THE NUMBER OF LINES IN A MATROID WITH NO $U_{2,n}$ -MINOR

JIM GEELEN AND PETER NELSON

This paper is dedicated to the memory of Michel Las Vergnas.

ABSTRACT. We show that, if q is a prime power at most 5, then every rank-r matroid with no $U_{2,q+2}$ -minor has no more lines than a rank-r projective geometry over GF(q). We also give examples showing that for every other prime power this bound does not hold.

1. INTRODUCTION

This paper is motivated by the following special case of a conjecture due to Bonin; see Oxley [4, p. 582].

Conjecture 1.1. For each prime power q and positive integer r, every rank-r matroid with no $U_{2,q+2}$ -minor has at most $\begin{bmatrix} r \\ 2 \end{bmatrix}_q$ lines.

Here $\begin{bmatrix} r \\ 2 \end{bmatrix}_q = \frac{(q^r-1)(q^{r-1}-1)}{(q-1)(q^{2}-1)}$ is a *q*-binomial coefficient. The projective geometry $\operatorname{PG}(r-1,q)$ has $\begin{bmatrix} r \\ 2 \end{bmatrix}_q$ lines, so the conjectured bound is attained. Blokhuis gave examples refuting Conjecture 1.1 for all $q \ge 13$; see Nelson [3]. Our main result is the following.

Theorem 1.2. Conjecture 1.1 holds if and only if $q \leq 5$.

All known counterexamples to Conjecture 1.1 have rank 3 and it is quite plausible that the conjecture holds whenever $r \ge 4$; this is supported by a result of Nelson [3] that the conjecture holds when r is sufficiently large relative to q.

The proof of Conjecture 1.1 is straightforward for $q \in \{2, 3, 4\}$. For q = 5 we solve the problem partly by computer search. In all four cases we devote most of our attention to the rank 3 case, to which the general case is easily reduced.

This research was partially supported by a grant from the Office of Naval Research [N00014-12-1-0031].

2. Preliminaries

We follow the notation of Oxley [4]. We write $\mathcal{U}(\ell)$ for the class of matroids with no $U_{2,\ell+2}$ -minor. If $e \in E(M)$ then we write $W_1(M)$ for the number of points of M, $W_2(M)$ for the number of lines of M, $W_2^e(M)$ for the number of lines of M not containing e, and $\delta_M(e)$ for the number of lines of M containing e. For a simple rank-3 matroid M, we have $M \in \mathcal{U}(\ell)$ iff $\delta_M(e) \leq \ell + 1$ for all $e \in E(M)$. W_1 and W_2 are the first two Whitney numbers of the second kind.

The following theorem was proved by Kung [2].

Theorem 2.1. If $\ell \geq 2$ is an integer and $M \in \mathcal{U}(\ell)$ has rank r, then $W_1(M) \leq {r \choose 1}_q = \frac{q^r - 1}{q - 1}$.

Surprisingly, we require a small graph theory result. A 1-factorisation of a graph is a partition of its edge set into perfect matchings.

Lemma 2.2. Any two 1-factorisations of the graph K_6 have an element in common.

Proof. A 1-factorisation of K_6 is a 5-edge-colouring. The union of any two colour classes is a 2-regular bipartite graph on 6 vertices and edges, so is a 6-cycle, and it is easy to check that for any 6-cycle C there is a unique 5-edge-colouring having C as the union of two of its colour classes. Each 5-edge-colouring has 10 pairs of colour classes and K_6 has 60 6-cycles, so K_6 has six 1-factorisations.

Suppose that there exist disjoint 1-factorisations F_1 and F_2 . Each edge is in exactly three perfect matchings, so the set F_3 of perfect matchings not in F_1 or F_2 is also a 1-factorisation. Let F be a 1-factorisation that is not F_1 , F_2 or F_3 . Since |F| = 5 there is some i such that $|F \cap F_i| \ge 2$, but now F and F_i share two colour classes and are thus equal by our above observation. This is a contradiction. \Box

Our next lemma, invoked twice in Section 5, was proved by a computer search whose structure we briefly sketch.

