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Abstract. We show that, if q is a prime power at most 5, then
every rank-r matroid with no U2,q+2-minor has no more lines than
a rank-r projective geometry over GF(q). We also give examples
showing that for every other prime power this bound does not hold.

1. Introduction

This paper is motivated by the following special case of a conjecture
due to Bonin; see Oxley [4, p. 582].

Conjecture 1.1. For each prime power q and positive integer r,every
rank-r matroid with no U2,q+2-minor has at most

[
r
2

]
q

lines.

Here
[
r
2

]
q

= (qr−1)(qr−1−1)
(q−1)(q2−1) is a q-binomial coefficient. The projective

geometry PG(r − 1, q) has
[
r
2

]
q

lines, so the conjectured bound is at-

tained. Blokhuis gave examples refuting Conjecture 1.1 for all q ≥ 13;
see Nelson [3]. Our main result is the following.

Theorem 1.2. Conjecture 1.1 holds if and only if q ≤ 5.

All known counterexamples to Conjecture 1.1 have rank 3 and it
is quite plausible that the conjecture holds whenever r ≥ 4; this is
supported by a result of Nelson [3] that the conjecture holds when r is
sufficiently large relative to q.

The proof of Conjecture 1.1 is straightforward for q ∈ {2, 3, 4}. For
q = 5 we solve the problem partly by computer search. In all four
cases we devote most of our attention to the rank 3 case, to which the
general case is easily reduced.

This research was partially supported by a grant from the Office of Naval Re-
search [N00014-12-1-0031].
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2. Preliminaries

We follow the notation of Oxley [4]. We write U(`) for the class of
matroids with no U2,`+2-minor. If e ∈ E(M) then we write W1(M)
for the number of points of M , W2(M) for the number of lines of M ,
W e

2 (M) for the number of lines of M not containing e, and δM(e) for
the number of lines of M containing e. For a simple rank-3 matroid
M , we have M ∈ U(`) iff δM(e) ≤ `+ 1 for all e ∈ E(M). W1 and W2

are the first two Whitney numbers of the second kind.
The following theorem was proved by Kung [2].

Theorem 2.1. If ` ≥ 2 is an integer and M ∈ U(`) has rank r, then
W1(M) ≤

[
r
1

]
q

= qr−1
q−1 .

Surprisingly, we require a small graph theory result. A 1-factorisation
of a graph is a partition of its edge set into perfect matchings.

Lemma 2.2. Any two 1-factorisations of the graph K6 have an element
in common.

Proof. A 1-factorisation of K6 is a 5-edge-colouring. The union of any
two colour classes is a 2-regular bipartite graph on 6 vertices and edges,
so is a 6-cycle, and it is easy to check that for any 6-cycle C there is
a unique 5-edge-colouring having C as the union of two of its colour
classes. Each 5-edge-colouring has 10 pairs of colour classes and K6

has 60 6-cycles, so K6 has six 1-factorisations.
Suppose that there exist disjoint 1-factorisations F1 and F2. Each

edge is in exactly three perfect matchings, so the set F3 of perfect
matchings not in F1 or F2 is also a 1-factorisation. Let F be a 1-
factorisation that is not F1, F2 or F3. Since |F | = 5 there is some i
such that |F ∩ Fi| ≥ 2, but now F and Fi share two colour classes and
are thus equal by our above observation. This is a contradiction. �

Our next lemma, invoked twice in Section 5, was proved by a com-
puter search whose structure we briefly sketch.

