ODD CIRCUITS IN DENSE BINARY MATROIDS

JIM GEELEN AND PETER NELSON

Abstract

We show that, for each real number $\alpha>0$ and odd integer $k \geq 5$ there is an integer c such that, if M is a simple binary matroid with $|M| \geq \alpha 2^{r(M)}$ and with no k-element circuit, then M has critical number at most c. The result is an easy application of a regularity lemma for finite abelian groups due to Green.

1. Introduction

We prove the following:
Theorem 1.1. For each real number $\alpha>0$ and odd integer $k \geq 5$, there exists $c \in \mathbb{Z}$ such that, if M is a simple binary matroid M with $|M| \geq \alpha 2^{r(M)}$ and with no k-element circuit, then M has critical number at most c.

The restriction to excluding odd circuits from a binary matroid here is natural. The geometric density Hales-Jewett theorem [2] implies that dense $\mathrm{GF}(q)$-representable matroids with sufficiently large rank necessarily contain arbitrarily large affine geometries over $\mathrm{GF}(q)$, which contain all even circuits when $q=2$ and all circuits when $q>2$. So dense k-circuit free $\mathrm{GF}(q)$-representable matroids of large rank only exist when $q=2$ and k is odd.

Our main theorem (Theorem 3.1) is somewhat more general than Theorem 1.1; it bounds the critical number of any sufficiently dense binary matroid whose elements are each contained in at most $o\left(2^{(k-2) r}\right)$ circuits of size k. Note that each element of $\operatorname{PG}(r-1,2)$ is contained in at most $2^{(k-2) r}$ circuits of size k, so our result is best possible up to a constant factor. We obtain the theorem as an easy application of Green's regularity lemma for finite abelian groups [3], which we review in Section 2.

[^0]Recall that, if M is a simple rank- r binary matroid considered as a restriction of the binary projective geometry $G \cong \mathrm{PG}(r-1,2)$, then the critical number of M is the minimum $c \in \mathbb{Z}_{0}^{+}$such that G has a rank- $(r-c)$ flat disjoint from $E(M)$. Equivalently, the critical number is the minimum number of "cocycles" needed to cover $E(M)$, where by a cocycle we mean a disjoint union of cocircuits. Thus cocycles correspond to cuts in a graph and, hence, critical number is a geometric analog of chromatic number.

Theorem 1.1 is analogous to the following theorem due to Thomassen [6].

Theorem 1.2. For each real number $\alpha>0$ and odd integer $k \geq 5$, there exists $c \in \mathbb{Z}$ such that every simple graph on n vertices with minimum degree at least α n and no k-cycle has chromatic number at most c.

Theorem 1.2 does not extend to the case that $k=3$; for each $\varepsilon>0$, Hajnal (see [1]) gave examples of triangle-free graphs G with minimum degree at least $\left(\frac{1}{3}-\varepsilon\right)|V(G)|$ and with arbitrarily large chromatic number. Nevertheless, we conjecture that Theorem 1.1 also holds for $k=3$. That is:

Conjecture 1.3. For each real number $\alpha>0$ there exists $c \in \mathbb{Z}$ such that, if M is a simple triangle-free binary matroid with $|M| \geq \alpha 2^{r(M)}$, then M has critical number at most c.

Green's regularity lemma gives a weaker outcome:
Theorem 1.4. For each real number $\varepsilon>0$ there exists $c \in \mathbb{Z}$ such that, if M is a triangle-free restriction of a binary projective geometry $G \cong \mathrm{PG}(r-1,2)$, then there is a flat F of G such that $r(F) \geq r(G)-c$ and $|F \cap E(M)| \leq \varepsilon 2^{r(F)}$.

2. Regularity

We will largely use the standard notation of matroid theory [4], but it will also be convenient to think of a rank- r binary matroid as a subset of the vector space $V=\mathrm{GF}(2)^{r}$. This change is purely notational; if $X \subseteq V$ then we write $M(X)$ for the binary matroid on X represented by a binary matrix with column set X. If $0 \notin X$ then $M(X)$ is simple. We define the critical number of X to be the critical number of $M(X)$; that is, the minimum codimension of a subspace of V disjoint from X.

Green used Fourier-analytic techniques to prove his regularity lemma for abelian groups and to derive applications in additive combinatorics; these techniques are discussed in greater detail in the book of Tao
and Vu [5, Chapter 4]. Fortunately, although this theory has many technicalities, the group $\mathrm{GF}(2)^{n}$ is among its simplest applications.