Lemma 2.3. Let A be a twelve-element set. There do not exist partitions $\mathcal{L}_0, \mathcal{L}_1, \ldots, \mathcal{L}_5$ of A satisfying the following conditions:

- (1) \mathcal{L}_0 has exactly six blocks, each of size 2,
- (2) for each $i \in \{1, ..., 5\}$, the partition \mathcal{L}_i has at most 5 blocks and each has size at most 4,
- (3) for every distinct $x, y \in A$, there is exactly one $i \in \{0, ..., 6\}$ such that \mathcal{L}_i has a block containing x and y,
- (4) for each $i \in \{1, ..., 5\}$, if \mathcal{L}_i has exactly five blocks then it has a block of size 1.

Sketch of computational proof: Fix \mathcal{L}_0 arbitrarily and suppose that partitions $\mathcal{L}_1, \ldots, \mathcal{L}_5$ exist. For convenience we assume they each have exactly five parts and allow parts to be empty. The block sizes of each $\mathcal{L}_i : i \in \{1, \ldots, 5\}$ gives an integer partition $(n_{i,1}, \ldots, n_{i,5})$ of 12 so that $4 \ge n_{i,1} \ge n_2 \ge \ldots \ge n_{i,5} \ge 0$ and $n_{i,5} \le 1$. Moreover, there are 66 unordered pairs of distinct elements of A and six of these pairs are contained in blocks of \mathcal{L}_0 , so $\sum_{i=1}^5 \sum_{j=1}^5 {n_{i,j} \choose 2} = 60$. We say two set partitions P, P' are compatible if each block of P

We say two set partitions P, P' are *compatible* if each block of P intersects each block of P' in at most one element. For each integer partition p of 12 into nonnegative parts, let C(p) denote the set of partitions of A that are compatible with \mathcal{L}_0 and whose block sizes are the integers in p. Let C'(p) denote the set of orbits of C(p) under the action of the group of the $6! \cdot 2^6$ permutations of A that fix \mathcal{L}_0 . The following table shows the nine possible p that satisfy our constraints and their associated parameters.

p	C(p)	C'(p)	$\sum_{j=1}^{5} \binom{p_j}{2}$
(3,3,3,2,1)	71040	5	10
(3,3,3,3,0)	4960	3	12
(4, 3, 2, 2, 1)	136320	9	11
(4,3,3,1,1)	41280	5	12
(4, 3, 3, 2, 0)	38400	4	13
(4,4,2,1,1)	27360	5	13
(4, 4, 2, 2, 0)	12720	4	14
(4, 4, 3, 1, 0)	15360	2	15
(4, 4, 4, 0, 0)	960	1	18

The tuple $(\mathcal{L}_1, \ldots, \mathcal{L}_5)$ must belong to $\mathcal{C} = C(p_1) \times C(p_1) \times \ldots \times C(p_5)$, where p_1, \ldots, p_5 are drawn from rows of the table above whose last column sums to 60; there are 68 such (unordered) 5-tuples p_1, \ldots, p_5 . Moreover, the partitions $\mathcal{L}_0, \ldots, \mathcal{L}_5$ must be pairwise compatible. For each of the 68 possible \mathcal{C} , a backtracking search shows this cannot occur; by considering our choice for \mathcal{L}_1 up to a permutation of A that preserves \mathcal{L}_0 , we need only consider one choice of \mathcal{L}_1 from each orbit in $C'(p_1)$. Our search was performed with a Python program that runs in under two hours on a single CPU.

3. Counterexamples

In this section we construct counterexamples to Conjecture 1.1. They are more elaborate versions of the aforementioned construction of Blokhuis. **Lemma 3.1.** Let q be a prime power and t be an integer with $3 \le t \le q$. There is a rank-3 matroid M(q,t) with no $U_{2,q+t}$ -minor such that $W_2(M(q,t)) = q^2 + (q+1) {t \choose 2}$.

Proof. Let $N \cong PG(2,q)$. Let $e \in E(N)$ and let L_1, L_2, L_3 be distinct lines of N not containing e and so that $L_1 \cap L_2 \cap L_3$ is empty. Note that every line of M other than L_1, L_2 and L_3 intersects $L_1 \cup L_2 \cup L_3$ in at least 2 and at most 3 elements.