Lemma 2.3. Let A be a twelve-element set. There do not exist parti-
tions L0,L1, . . . ,L5 of A satisfying the following conditions:

(1) L0 has exactly six blocks, each of size 2,
(2) for each i ∈ {1, . . . , 5}, the partition Li has at most 5 blocks

and each has size at most 4,
(3) for every distinct x, y ∈ A, there is exactly one i ∈ {0, . . . , 6}

such that Li has a block containing x and y,
(4) for each i ∈ {1, . . . , 5}, if Li has exactly five blocks then it has

a block of size 1.
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Sketch of computational proof: Fix L0 arbitrarily and suppose that par-
titions L1, . . . ,L5 exist. For convenience we assume they each have
exactly five parts and allow parts to be empty. The block sizes of each
Li : i ∈ {1, . . . , 5} gives an integer partition (ni,1, . . . , ni,5) of 12 so that
4 ≥ ni,1 ≥ n2 ≥ . . . ≥ ni,5 ≥ 0 and ni,5 ≤ 1. Moreover, there are
66 unordered pairs of distinct elements of A and six of these pairs are
contained in blocks of L0, so

∑5
i=1

∑5
j=1

(
ni,j

2

)
= 60.

We say two set partitions P, P ′ are compatible if each block of P
intersects each block of P ′ in at most one element. For each integer
partition p of 12 into nonnegative parts, let C(p) denote the set of
partitions of A that are compatible with L0 and whose block sizes are
the integers in p. Let C ′(p) denote the set of orbits of C(p) under the
action of the group of the 6! · 26 permutations of A that fix L0. The
following table shows the nine possible p that satisfy our constraints
and their associated parameters.

p |C(p)| |C ′(p)|
∑5

j=1

(
pj
2

)
(3, 3, 3, 2, 1) 71040 5 10
(3, 3, 3, 3, 0) 4960 3 12
(4, 3, 2, 2, 1) 136320 9 11
(4, 3, 3, 1, 1) 41280 5 12
(4, 3, 3, 2, 0) 38400 4 13
(4, 4, 2, 1, 1) 27360 5 13
(4, 4, 2, 2, 0) 12720 4 14
(4, 4, 3, 1, 0) 15360 2 15
(4, 4, 4, 0, 0) 960 1 18

The tuple (L1, . . . ,L5) must belong to C = C(p1)×C(p1)× . . .×C(p5),
where p1, . . . , p5 are drawn from rows of the table above whose last
column sums to 60; there are 68 such (unordered) 5-tuples p1, . . . , p5.
Moreover, the partitions L0, . . . ,L5 must be pairwise compatible. For
each of the 68 possible C, a backtracking search shows this cannot
occur; by considering our choice for L1 up to a permutation of A that
preserves L0, we need only consider one choice of L1 from each orbit in
C ′(p1). Our search was performed with a Python program that runs
in under two hours on a single CPU.

�

3. Counterexamples

In this section we construct counterexamples to Conjecture 1.1. They
are more elaborate versions of the aforementioned construction of Blokhuis.
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Lemma 3.1. Let q be a prime power and t be an integer with 3 ≤ t ≤
q. There is a rank-3 matroid M(q, t) with no U2,q+t-minor such that
W2(M(q, t)) = q2 + (q + 1)

(
t
2

)
.

Proof. Let N ∼= PG(2, q). Let e ∈ E(N) and let L1, L2, L3 be distinct
lines of N not containing e and so that L1 ∩ L2 ∩ L3 is empty. Note
that every line of M other than L1, L2 and L3 intersects L1 ∪ L2 ∪ L3

in at least 2 and at most 3 elements.
Let L be the set of lines ofN and Le be the set of lines ofN containing

e. For each L ∈ Le, let T (L) be a t-element subset of L−{e} containing
L ∩ (L1 ∪ L2 ∪ L3). Observe that the T (L) are pairwise disjoint. Let
X = ∪L∈LeT (L), noting that L1 ∪ L2 ∪ L3 ⊆ X and so each line in
L intersects X in at least two elements. Let M(q, t) be the simple
rank-3 matroid with ground set X whose set of lines is L1 ∪L2, where
L1 = {L ∩ X : L ∈ L − Le}, and L2 is the collection of two-element
subsets of the sets T (L) : L ∈ Le. Note that L1 and L2 are disjoint.
Every f ∈ X lies in q lines in L1 and in (t− 1) lines in L2, so M(q, t)
has no U2,q+t-minor. Moreover, we have L1 = |L − Le| = q2 and
L2 = |Le|

(
t
2

)
= (q + 1)

(
t
2

)
. This gives the lemma. �

This next theorem refutes Conjecture 1.1 for all q ≥ 7.