Let $V=\mathrm{GF}(2)^{r}$ and let $X \subseteq V$. Note that, if H is a codimension-1 subspace of V, then $|H|=|V \backslash H|$. We say that X is ε-uniform if for each codimension-1 subspace H of V we have

$$
||H \cap X|-|X \backslash H|| \leq \varepsilon|V|
$$

In Lemma 2.2 we will see that, for small ε, the ε-uniform sets are 'pseudorandom'.

Let H be a subspace of V. For each $v \in V$, let $H_{v}(X)=\{h \in H$: $h+v \in X\}$. For $\varepsilon>0$, we say H is ε-regular with respect to V and X if $H_{v}(X)$ is ε-uniform in H for all but $\varepsilon|V|$ values of $v \in V$.

Regularity captures the way that X is distributed among the cosets of H in V. For $v \in V$, we let $X+v=\{x+v: x \in X\}$; thus $X+v$ is a translation of X. Note that $X+v$ is ε-uniform if and only if X is. Also note that $H_{v}(X)+v=X \cap H^{\prime}$ where $H^{\prime}=H+v$ is the coset of H in V that contains v. Therefore, if $u, v \in H^{\prime}$, then $H_{u}(X)$ and $H_{v}(X)$ are translates of one another. So H is ε-regular if, for all but an ε-fraction of cosets H^{\prime} of H, the set $\left(H^{\prime} \cap X\right)+v$ is ε-uniform in H for some $v \in H^{\prime}$.

The following result of Green [3] guarantees a regular subspace of bounded codimension. Here $W(t)$ denotes an exponential tower of 2's of height $\lceil t\rceil$.
Theorem 2.1 (Green's regularity lemma). Let $V=\mathrm{GF}(2)^{n}, X \subseteq V$, and let $\varepsilon>0$ be a real number. Then there is a subspace H of v that is ε-regular with respect to X and V and has codimension at most $W\left(\varepsilon^{-3}\right)$ in V.

Let $A \subseteq V$ with $|A|=\alpha|V|$. For $x \in V$ and $k \in \mathbb{Z}$, we let $S(A, k ; x)$ denote the set of k-tuples in A^{k} with sum equal to x. Clearly $|S(A, k ; x)| \leq \alpha^{k-1}|V|^{k-1}$. If A were a random subset of V, we would expect around a $|V|^{-1}$-fraction of the tuples in A^{k} to sum to x, which would give $|S(A, k ; x)| \approx \alpha^{k}|V|^{k-1}$; the next lemma, a corollary of [5, Lemma 4.13], bounds the error in such an estimate when A is uniform.
Lemma 2.2. Let $V=\operatorname{GF}(2)^{n}$, let $x \in V$, and let $A \subseteq V$ with $|A|=$ $\alpha|V|$. For each integer $k \geq 3$ and real $\varepsilon>0$, if A is ε-uniform, then

$$
|S(A, k ; x)| \geq\left(\alpha^{k}-\varepsilon^{k-2}\right)|V|^{k-1}
$$

Observe that, if $x \in A$ and $\left\{x, a_{1}, \ldots, a_{k-1}\right\}$ is a k-element circuit in $M(A)$ that contains x, then $\left(a_{1}, \ldots, a_{k-1}\right) \in S(A, k-1 ; x)$. However the converse need not be true; if $\left(a_{1}, \ldots, a_{k-1}\right) \in S(A, k-1 ; x)$ then $\left\{x, a_{1}, \ldots, a_{k-1}\right\}$ is a k-element circuit unless some proper sub-tuple
of $\left(a_{1}, \ldots, a_{k-1}\right)$ sums to zero. We let $S_{0}(A, k ; x)$ denote the set of k tuples in $S(A, k ; x)$ having some proper nonempty sub-tuple with sum 0 . We argue that $S_{0}(A, k ; x)$ is small.

Lemma 2.3. Let $V=\operatorname{GF}(2)^{n}$, let k be an integer, let $x \in V$, and let $A \subseteq V$. Then $\left|S_{0}(A, k ; x)\right| \leq 2^{k}|A|^{k-2}$.