Let \mathcal{L} be the set of lines of N and \mathcal{L}_e be the set of lines of N containing e. For each $L \in \mathcal{L}_e$, let T(L) be a *t*-element subset of $L - \{e\}$ containing $L \cap (L_1 \cup L_2 \cup L_3)$. Observe that the T(L) are pairwise disjoint. Let $X = \bigcup_{L \in \mathcal{L}_e} T(L)$, noting that $L_1 \cup L_2 \cup L_3 \subseteq X$ and so each line in \mathcal{L} intersects X in at least two elements. Let M(q,t) be the simple rank-3 matroid with ground set X whose set of lines is $\mathcal{L}_1 \cup \mathcal{L}_2$, where $\mathcal{L}_1 = \{L \cap X : L \in \mathcal{L} - \mathcal{L}_e\}$, and \mathcal{L}_2 is the collection of two-element subsets of the sets $T(L) : L \in \mathcal{L}_e$. Note that \mathcal{L}_1 and \mathcal{L}_2 are disjoint. Every $f \in X$ lies in q lines in \mathcal{L}_1 and in (t-1) lines in \mathcal{L}_2 , so M(q,t)has no $U_{2,q+t}$ -minor. Moreover, we have $\mathcal{L}_1 = |\mathcal{L} - \mathcal{L}_e| = q^2$ and $\mathcal{L}_2 = |\mathcal{L}_e| {t \choose 2} = (q+1) {t \choose 2}$. This gives the lemma. \square

This next theorem refutes Conjecture 1.1 for all $q \geq 7$.

Theorem 3.2. If ℓ is an integer with $\ell \geq 7$, then there exists $M \in \mathcal{U}(\ell)$ such that r(M) = 3 and $W_2(M) > \ell^2 + \ell + 1$.

Proof. If $\ell \geq 127$, let q be a power of 2 such that $\frac{1}{4}(\ell+2) < q \leq \frac{1}{2}(\ell+2)$. We have $W_2(M(q,q)) = q^2 + \binom{q}{2}(q+1) > \frac{1}{2}q^3 \geq \frac{1}{128}(\ell+1)^3 \geq (\ell+1)^2 > \ell^2 + \ell + 1$.

If $7 \leq \ell < 127$, then it is easy to check that there is some prime power $q \in \{5, 7, 9, 13, 19, 32, 59, 113\}$ such that $\frac{1}{2}(\ell+2) \leq q \leq \ell-2$. Note that $3 < \ell+2-q \leq q$. Let $f_q(x) = q^2 + (q+1)\binom{x+2-q}{2} - (x^2+x+1)$. This function $f_q(x)$ is quadratic in x with positive leading coefficient and $f_q(q) = f_q(q+1) = 0$; it follows that f(x) > 0 for every integer $x \notin \{q, q+1\}$. Now the matroid $M = M(q, \ell+2-q)$ satisfies $M \in \mathcal{U}(\ell)$ and $W_2(M) - (\ell^2 + \ell + 1) = f_q(\ell) > 0$.

We conjecture that, for large ℓ , the matroids M(q, q) give the correct upper bound for the number of lines in a rank-3 matroid in $\mathcal{U}(\ell)$.

Conjecture 3.3. If ℓ is a sufficiently large integer and $M \in \mathcal{U}(\ell)$ has rank 3, then $W_2(M) \leq W_2(M(q,q)) = q^2 + \binom{q}{2}(q+1)$, where q is the largest prime power such that $2q \leq \ell + 2$.

4. Small q

Lemma 4.1. Let $q \ge 2$ be an integer. If $M \in \mathcal{U}(q)$ has rank 3 and has a $U_{2,q+1}$ -restriction, then $W_2(M) \le q^2 + q + 1$ and $W_2^e(M) \le q^2$ for each nonloop e of M.