Theorem 3.2. If ` is an integer with ` ≥ 7, then there exists M ∈ U(`)
such that r(M) = 3 and W2(M) > `2 + `+ 1.

Proof. If ` ≥ 127, let q be a power of 2 such that 1
4
(`+2) < q ≤ 1

2
(`+2).

We have W2(M(q, q)) = q2+
(
q
2

)
(q+1) > 1

2
q3 ≥ 1

128
(`+1)3 ≥ (`+1)2 >

`2 + `+ 1.
If 7 ≤ ` < 127, then it is easy to check that there is some prime

power q ∈ {5, 7, 9, 13, 19, 32, 59, 113} such that 1
2
(` + 2) ≤ q ≤ ` − 2.

Note that 3 < `+2−q ≤ q. Let fq(x) = q2+(q+1)
(
x+2−q

2

)
−(x2+x+1).

This function fq(x) is quadratic in x with positive leading coefficient
and fq(q) = fq(q + 1) = 0; it follows that f(x) > 0 for every integer
x /∈ {q, q+1}. Now the matroid M = M(q, `+2−q) satisfies M ∈ U(`)
and W2(M)− (`2 + `+ 1) = fq(`) > 0. �

We conjecture that, for large `, the matroids M(q, q) give the correct
upper bound for the number of lines in a rank-3 matroid in U(`).

Conjecture 3.3. If ` is a sufficiently large integer and M ∈ U(`) has
rank 3, then W2(M) ≤ W2(M(q, q)) = q2 +

(
q
2

)
(q + 1), where q is the

largest prime power such that 2q ≤ `+ 2.
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4. Small q

Lemma 4.1. Let q ≥ 2 be an integer. If M ∈ U(q) has rank 3 and
has a U2,q+1-restriction, then W2(M) ≤ q2 + q+1 and W e

2 (M) ≤ q2 for
each nonloop e of M .

Proof. We may assume thatM is simple; letM |L be a U2,q+1-restriction
of M . If some line L′ of M does not intersect L then contracting
a point of L′ yields a U2,q+2-minor, so every line of M intersects L.
Therefore W2(M) =

∑
x∈L(δM(x)− 1) + 1 ≤ (q+ 1)((q+ 1)− 1) + 1 =

q2 + q + 1. For each e ∈ E(M) − L we clearly have δM(e) = q + 1
so W e

2 (M) ≤ (q2 + q + 1) − (q + 1) = q2. For each e ∈ L we have
W e

2 (M) =
∑

x∈L−{e}(δM(e)− 1) ≤ q(q + 1− 1) = q2. �

Lemma 4.2. If q ∈ {2, 3, 4} and M ∈ U(q) is a rank-3 matroid with a
U2,q-restriction L and no U2,q+1-restriction, then at most q lines of M
are disjoint from L.

Proof. We may assume that M is simple. Suppose that there is a set L
of lines disjoint from L such that |L| = q+1. Since each x ∈ E(M)−L
lies on q lines intersecting L it lies on at most one line in L, so the
lines in L are pairwise disjoint. Let X be a set formed by choosing two
points from each line in L; note that |X| = 2(q + 1) and X ∩ L = ∅.