Proof. If some subtuple has sum 0 then its complementary tuple has sum x. Summing over all possible nonempty sub-tuples, we have

$$
\begin{aligned}
\left|S_{0}(A, k ; x)\right| & \leq \sum_{i=1}^{k-1}\binom{k}{i}|S(A, i ; 0)||S(A, k-i ; x)| \\
& \leq \sum_{i=1}^{k-1}\binom{k}{i}|A|^{i-1}|A|^{k-i-1} \\
& \leq 2^{k}|A|^{k-2}
\end{aligned}
$$

3. The Main Result

Theorem 3.1. For every real number $\alpha>0$ and odd integer $k \geq 5$, there exists a real number $\beta>0$ and integer c such that, if M is a simple binary matroid with $|M| \geq \alpha 2^{r(M)}$, then either M has critical number at most c, or some element of M is contained in at least $\beta 2^{(k-2) r(M)}$ distinct k-element circuits of M.

Proof. Let $\alpha>0$ be real and let $k \geq 5$ be an odd integer. Choose $\varepsilon>0$ so that

$$
(\alpha-\varepsilon)^{k-1}-\varepsilon^{k-3}>0,
$$

let $\alpha_{0}=\alpha-\varepsilon$, and then choose $r_{0} \in \mathbb{Z}$ so that

$$
\alpha_{0}^{k-1}-\varepsilon^{k-3}-2^{k-1+W\left(\varepsilon^{-3}\right)-r_{0}}>0 .
$$

Let $s_{0}=W\left(\varepsilon^{-3}\right)$, let $c=\max \left(r_{0}, s_{0}\right)$ and let

$$
\beta=\frac{2^{(2-k) s_{0}}}{(k-1)!}\left(\alpha_{0}^{k-1}-\varepsilon^{k-3}-2^{k-1+s_{0}-r_{0}}\right) .
$$

By our choice of r_{0}, we have $\beta>0$.
Let M be a simple rank- r binary matroid with $|M| \geq \alpha 2^{r}$. Let $V=$ $\mathrm{GF}(2)^{r}$ and let $X \subseteq V$ such that $M \cong M(X)$. By Green's regularity lemma, there is an ε-regular subspace H of V with codimension $s \leq c$.

Claim 1. There is some $a \in V$ such that $H_{a}(X)$ is ε-uniform in H and satisfies $\left|H_{a}(X)\right| \geq \alpha_{0}|H|$.

Proof of claim: Let V_{0} be the set of $v \in V$ for which $H_{v}(X)$ is not ε uniform; we have $\left|V_{0}\right| \leq \varepsilon|V|$ by regularity. In summing $\left|H_{v}(X)\right|$ over all $v \in V$, we count each $x \in X$ with multiplicity $|H|$, so

$$
\sum_{v \in V}\left|H_{v}(X)\right|=|X||H| \geq \alpha|V||H|
$$

On the other hand, $\sum_{v \in V_{0}}\left|H_{v}(X)\right| \leq \varepsilon|V||H|$. Thus there exists an element $a \in V \backslash V_{0}$ with

$$
\left|H_{a}(X)\right| \geq \frac{\alpha|V||H|-\varepsilon|V||H|}{\left|\backslash V V_{0}\right|} \geq(\alpha-\varepsilon)|H|=\alpha_{0}|H|
$$

as required.
Since $\left|H_{a}(X)\right|$ is constant as a ranges over each coset of H, we may choose $a=0$ if $a \in H$. Let $A=H_{a}(X)$. We may assume that M has critical number greater than c and, hence, there exists $x \in H \cap X$.
Claim 2. $\left|S(A, k-1 ; x) \backslash S_{0}(A, k-1 ; x)\right| \geq \beta(k-1)!2^{(k-2) r}$.
Proof of claim: By Lemma 2.2, we have

$$
\begin{aligned}
|S(A, k-1 ; x)| & \geq\left(\alpha_{0}^{k-1}-\varepsilon^{k-3}\right)|H|^{k-2} \\
& =\left(\alpha_{0}^{k-1}-\varepsilon^{k-3}\right) 2^{(k-2)(r-s)} .
\end{aligned}
$$

By Lemma 2.3 we have

$$
\begin{aligned}
\left|S_{0}(A, k-1 ; x)\right| & \leq 2^{k-1}|A|^{k-3} \\
& \leq 2^{k-1}|H|^{k-3} \\
& =2^{k-1+s-r} 2^{(k-2)(r-s)}
\end{aligned}
$$