Proof. We may assume that M is simple; let M|L be a $U_{2,q+1}$ -restriction of M. If some line L' of M does not intersect L then contracting a point of L' yields a $U_{2,q+2}$ -minor, so every line of M intersects L. Therefore $W_2(M) = \sum_{x \in L} (\delta_M(x) - 1) + 1 \leq (q+1)((q+1)-1) + 1 =$ $q^2 + q + 1$. For each $e \in E(M) - L$ we clearly have $\delta_M(e) = q + 1$ so $W_2^e(M) \leq (q^2 + q + 1) - (q + 1) = q^2$. For each $e \in L$ we have $W_2^e(M) = \sum_{x \in L-\{e\}} (\delta_M(e) - 1) \leq q(q + 1 - 1) = q^2$. \Box

Lemma 4.2. If $q \in \{2, 3, 4\}$ and $M \in \mathcal{U}(q)$ is a rank-3 matroid with a $U_{2,q}$ -restriction L and no $U_{2,q+1}$ -restriction, then at most q lines of M are disjoint from L.

Proof. We may assume that M is simple. Suppose that there is a set \mathcal{L} of lines disjoint from L such that $|\mathcal{L}| = q+1$. Since each $x \in E(M) - L$ lies on q lines intersecting L it lies on at most one line in \mathcal{L} , so the lines in \mathcal{L} are pairwise disjoint. Let X be a set formed by choosing two points from each line in \mathcal{L} ; note that |X| = 2(q+1) and $X \cap L = \emptyset$.

Since each X lies on at most one line disjoint from L, at most (q+1) pairs of elements of X span lines disjoint from L, so at least $\binom{2(q+1)}{2} - (q+1) = 2q(q+1)$ pairs of elements of X span a line intersecting L. Since |L| = q, there is some $y \in L$ such that at least 2(q+1) pairs of elements of X span y. Let \mathcal{L}_y be the set of lines of $M|(\{y\} \cup X)$ that contain y. Every line in \mathcal{L}_y spans a line of M containing y and none spans L itself, so $|\mathcal{L}_y| \leq q$. We also have $\sum_{L \in \mathcal{L}_y} (|L| - 1) = |X| = 2(q+1)$ and $\sum_{L \in \mathcal{L}_y} \binom{|L|-1}{2} \geq 2(q+1)$ by choice of y. Since M has no $U_{2,q+1}$ -restriction, we also have $|L| - 1 \leq q - 1$ for each $L \in \mathcal{L}_y$. It remains to check that, for $q \in \{2,3,4\}$ there are no solutions to the system $n_1 + n_2 + \ldots + n_q = 2(q+1), \binom{n_1}{2} + \ldots + \binom{n_q}{2} \geq 2(q+1)$ subject to $n_i \in \{0, \ldots, q-1\}$ for each i. This is easy.

Lemma 4.3. Let $q \in \{2,3,4\}$. If $M \in \mathcal{U}(q)$ has rank 3 and has a $U_{2,q}$ -restriction, then $W_2(M) \leq q^2 + q + 1$ and $W_2^e(M) \leq q^2$ for each nonloop e of M.

Proof. We may assume that M is simple and, by Lemma 4.1, that M has no $U_{2,q+1}$ -restriction; let M|L be a $U_{2,q}$ -restriction of M and let $f \in L$. If $W_2^f(M) \ge q^2 + 1$ then, since each $x \in L - \{f\}$ is

on at most q lines not containing f, there are at most $(|L| - 1)q = q^2 - q$ lines that intersect L but not f. Therefore there are at least $(q^2 + 1) - (q^2 - q) = q + 1$ lines that do not intersect L. This is a contradiction by Lemma 4.2. So $W_2^f(M) \leq q^2$ for each e in a $U_{2,q}$ -restriction of M; since $W^2(M) = W_2^f(M) + \delta_M(f) \leq W_2^f(M) + q + 1$ for every f this resolves the first part of the lemma, as well as the second part if e is in a $U_{2,q}$ -restriction.

It remains to bound $W_2^e(M)$ if e is in no $U_{2,q}$ -restriction. If $\delta_M(e) \ge q + 1$ then we have $W_2^e(M) = W_2(M) - \delta_e(M) \le q^2$ as required, so we may assume that $\delta_M(e) \le q$. Therefore e is in at most q lines containing at most q - 2 other points each, so $|E(M) - e| \le q(q - 2)$. Each $x \in E(M) - e$ is in at most q lines not containing e and each such line contains at least 2 points of E(M) - e, so $W_2^e(M) \le \frac{1}{2}q|E(M) - e| = \frac{1}{2}q^2(q-2) \le q^2$, since $\frac{1}{2}(q-2) \le 1$.