Since each X lies on at most one line disjoint from L, at most (q+1)

pairs of elements of X span lines disjoint from L, so at least
(
2(q+1)

2

)
−

(q + 1) = 2q(q + 1) pairs of elements of X span a line intersecting L.
Since |L| = q, there is some y ∈ L such that at least 2(q + 1) pairs
of elements of X span y. Let Ly be the set of lines of M |({y} ∪ X)
that contain y. Every line in Ly spans a line of M containing y and
none spans L itself, so |Ly| ≤ q. We also have

∑
L∈Ly(|L| − 1) = |X| =

2(q + 1) and
∑

L∈Ly

(|L|−1
2

)
≥ 2(q + 1) by choice of y. Since M has no

U2,q+1-restriction, we also have |L| − 1 ≤ q − 1 for each L ∈ Ly. It
remains to check that, for q ∈ {2, 3, 4} there are no solutions to the
system n1 +n2 + . . .+nq = 2(q+1),

(
n1

2

)
+ . . .+

(
nq

2

)
≥ 2(q+1) subject

to ni ∈ {0, . . . , q − 1} for each i. This is easy.
�

Lemma 4.3. Let q ∈ {2, 3, 4}. If M ∈ U(q) has rank 3 and has a
U2,q-restriction, then W2(M) ≤ q2 + q + 1 and W e

2 (M) ≤ q2 for each
nonloop e of M .

Proof. We may assume that M is simple and, by Lemma 4.1, that
M has no U2,q+1-restriction; let M |L be a U2,q-restriction of M and

let f ∈ L. If W f
2 (M) ≥ q2 + 1 then, since each x ∈ L − {f} is
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on at most q lines not containing f , there are at most (|L| − 1)q =
q2 − q lines that intersect L but not f . Therefore there are at least
(q2 + 1) − (q2 − q) = q + 1 lines that do not intersect L. This is a

contradiction by Lemma 4.2. So W f
2 (M) ≤ q2 for each e in a U2,q-

restriction of M ; since W 2(M) = W f
2 (M) + δM(f) ≤ W f

2 (M) + q + 1
for every f this resolves the first part of the lemma, as well as the
second part if e is in a U2,q-restriction.

It remains to bound W e
2 (M) if e is in no U2,q-restriction. If δM(e) ≥

q + 1 then we have W e
2 (M) = W2(M) − δe(M) ≤ q2 as required, so

we may assume that δM(e) ≤ q. Therefore e is in at most q lines
containing at most q − 2 other points each, so |E(M)− e| ≤ q(q − 2).
Each x ∈ E(M)−e is in at most q lines not containing e and each such
line contains at least 2 points of E(M)−e, so W e

2 (M) ≤ 1
2
q|E(M)−e| =

1
2
q2(q − 2) ≤ q2, since 1

2
(q − 2) ≤ 1.

�

Lemma 4.4. If q ∈ {2, 3, 4} and M ∈ U(q) has rank 3 and has no
U2,q-restriction, then W2(M) ≤ q2 + q + 1 and W e

2 (M) ≤ q2 for each
nonloop e of M .

Proof. We may assume that M is simple; let n = |M |. If q = 2 then
the result is vacuous and if q = 3 then M has no U2,3-restriction so
M ∼= U3,n and n ≤ 5 so both conclusions are clear. It remains to
resolve the q = 4 case.

Suppose that W2(M) ≥ 42 + 4 + 2 = 22. Every line of M contains
either two or three points; for each f ∈ E(M) let `f be the number of
3-point lines of M containing f . Let ` be the total number of 3-point
lines of M . Each 3-point line of M contains 3 pairs of points of M , so
22 ≤ W2(M) =

(
n
2

)
− 2`. Moreover, every e ∈ E(M) is in at most 5

lines so n ≤ 1 + 2`f + (5− `f ) = 6 + `f . Summing this expression over
all f ∈ E(M) gives n2 ≤ 6n+ 3`. Therefore 2(6n+ 3`) + 3(

(
n
2

)
− 2`) ≥

2n2 + 66, giving 0 ≥ n2 − 21n+ 132 = (n− 21
2

)2 + 87
4

, a contradiction;
therefore W2(M) ≤ 42 + 4 + 1. From here, it is also easy to obtain
a contradiction to W e

2 (M) > 42 in a manner similar to the proof of
Lemma 4.3. �

5. Five

We now consider the number of lines in rank-3 matroids in U(5),
first dealing with those that have no U2,5-restriction.