Combining these and using $r \geq r_{0}$ and $s \leq s_{0}$, the claim follows.
Let $w=\left(w_{1}, \ldots, w_{k-1}\right) \in S(A, k-1 ; x) \backslash S_{0}(A, k-1 ; x)$. The tuple $w^{\prime}=\left(w_{1}+a, w_{2}+a, \ldots, w_{k-1}+a, x\right)$ is contained in X^{k}, sums to zero, and since no sub-tuple of w sums to zero, the elements of w^{\prime} are distinct and have no sub-tuple summing to zero . (If $a=0$ this is clear, and otherwise $a \notin H$ so the $w_{i}+a$ are distinct from x.) Therefore w^{\prime} corresponds to a circuit of $M(X)$ containing x. Taking into account permutations of w, it follows that x is in at least $\beta 2^{(k-2) r}$ distinct k element circuits of $M(X)$.

4. Triangle-free binary matroids

Finally, to prove Theorem 1.4, we need a variation on Lemma 2.2, also following from [5, Lemma 4.13]. Let $V=\mathrm{GF}(2)^{r}$. For sets $A_{1}, A_{2}, A_{3} \subseteq V$, let $T\left(A_{1}, A_{2}, A_{3}\right)$ be the set of triples in $A_{1} \times A_{2} \times A_{3}$ with sum zero.

Lemma 4.1. Let $V \in \mathrm{GF}(2)^{n}$ and $\varepsilon>0$. Let $A_{1}, A_{2}, A_{3} \subseteq V$ with $\left|A_{i}\right|=\alpha_{i}|V|$. If A_{1} is ε-uniform, then

$$
\left|T\left(A_{1}, A_{2}, A_{3}\right)\right| \geq\left(\alpha_{1} \alpha_{2} \alpha_{3}-\varepsilon\right)|V|^{2}
$$

Proof of Theorem 1.4. Let $\varepsilon>0$. Let δ be a real number such that $\varepsilon(\varepsilon-\delta)^{2}>\delta>0$, and let $c=W\left(\delta^{-3}\right)$.

Let M be a simple rank- r triangle-free binary matroid. If $|M| \leq \varepsilon 2^{r}$ then the theorem holds, so we may assume for a contradiction that $|M|>\varepsilon 2^{r}$. Let $V=\mathrm{GF}(2)^{r}$ and $X \subseteq V$ be such that $M \cong M(X)$.

By Green's regularity lemma there is an δ-regular subspace H of V with codimension at most c. As in the first claim of the proof of Theorem 3.1, there is some $a \in Z$ such that $H_{a}(X)$ is δ-regular and satisfies $\left|H_{a}(X)\right| \geq \varepsilon-\delta$. We may choose a such that either $a=0$ or $a \notin H$. Let $A=H_{a}(X)$.

If $|X \cap H| \leq \varepsilon|H|$, then the theorem holds. Otherwise, by Lemma 4.1, we have $|T(A, A, X \cap H)| \geq\left(\varepsilon(\varepsilon-\delta)^{2}-\delta\right)|H|^{2}>0$, so there is some triple (x, y, z) with $x+y+z=0$, where $x, y \in A$ and $z \in X \cap H$. Now $\{x+a, y+a, z\}$ is a triangle of $M(X)$, a contradiction.

References

[1] P. Erdős, M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323-334.
[2] H. Furstenberg, Y. Katznelson, IP-sets, Szemerédi's Theorem and Ramsey Theory, Bull. Amer. Math. Soc. (N.S.) 14 no. 2 (1986), 275-278.
[3] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geometric \& Functional Analysis GAFA 15 (2005), 340-376.
[4] J. G. Oxley, Matroid Theory, Oxford University Press, New York (2011).
[5] T. C. Tao and V. H. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge (2006).
[6] C. Thomassen, On the chromatic number of pentagon-free graphs of large minimum degree, Combinatorica 27 (2007), 241-243.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

Department of Mathematics, Statistics and Operations Research, Victoria University of Wellington, Wellington, New Zealand

[^0]: Date: March 7, 2014.
 1991 Mathematics Subject Classification. 05B35.
 Key words and phrases. matroids, regularity.
 This research was partially supported by a grant from the Office of Naval Research [N00014-10-1-0851].