Lemma 4.4. If $q \in \{2,3,4\}$ and $M \in \mathcal{U}(q)$ has rank 3 and has no $U_{2,q}$ -restriction, then $W_2(M) \leq q^2 + q + 1$ and $W_2^e(M) \leq q^2$ for each nonloop e of M.

Proof. We may assume that M is simple; let n = |M|. If q = 2 then the result is vacuous and if q = 3 then M has no $U_{2,3}$ -restriction so $M \cong U_{3,n}$ and $n \leq 5$ so both conclusions are clear. It remains to resolve the q = 4 case.

Suppose that $W_2(M) \ge 4^2 + 4 + 2 = 22$. Every line of M contains either two or three points; for each $f \in E(M)$ let ℓ_f be the number of 3-point lines of M containing f. Let ℓ be the total number of 3-point lines of M. Each 3-point line of M contains 3 pairs of points of M, so $22 \le W_2(M) = \binom{n}{2} - 2\ell$. Moreover, every $e \in E(M)$ is in at most 5 lines so $n \le 1 + 2\ell_f + (5 - \ell_f) = 6 + \ell_f$. Summing this expression over all $f \in E(M)$ gives $n^2 \le 6n + 3\ell$. Therefore $2(6n + 3\ell) + 3(\binom{n}{2} - 2\ell) \ge$ $2n^2 + 66$, giving $0 \ge n^2 - 21n + 132 = (n - \frac{21}{2})^2 + \frac{87}{4}$, a contradiction; therefore $W_2(M) \le 4^2 + 4 + 1$. From here, it is also easy to obtain a contradiction to $W_2^e(M) > 4^2$ in a manner similar to the proof of Lemma 4.3.

5. Five

We now consider the number of lines in rank-3 matroids in $\mathcal{U}(5)$, first dealing with those that have no $U_{2,5}$ -restriction.

Lemma 5.1. If $M \in \mathcal{U}(5)$ has rank 3 and has no $U_{2,5}$ -restriction, then $W_2(M) \leq 5^2 + 5 + 1$.

Proof. We may assume that M is simple. Let n = |M| and for each $i \in \{2, 3, 4\}$, let ℓ_i be the number of lines of length i in M, noting that every line of M has length 2, 3 or 4. Suppose for a contradiction that $\ell_2 + \ell_3 + \ell_4 \geq 32$. Let P be the set of pairs (e, L) where $e \in L$. We have $2\ell_2 + 3\ell_3 + 4\ell_4 = |P| = \sum_{e \in E(M)} \delta_M(e) \leq 6n$. There are $\binom{n}{2}$ pairs of elements of M, each of which is contained in exactly one line of M, and an *i*-element line contains $\binom{i}{2}$ such pairs. We therefore have $\ell_2 + 3\ell_3 + 6\ell_4 = \binom{n}{2}$. Now

$$\ell_4 = (\ell_2 + 3\ell_3 + 6\ell_4) + 3(\ell_2 + \ell_3 + \ell_4) - 2(2\ell_2 + 3\ell_3 + 4\ell_4)$$

$$\geq \binom{n}{2} + 3 \cdot 32 - 2 \cdot 6n$$

nd $\ell_1 + 3\ell_3 = \binom{n}{2} - 6\ell_4 \le 72n - 18 \cdot 32 - 5\binom{n}{2} = \frac{-5}{2} \left(n - \frac{149}{10}\right)^2 - \frac{839}{40} < 0$, a contradiction.

Lemma 5.2. If $M \in \mathcal{U}(5)$ is a rank-3 matroid with no $U_{2,5}$ -restriction and e is a nonloop of M, then $W_2^e(M) \leq 5^2$.