Lemma 5.1. If M ∈ U(5) has rank 3 and has no U2,5-restriction, then
W2(M) ≤ 52 + 5 + 1.
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Proof. We may assume that M is simple. Let n = |M | and for each
i ∈ {2, 3, 4}, let `i be the number of lines of length i in M , noting
that every line of M has length 2, 3 or 4. Suppose for a contradiction
that `2 + `3 + `4 ≥ 32. Let P be the set of pairs (e, L) where e ∈ L.
We have 2`2 + 3`3 + 4`4 = |P | =

∑
e∈E(M) δM(e) ≤ 6n. There are

(
n
2

)
pairs of elements of M , each of which is contained in exactly one line
of M , and an i-element line contains

(
i
2

)
such pairs. We therefore have

`2 + 3`3 + 6`4 =
(
n
2

)
. Now

`4 = (`2 + 3`3 + 6`4) + 3(`2 + `3 + `4)− 2(2`2 + 3`3 + 4`4)

≥
(
n
2

)
+ 3 · 32− 2 · 6n

nd `1 +3`3 =
(
n
2

)
−6`4 ≤ 72n−18 ·32−5

(
n
2

)
= −5

2

(
n− 149

10

)2− 839
40
< 0,

a contradiction. �

Lemma 5.2. If M ∈ U(5) is a rank-3 matroid with no U2,5-restriction
and e is a nonloop of M , then W e

2 (M) ≤ 52.

Proof. We may assume that M is simple. If δM(e) = 6 then W e
2 (M) ≤

31− 6 = 25 by the previous lemma, so we may assume that δM(e) ≤ 5.
Let n = |M | and let `e2, `

e
3 and `e4 be the number of lines of length 2, 3

and 4 respectively that do not contain e. Suppose for a contradiction
that `e2 + `e3 + `e4 ≥ 26. Let P be the set of pairs (f, L), where L is a
line not containing e and f ∈ L. Clearly |P | = 2`e2 + 3`e3 + 4`e4, but
also, since every f 6= e is on at most 5 lines not containing e, we have
|P | ≤ 5(n− 1), so 2`e2 + 3`e3 + 4`e4 ≤ 5(n− 1). Finally, let Q be the set
of two-element sets {f1, f2} ⊂ E(M) that span a line not containing e.
As before, we have |Q| = `e2+3`e3+6`e4. On the other hand, there are at
most 5 lines of M through e and each contains at most 3 other points,
so there are at most 5

(
3
2

)
= 15 two-element subsets of E(M)−{e} that

are not in Q. Therefore |Q| =
(
n−1
2

)
− s for some s ∈ {0, . . . , 15}, and

`e2 + 3`e3 + 6`e4 =
(
n−1
2

)
− s. Now

`e4 = (`e2 + 3`e3 + 6`e4) + 3(`e2 + `e3 + `e4)− 2(2`e2 + 3`e3 + 4`e4)

≥
(
n−1
2

)
− s+ 3 · 26− 2(5(n− 1))

=
(
n−1
2

)
− 10n+ 88− s.

Therefore, using s ≤ 15 we have `e2 + 3`e3 = |Q| − 6`4 ≤
(
n−1
2

)
− s −

6(
(
n−1
2

)
−10n+88−s) = 60n−528−5

(
n−1
2

)
+5s ≤ 60n−453−5

(
n−1
2

)
=

−5
2

(
n− 27

2

)2 − 19
8
< 0, a contradiction. �

Lemma 5.3. If M ∈ U(5) has rank 3 and has a U2,5-restriction, then
W2(M) ≤ 52 + 5 + 1.
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Proof. Let M be a counterexample for which |M | is minimized. Note
that M is simple, that W2(M) ≥ 32, and that, by Lemma 4.1, M has
no U2,6-restriction.

