| ≥ (α1α2α3 − ε)|V |2.

Proof of Theorem 1.4. Let ε > 0. Let δ be a real number such that
ε(ε− δ)2 > δ > 0, and let c = W (δ−3).

Let M be a simple rank-r triangle-free binary matroid. If |M | ≤ ε2r

then the theorem holds, so we may assume for a contradiction that
|M | > ε2r. Let V = GF(2)r and X ⊆ V be such that M ∼= M(X).

By Green’s regularity lemma there is an δ-regular subspace H of
V with codimension at most c. As in the first claim of the proof of
Theorem 3.1, there is some a ∈ Z such that Ha(X) is δ-regular and
satisfies |Ha(X)| ≥ ε − δ. We may choose a such that either a = 0 or
a /∈ H. Let A = Ha(X).

If |X∩H| ≤ ε|H|, then the theorem holds. Otherwise, by Lemma 4.1,
we have |T (A,A,X ∩H)| ≥ (ε(ε − δ)2 − δ)|H|2 > 0, so there is some
triple (x, y, z) with x+ y+ z = 0, where x, y ∈ A and z ∈ X ∩H. Now
{x+ a, y + a, z} is a triangle of M(X), a contradiction. �
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