Proof. We may assume that M is simple. If $\delta_M(e) = 6$ then $W_2^e(M) \leq 31 - 6 = 25$ by the previous lemma, so we may assume that $\delta_M(e) \leq 5$. Let n = |M| and let ℓ_2^e , ℓ_3^e and ℓ_4^e be the number of lines of length 2, 3 and 4 respectively that do not contain e. Suppose for a contradiction that $\ell_2^e + \ell_3^e + \ell_4^e \geq 26$. Let P be the set of pairs (f, L), where L is a line not containing e and $f \in L$. Clearly $|P| = 2\ell_2^e + 3\ell_3^e + 4\ell_4^e$, but also, since every $f \neq e$ is on at most 5 lines not containing e, we have $|P| \leq 5(n-1)$, so $2\ell_2^e + 3\ell_3^e + 4\ell_4^e \leq 5(n-1)$. Finally, let Q be the set of two-element sets $\{f_1, f_2\} \subset E(M)$ that span a line not containing e. As before, we have $|Q| = \ell_2^e + 3\ell_3^e + 6\ell_4^e$. On the other hand, there are at most 5 lines of M through e and each contains at most 3 other points, so there are at most $5\binom{3}{2} = 15$ two-element subsets of $E(M) - \{e\}$ that are not in Q. Therefore $|Q| = \binom{n-1}{2} - s$ for some $s \in \{0, \ldots, 15\}$, and $\ell_2^e + 3\ell_3^e + 6\ell_4^e = \binom{n-1}{2} - s$. Now

$$\ell_4^e = (\ell_2^e + 3\ell_3^e + 6\ell_4^e) + 3(\ell_2^e + \ell_3^e + \ell_4^e) - 2(2\ell_2^e + 3\ell_3^e + 4\ell_4^e)$$

$$\geq \binom{n-1}{2} - s + 3 \cdot 26 - 2(5(n-1))$$

$$= \binom{n-1}{2} - 10n + 88 - s.$$

Therefore, using $s \le 15$ we have $\ell_2^e + 3\ell_3^e = |Q| - 6\ell_4 \le \binom{n-1}{2} - s - 6\binom{n-1}{2} - 10n + 88 - s = 60n - 528 - 5\binom{n-1}{2} + 5s \le 60n - 453 - 5\binom{n-1}{2} = \frac{-5}{2} \left(n - \frac{27}{2}\right)^2 - \frac{19}{8} < 0$, a contradiction.

Lemma 5.3. If $M \in \mathcal{U}(5)$ has rank 3 and has a $U_{2,5}$ -restriction, then $W_2(M) \leq 5^2 + 5 + 1$.

Proof. Let M be a counterexample for which |M| is minimized. Note that M is simple, that $W_2(M) \ge 32$, and that, by Lemma 4.1, M has no $U_{2,6}$ -restriction.

Let $L = \{x_1, x_2, x_3, x_4, x_5\}$. Each element of L lies on at most five other lines, so there are at least $32-5\cdot 5-1=6$ lines $L_{0,1}, L_{0,2}, \ldots, L_{0,6}$ of M that do not intersect L. For each $i \in \{1, \ldots, 6\}$ let a_{2i-1} and a_{2i} be distinct elements of $L_{0,i}$. Note that each $e \in E(M) - L$ lies on five lines meeting L so lies on at most one other line; it follows that the set A = $\{a_1, a_2, \ldots, a_{12}\}$ has twelve elements and that $\mathcal{L}_0 = \{L_{0,0}, \ldots, L_{0,6}\}$ is a partition of A into pairs.

For each $i \in \{1, \ldots, 5\}$ let \mathcal{L}'_i be the set of lines of M containing x_i other than L and let $\mathcal{L}_i = \{L' - \{x_i\} : L' \in \mathcal{L}'_i\}$. We have $|\mathcal{L}_i| \leq 5$ and clearly \mathcal{L}_i is a partition of A. If there are six lines through x_i each containing at least two other points, then $W_2(M \setminus x_i) = W_2(M)$, contradicting minimality of |M|. Therefore $|L'| \leq 1$ for some $L' \in \mathcal{L}_i$. Since M has no $U_{2,6}$ -restriction we also have $|L'| \leq 4$ for each $L \in \mathcal{L}_i$. Finally, since each two-element subset of A either spans a line in \mathcal{L}_0 or a line in \mathcal{L}'_i for a unique i, each such pair is contained in a block of exactly one of the partitions $\mathcal{L}_0, \ldots, \mathcal{L}_5$. By Lemma 2.3 this is impossible.

Lemma 5.4. If $M \in \mathcal{U}(5)$ has rank 3 then $W_2^e(M) \leq 5^2$ for each nonloop e of M.