Let L = {x1, x2, x3, x4, x5}. Each element of L lies on at most five
other lines, so there are at least 32−5 ·5−1 = 6 lines L0,1, L0,2, . . . , L0,6

of M that do not intersect L. For each i ∈ {1, . . . , 6} let a2i−1 and a2i be
distinct elements of L0,i. Note that each e ∈ E(M)−L lies on five lines
meeting L so lies on at most one other line; it follows that the set A =
{a1, a2, . . . , a12} has twelve elements and that L0 = {L0,0, . . . , L0,6} is
a partition of A into pairs.

For each i ∈ {1, . . . , 5} let L′i be the set of lines of M containing xi
other than L and let Li = {L′ − {xi} : L′ ∈ L′i}. We have |Li| ≤ 5
and clearly Li is a partition of A. If there are six lines through xi
each containing at least two other points, then W2(M \xi) = W2(M),
contradicting minimality of |M |. Therefore |L′| ≤ 1 for some L′ ∈ Li.
Since M has no U2,6-restriction we also have |L′| ≤ 4 for each L ∈ Li.
Finally, since each two-element subset of A either spans a line in L0 or a
line in L′i for a unique i, each such pair is contained in a block of exactly
one of the partitions L0, . . . ,L5. By Lemma 2.3 this is impossible.

�

Lemma 5.4. If M ∈ U(5) has rank 3 then W e
2 (M) ≤ 52 for each

nonloop e of M .

Proof. Let (M, e) be a counterexample for which |M | is minimized.
Note that M simple and that, by Lemma 5.2, M has a U2,5-restriction
M |L. If δM(e) ≥ 6 then W e

2 (M) ≤ 52+5+1−6 = 25 by Lemma 5.3, so
δM(e) ≤ 5. If there is some f ∈ E(M)−{e} on six lines each containing
at least two other points, then W e

2 (M \f) = W e
2 (M), contradicting

minimality. Therefore every x ∈ E(M) is on at most five lines that
contain two other points (note that e also has this property).

If e ∈ L then observe that each f ∈ L−{e} is on at most 5 other lines
not containing e, so there are at least 26 − 20 = 6 lines of M disjoint
from e. Let B be a set formed by choosing of a pair of elements from
each of these lines. In a similar manner to the previous lemma, we
obtain six partitions of B that contradict Lemma 2.3. We thus assume
that e /∈ L.

Let L = {x1, . . . , x5}. Each x ∈ L lies on at most four lines other
than L not containing e, so there exist 26−1−20 = 5 lines L0,1, . . . , L0,5

of M disjoint from L ∪ {e}. If there are six such disjoint lines, then
we again obtain a contradiction with Lemma 2.3; we therefore assume
that every xi in L lies on exactly four other lines of M disjoint from L,
so δM(xi) = 6 for each i ∈ {1, . . . , 5}.
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For each j ∈ {1, . . . , 5} let a2j−1, a2j be distinct elements of L0,j. Let
A = {a1, . . . , a10} and let N = M |(L∪A∪{e}). As in the proof of the
previous lemma the lines L0,j partition A into pairs, and so |N | = 16.
Since e lies on at most 5 lines of N each containing at most three other
points, the elements of E(N) − {e} partition into three-element sets
L1,e, . . . , L5,e such that Lj,e∪{e} is a four-element line of N for each j.

As before we consider the lines through each element of L, and for
each xi ∈ L we obtain a partition Li = {Li,1, . . . , Li,5} of A ∪ {e}
into five blocks corresponding to the lines of N through xi other than
L. Again we have 4 ≥ |Li,1| ≥ |Li,2| ≥ . . . ≥ |Li,5| = 1, (we have
|Li,5| = 1 here by minimality of M and the fact that δM(xi) = 6) and∑5

j=1 |Li,j| = 11 for each i. Moreover, for each i the point xi is on the

four-element line Li,e, so for some j we have |Li,j| = 3. Finally, there
are

(
11
2

)
− 5 = 50 pairs of elements in A ∪ {e} that do not span one of

the lines L0,i, so
∑5

i=1

∑5
j=1

(|Li,j |
2

)
= 50.

If 4 ≥ n1 ≥ . . . ≥ n5 = 1 are integers summing to 11 such that some
ni is 3, then

(
n1

2

)
+. . .+

(
n5

2

)
≤ 10 with equality only if (n1, n2, . . . , n5) =

(4, 3, 2, 1, 1). Therefore (|Li,1|, |Li,2|, . . . , |Li,5|) = (4, 3, 2, 1, 1) for each
i; note that Li,e∪{xi} = Li,2. Therefore, in the fifteen-element matroid
N \e, each xi ∈ L lies on two five-element lines; two three-element lines
and two two-element lines. For each integer k Let Jk be the set of
k-element lines of N \e.

Let Y be the union of the lines in J5. By the above reasoning each
y ∈ Y lies on exactly two lines in J5, so it follows that 5|J5| = 2|Y |
and so |Y | ≡ 0 (mod 5). Since three 5-point lines account for at least
13 points, it is clear that |Y | > 10 and so we must have |Y | = 15 and
|Y | = E(N \e). Therefore every element of N \e lies on exactly two
lines in J5, |J5| = 2

5
|Y | = 6, and the elements of N \e are exactly

the intersections of the
(
6
2

)
pairs of lines in J5. There is now a natural

mapping of E(N \e) to the edge set of the complete graph K6 with
vertex set J5, where the elements of each J ∈ J5 are the edges incident
with the vertex J . The lines in J3 map to three-edge matchings. We
know the lines Li,e − {e} are in J3 and partition E(N \e), and each
f ∈ E(N \ e) is contained in exactly two lines in J3, so J3 is the
union of two disjoint partitions of E(N \e). This gives two disjoint
1-factorisations of K6, a contradiction by Lemma 2.2. �

6. Higher Rank

Combining all lemmas in the last two sections gives the following:
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Theorem 6.1. If q ∈ {2, 3, 4, 5} and M is a rank-3 matroid in U(q),
then W2(M) ≤ q2 + q + 1 and W e

2 (M) ≤ q2 for each nonloop e of M .

We now generalise this to arbitrary rank. For a matroid M and a
nonloop e ∈ E(M), let PM(e) denote the set of planes of M containing
e. Note that |PM(e)| = W2(M/e). When we contract a nonloop e in
a matroid M , every line through e becomes a point and every set of
lines not containing e that span a plane in PM(e) are identified into a
single line. This gives the following lemma:

Lemma 6.2. If M is a matroid and e ∈ E(M) is a nonloop, then
W2(M) = W1(M/e) +

∑
P∈PM (e)W

e
2 (M |P ).

From here we can easily verify Conjecture 1.2 for all q ≤ 5.

Theorem 6.3. If q ∈ {2, 3, 4, 5} and M ∈ U(q) then W2(M) ≤
[
r(M)
2

]
q
.

Proof. If r ≤ 2 then the result is obvious. Suppose inductively that
r ≥ 3 and that the result holds for smaller r, and let e be a nonloop of

M . By Theorem 2.1 we have W1(M/e) ≤ qr−1−1
q−1 and by Theorem 6.1

we have W e
2 (M |P ) ≤ q2 for each P ∈ PM(e). Therefore, by Lemma 6.2

and the inductive hypothesis,

W2(M) = W1(M/e) +
∑

P∈PM (e)

W e
2 (M |P )

≤ qr−1−1
q−1 + q2|PM(e)|

= qr−1−1
q−1 + q2W2(M/e)

≤
[
r−1
1

]
q

+ q2
[
r−1
2

]
q

=
[
r
2

]
q
,

as required.
�
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