Proof. Let (M, e) be a counterexample for which |M| is minimized. Note that M simple and that, by Lemma 5.2, M has a $U_{2,5}$ -restriction M|L. If $\delta_M(e) \geq 6$ then $W_2^e(M) \leq 5^2+5+1-6=25$ by Lemma 5.3, so $\delta_M(e) \leq 5$. If there is some $f \in E(M) - \{e\}$ on six lines each containing at least two other points, then $W_2^e(M \setminus f) = W_2^e(M)$, contradicting minimality. Therefore every $x \in E(M)$ is on at most five lines that contain two other points (note that e also has this property).

If $e \in L$ then observe that each $f \in L - \{e\}$ is on at most 5 other lines not containing e, so there are at least 26 - 20 = 6 lines of M disjoint from e. Let B be a set formed by choosing of a pair of elements from each of these lines. In a similar manner to the previous lemma, we obtain six partitions of B that contradict Lemma 2.3. We thus assume that $e \notin L$.

Let $L = \{x_1, \ldots, x_5\}$. Each $x \in L$ lies on at most four lines other than L not containing e, so there exist 26-1-20 = 5 lines $L_{0,1}, \ldots, L_{0,5}$ of M disjoint from $L \cup \{e\}$. If there are six such disjoint lines, then we again obtain a contradiction with Lemma 2.3; we therefore assume that every x_i in L lies on exactly four other lines of M disjoint from L, so $\delta_M(x_i) = 6$ for each $i \in \{1, \ldots, 5\}$. For each $j \in \{1, \ldots, 5\}$ let a_{2j-1}, a_{2j} be distinct elements of $L_{0,j}$. Let $A = \{a_1, \ldots, a_{10}\}$ and let $N = M | (L \cup A \cup \{e\})$. As in the proof of the previous lemma the lines $L_{0,j}$ partition A into pairs, and so |N| = 16. Since e lies on at most 5 lines of N each containing at most three other points, the elements of $E(N) - \{e\}$ partition into three-element sets $L_{1,e}, \ldots, L_{5,e}$ such that $L_{j,e} \cup \{e\}$ is a four-element line of N for each j.

As before we consider the lines through each element of L, and for each $x_i \in L$ we obtain a partition $\mathcal{L}_i = \{L_{i,1}, \ldots, L_{i,5}\}$ of $A \cup \{e\}$ into five blocks corresponding to the lines of N through x_i other than L. Again we have $4 \geq |L_{i,1}| \geq |L_{i,2}| \geq \ldots \geq |L_{i,5}| = 1$, (we have $|L_{i,5}| = 1$ here by minimality of M and the fact that $\delta_M(x_i) = 6$) and $\sum_{j=1}^5 |L_{i,j}| = 11$ for each i. Moreover, for each i the point x_i is on the four-element line $L_{i,e}$, so for some j we have $|L_{i,j}| = 3$. Finally, there are $\binom{11}{2} - 5 = 50$ pairs of elements in $A \cup \{e\}$ that do not span one of the lines $L_{0,i}$, so $\sum_{i=1}^5 \sum_{j=1}^5 \binom{|L_{i,j}|}{2} = 50$. If $4 \geq n_1 \geq \ldots \geq n_5 = 1$ are integers summing to 11 such that some

If $4 \ge n_1 \ge \ldots \ge n_5 = 1$ are integers summing to 11 such that some n_i is 3, then $\binom{n_1}{2} + \ldots + \binom{n_5}{2} \le 10$ with equality only if $(n_1, n_2, \ldots, n_5) = (4, 3, 2, 1, 1)$. Therefore $(|L_{i,1}|, |L_{i,2}|, \ldots, |L_{i,5}|) = (4, 3, 2, 1, 1)$ for each i; note that $L_{i,e} \cup \{x_i\} = L_{i,2}$. Therefore, in the fifteen-element matroid $N \setminus e$, each $x_i \in L$ lies on two five-element lines; two three-element lines and two two-element lines. For each integer k Let \mathcal{J}_k be the set of k-element lines of $N \setminus e$.

Let Y be the union of the lines in \mathcal{J}_5 . By the above reasoning each $y \in Y$ lies on exactly two lines in \mathcal{J}_5 , so it follows that $5|\mathcal{J}_5| = 2|Y|$ and so $|Y| \equiv 0 \pmod{5}$. Since three 5-point lines account for at least 13 points, it is clear that |Y| > 10 and so we must have |Y| = 15 and $|Y| = E(N \setminus e)$. Therefore every element of $N \setminus e$ lies on exactly two lines in \mathcal{J}_5 , $|\mathcal{J}_5| = \frac{2}{5}|Y| = 6$, and the elements of $N \setminus e$ are exactly the intersections of the $\binom{6}{2}$ pairs of lines in \mathcal{J}_5 . There is now a natural mapping of $E(N \setminus e)$ to the edge set of the complete graph K_6 with vertex set \mathcal{J}_5 , where the elements of each $J \in \mathcal{J}_5$ are the edges incident with the vertex J. The lines in \mathcal{J}_3 map to three-edge matchings. We know the lines $\mathcal{L}_{i,e} - \{e\}$ are in \mathcal{J}_3 and partition $E(N \setminus e)$, and each $f \in E(N \setminus e)$ is contained in exactly two lines in \mathcal{J}_3 , so \mathcal{J}_3 is the union of two disjoint partitions of $E(N \setminus e)$. This gives two disjoint 1-factorisations of K_6 , a contradiction by Lemma 2.2.

6. Higher Rank

Combining all lemmas in the last two sections gives the following:

Theorem 6.1. If $q \in \{2, 3, 4, 5\}$ and M is a rank-3 matroid in $\mathcal{U}(q)$, then $W_2(M) \leq q^2 + q + 1$ and $W_2^e(M) \leq q^2$ for each nonloop e of M.

We now generalise this to arbitrary rank. For a matroid M and a nonloop $e \in E(M)$, let $\mathcal{P}_M(e)$ denote the set of planes of M containing e. Note that $|\mathcal{P}_M(e)| = W_2(M/e)$. When we contract a nonloop e in a matroid M, every line through e becomes a point and every set of lines not containing e that span a plane in $\mathcal{P}_M(e)$ are identified into a single line. This gives the following lemma:

Lemma 6.2. If M is a matroid and $e \in E(M)$ is a nonloop, then $W_2(M) = W_1(M/e) + \sum_{P \in \mathcal{P}_M(e)} W_2^e(M|P).$

From here we can easily verify Conjecture 1.2 for all $q \leq 5$.

Theorem 6.3. If $q \in \{2, 3, 4, 5\}$ and $M \in \mathcal{U}(q)$ then $W_2(M) \leq {\binom{r(M)}{2}}_q$.

Proof. If $r \leq 2$ then the result is obvious. Suppose inductively that $r \geq 3$ and that the result holds for smaller r, and let e be a nonloop of M. By Theorem 2.1 we have $W_1(M/e) \leq \frac{q^{r-1}-1}{q-1}$ and by Theorem 6.1 we have $W_2^e(M|P) \leq q^2$ for each $P \in \mathcal{P}_M(e)$. Therefore, by Lemma 6.2 and the inductive hypothesis,

$$W_{2}(M) = W_{1}(M/e) + \sum_{P \in \mathcal{P}_{M}(e)} W_{2}^{e}(M|P)$$

$$\leq \frac{q^{r-1}-1}{q-1} + q^{2}|\mathcal{P}_{M}(e)|$$

$$= \frac{q^{r-1}-1}{q-1} + q^{2}W_{2}(M/e)$$

$$\leq {r-1 \choose 1}_{q} + q^{2}{r-1 \choose 2}_{q}$$

$$= {r \choose 2}_{q},$$

as required.

7. References

- J. Geelen, P. Nelson, The number of points in a matroid with no n-point line as a minor, J. Combin. Theory. Ser. B 100 (2010), 625–630.
- [2] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory (Seattle WA, 1991), Contemporary Mathematics 147 (1993), American Mathematical Society, Providence RI, 21–61.
- [3] P. Nelson, The number of rank-k flats in a matroid with no $U_{2,n}$ -minor, arXiv:1306.0531 [math.CO]

[4] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 2011.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada