THE NUMBER OF LINES IN A MATROID WITH NO $U_{2, n}$-MINOR

JIM GEELEN AND PETER NELSON

This paper is dedicated to the memory of Michel Las Vergnas.

Abstract

We show that, if q is a prime power at most 5 , then every rank- r matroid with no $U_{2, q+2}$-minor has no more lines than a rank- r projective geometry over $\operatorname{GF}(q)$. We also give examples showing that for every other prime power this bound does not hold.

1. Introduction

This paper is motivated by the following special case of a conjecture due to Bonin; see Oxley [4, p. 582].

Conjecture 1.1. For each prime power q and positive integer r,every rank-r matroid with no $U_{2, q+2}$-minor has at most $\left[\begin{array}{l}r \\ 2\end{array}\right]_{q}$ lines.

Here $\left[\begin{array}{l}r \\ 2\end{array}\right]_{q}=\frac{\left(q^{r}-1\right)\left(q^{r-1}-1\right)}{(q-1)\left(q^{2}-1\right)}$ is a q-binomial coefficient. The projective geometry $\operatorname{PG}(r-1, q)$ has $\left[\begin{array}{c}r \\ 2\end{array}\right]_{q}$ lines, so the conjectured bound is attained. Blokhuis gave examples refuting Conjecture 1.1 for all $q \geq 13$; see Nelson [3]. Our main result is the following.

Theorem 1.2. Conjecture 1.1 holds if and only if $q \leq 5$.
All known counterexamples to Conjecture 1.1 have rank 3 and it is quite plausible that the conjecture holds whenever $r \geq 4$; this is supported by a result of Nelson [3] that the conjecture holds when r is sufficiently large relative to q.

The proof of Conjecture 1.1 is straightforward for $q \in\{2,3,4\}$. For $q=5$ we solve the problem partly by computer search. In all four cases we devote most of our attention to the rank 3 case, to which the general case is easily reduced.

[^0]
2. Preliminaries

We follow the notation of Oxley [4]. We write $\mathcal{U}(\ell)$ for the class of matroids with no $U_{2, \ell+2}$-minor. If $e \in E(M)$ then we write $W_{1}(M)$ for the number of points of $M, W_{2}(M)$ for the number of lines of M, $W_{2}^{e}(M)$ for the number of lines of M not containing e, and $\delta_{M}(e)$ for the number of lines of M containing e. For a simple rank-3 matroid M, we have $M \in \mathcal{U}(\ell)$ iff $\delta_{M}(e) \leq \ell+1$ for all $e \in E(M)$. W_{1} and W_{2} are the first two Whitney numbers of the second kind.

The following theorem was proved by Kung [2].
Theorem 2.1. If $\ell \geq 2$ is an integer and $M \in \mathcal{U}(\ell)$ has rank r, then $W_{1}(M) \leq\left[\begin{array}{c}r \\ 1\end{array}\right]_{q}=\frac{q^{r}-1}{q-1}$.

Surprisingly, we require a small graph theory result. A 1-factorisation of a graph is a partition of its edge set into perfect matchings.
Lemma 2.2. Any two 1 -factorisations of the graph K_{6} have an element in common.

Proof. A 1-factorisation of K_{6} is a 5 -edge-colouring. The union of any two colour classes is a 2-regular bipartite graph on 6 vertices and edges, so is a 6 -cycle, and it is easy to check that for any 6 -cycle C there is a unique 5 -edge-colouring having C as the union of two of its colour classes. Each 5 -edge-colouring has 10 pairs of colour classes and K_{6} has 606 -cycles, so K_{6} has six 1-factorisations.

Suppose that there exist disjoint 1-factorisations F_{1} and F_{2}. Each edge is in exactly three perfect matchings, so the set F_{3} of perfect matchings not in F_{1} or F_{2} is also a 1-factorisation. Let F be a 1factorisation that is not F_{1}, F_{2} or F_{3}. Since $|F|=5$ there is some i such that $\left|F \cap F_{i}\right| \geq 2$, but now F and F_{i} share two colour classes and are thus equal by our above observation. This is a contradiction.

Our next lemma, invoked twice in Section 5, was proved by a computer search whose structure we briefly sketch.

Lemma 2.3. Let A be a twelve-element set. There do not exist partitions $\mathcal{L}_{0}, \mathcal{L}_{1}, \ldots, \mathcal{L}_{5}$ of A satisfying the following conditions:
(1) \mathcal{L}_{0} has exactly six blocks, each of size 2 ,
(2) for each $i \in\{1, \ldots, 5\}$, the partition \mathcal{L}_{i} has at most 5 blocks and each has size at most 4 ,
(3) for every distinct $x, y \in A$, there is exactly one $i \in\{0, \ldots, 6\}$ such that \mathcal{L}_{i} has a block containing x and y,
(4) for each $i \in\{1, \ldots, 5\}$, if \mathcal{L}_{i} has exactly five blocks then it has a block of size 1 .

Sketch of computational proof: Fix \mathcal{L}_{0} arbitrarily and suppose that partitions $\mathcal{L}_{1}, \ldots, \mathcal{L}_{5}$ exist. For convenience we assume they each have exactly five parts and allow parts to be empty. The block sizes of each $\mathcal{L}_{i}: i \in\{1, \ldots, 5\}$ gives an integer partition $\left(n_{i, 1}, \ldots, n_{i, 5}\right)$ of 12 so that $4 \geq n_{i, 1} \geq n_{2} \geq \ldots \geq n_{i, 5} \geq 0$ and $n_{i, 5} \leq 1$. Moreover, there are 66 unordered pairs of distinct elements of A and six of these pairs are contained in blocks of \mathcal{L}_{0}, so $\sum_{i=1}^{5} \sum_{j=1}^{5}\binom{n_{i, j}}{2}=60$.

We say two set partitions P, P^{\prime} are compatible if each block of P intersects each block of P^{\prime} in at most one element. For each integer partition p of 12 into nonnegative parts, let $C(p)$ denote the set of partitions of A that are compatible with \mathcal{L}_{0} and whose block sizes are the integers in p. Let $C^{\prime}(p)$ denote the set of orbits of $C(p)$ under the action of the group of the $6!\cdot 2^{6}$ permutations of A that fix \mathcal{L}_{0}. The following table shows the nine possible p that satisfy our constraints and their associated parameters.

p	$\|C(p)\|$	$\left\|C^{\prime}(p)\right\|$	$\sum_{j=1}^{5}\binom{p_{j}}{2}$
$(3,3,3,2,1)$	71040	5	10
$(3,3,3,3,0)$	4960	3	12
$(4,3,2,2,1)$	136320	9	11
$(4,3,3,1,1)$	41280	5	12
$(4,3,3,2,0)$	38400	4	13
$(4,4,2,1,1)$	27360	5	13
$(4,4,2,2,0)$	12720	4	14
$(4,4,3,1,0)$	15360	2	15
$(4,4,4,0,0)$	960	1	18

The tuple $\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{5}\right)$ must belong to $\mathcal{C}=C\left(p_{1}\right) \times C\left(p_{1}\right) \times \ldots \times C\left(p_{5}\right)$, where p_{1}, \ldots, p_{5} are drawn from rows of the table above whose last column sums to 60 ; there are 68 such (unordered) 5 -tuples p_{1}, \ldots, p_{5}. Moreover, the partitions $\mathcal{L}_{0}, \ldots, \mathcal{L}_{5}$ must be pairwise compatible. For each of the 68 possible \mathcal{C}, a backtracking search shows this cannot occur; by considering our choice for \mathcal{L}_{1} up to a permutation of A that preserves \mathcal{L}_{0}, we need only consider one choice of \mathcal{L}_{1} from each orbit in $C^{\prime}\left(p_{1}\right)$. Our search was performed with a Python program that runs in under two hours on a single CPU.

3. Counterexamples

In this section we construct counterexamples to Conjecture 1.1. They are more elaborate versions of the aforementioned construction of Blokhuis.

Lemma 3.1. Let q be a prime power and t be an integer with $3 \leq t \leq$ q. There is a rank-3 matroid $M(q, t)$ with no $U_{2, q+t}$-minor such that $W_{2}(M(q, t))=q^{2}+(q+1)\binom{t}{2}$.

Proof. Let $N \cong \mathrm{PG}(2, q)$. Let $e \in E(N)$ and let L_{1}, L_{2}, L_{3} be distinct lines of N not containing e and so that $L_{1} \cap L_{2} \cap L_{3}$ is empty. Note that every line of M other than L_{1}, L_{2} and L_{3} intersects $L_{1} \cup L_{2} \cup L_{3}$ in at least 2 and at most 3 elements.

Let \mathcal{L} be the set of lines of N and \mathcal{L}_{e} be the set of lines of N containing e. For each $L \in \mathcal{L}_{e}$, let $T(L)$ be a t-element subset of $L-\{e\}$ containing $L \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)$. Observe that the $T(L)$ are pairwise disjoint. Let $X=\cup_{L \in \mathcal{L}_{e}} T(L)$, noting that $L_{1} \cup L_{2} \cup L_{3} \subseteq X$ and so each line in \mathcal{L} intersects X in at least two elements. Let $M(q, t)$ be the simple rank-3 matroid with ground set X whose set of lines is $\mathcal{L}_{1} \cup \mathcal{L}_{2}$, where $\mathcal{L}_{1}=\left\{L \cap X: L \in \mathcal{L}-\mathcal{L}_{e}\right\}$, and \mathcal{L}_{2} is the collection of two-element subsets of the sets $T(L): L \in \mathcal{L}_{e}$. Note that \mathcal{L}_{1} and \mathcal{L}_{2} are disjoint. Every $f \in X$ lies in q lines in \mathcal{L}_{1} and in $(t-1)$ lines in \mathcal{L}_{2}, so $M(q, t)$ has no $U_{2, q+t}$-minor. Moreover, we have $\mathcal{L}_{1}=\left|\mathcal{L}-\mathcal{L}_{e}\right|=q^{2}$ and $\mathcal{L}_{2}=\left|\mathcal{L}_{e}\right|\binom{t}{2}=(q+1)\binom{t}{2}$. This gives the lemma.

This next theorem refutes Conjecture 1.1 for all $q \geq 7$.
Theorem 3.2. If ℓ is an integer with $\ell \geq 7$, then there exists $M \in \mathcal{U}(\ell)$ such that $r(M)=3$ and $W_{2}(M)>\ell^{2}+\ell+1$.

Proof. If $\ell \geq 127$, let q be a power of 2 such that $\frac{1}{4}(\ell+2)<q \leq \frac{1}{2}(\ell+2)$. We have $W_{2}(M(q, q))=q^{2}+\binom{q}{2}(q+1)>\frac{1}{2} q^{3} \geq \frac{1}{128}(\ell+1)^{3} \geq(\ell+1)^{2}>$ $\ell^{2}+\ell+1$.

If $7 \leq \ell<127$, then it is easy to check that there is some prime power $q \in\{5,7,9,13,19,32,59,113\}$ such that $\frac{1}{2}(\ell+2) \leq q \leq \ell-2$. Note that $3<\ell+2-q \leq q$. Let $f_{q}(x)=q^{2}+(q+1)\binom{x+2-q}{2}-\left(x^{2}+x+1\right)$. This function $f_{q}(x)$ is quadratic in x with positive leading coefficient and $f_{q}(q)=f_{q}(q+1)=0$; it follows that $f(x)>0$ for every integer $x \notin\{q, q+1\}$. Now the matroid $M=M(q, \ell+2-q)$ satisfies $M \in \mathcal{U}(\ell)$ and $W_{2}(M)-\left(\ell^{2}+\ell+1\right)=f_{q}(\ell)>0$.

We conjecture that, for large ℓ, the matroids $M(q, q)$ give the correct upper bound for the number of lines in a rank-3 matroid in $\mathcal{U}(\ell)$.

Conjecture 3.3. If ℓ is a sufficiently large integer and $M \in \mathcal{U}(\ell)$ has rank 3, then $W_{2}(M) \leq W_{2}(M(q, q))=q^{2}+\binom{q}{2}(q+1)$, where q is the largest prime power such that $2 q \leq \ell+2$.

4. Small q

Lemma 4.1. Let $q \geq 2$ be an integer. If $M \in \mathcal{U}(q)$ has rank 3 and has a $U_{2, q+1}$-restriction, then $W_{2}(M) \leq q^{2}+q+1$ and $W_{2}^{e}(M) \leq q^{2}$ for each nonloop e of M.
Proof. We may assume that M is simple; let $M \mid L$ be a $U_{2, q+1}$-restriction of M. If some line L^{\prime} of M does not intersect L then contracting a point of L^{\prime} yields a $U_{2, q+2}$-minor, so every line of M intersects L. Therefore $W_{2}(M)=\sum_{x \in L}\left(\delta_{M}(x)-1\right)+1 \leq(q+1)((q+1)-1)+1=$ $q^{2}+q+1$. For each $e \in E(M)-L$ we clearly have $\delta_{M}(e)=q+1$ so $W_{2}^{e}(M) \leq\left(q^{2}+q+1\right)-(q+1)=q^{2}$. For each $e \in L$ we have $W_{2}^{e}(M)=\sum_{x \in L-\{e\}}\left(\delta_{M}(e)-1\right) \leq q(q+1-1)=q^{2}$.

Lemma 4.2. If $q \in\{2,3,4\}$ and $M \in \mathcal{U}(q)$ is a rank-3 matroid with a $U_{2, q}$-restriction L and no $U_{2, q+1}$-restriction, then at most q lines of M are disjoint from L.

Proof. We may assume that M is simple. Suppose that there is a set \mathcal{L} of lines disjoint from L such that $|\mathcal{L}|=q+1$. Since each $x \in E(M)-L$ lies on q lines intersecting L it lies on at most one line in \mathcal{L}, so the lines in \mathcal{L} are pairwise disjoint. Let X be a set formed by choosing two points from each line in \mathcal{L}; note that $|X|=2(q+1)$ and $X \cap L=\varnothing$.

Since each X lies on at most one line disjoint from L, at most $(q+1)$ pairs of elements of X span lines disjoint from L, so at least $\binom{2(q+1)}{2}-$ $(q+1)=2 q(q+1)$ pairs of elements of X span a line intersecting L. Since $|L|=q$, there is some $y \in L$ such that at least $2(q+1)$ pairs of elements of X span y. Let \mathcal{L}_{y} be the set of lines of $M \mid(\{y\} \cup X)$ that contain y. Every line in \mathcal{L}_{y} spans a line of M containing y and none spans L itself, so $\left|\mathcal{L}_{y}\right| \leq q$. We also have $\sum_{L \in \mathcal{L}_{y}}(|L|-1)=|X|=$ $2(q+1)$ and $\sum_{L \in \mathcal{L}_{y}}\binom{|L|-1}{2} \geq 2(q+1)$ by choice of y. Since M has no $U_{2, q+1}$-restriction, we also have $|L|-1 \leq q-1$ for each $L \in \mathcal{L}_{y}$. It remains to check that, for $q \in\{2,3,4\}$ there are no solutions to the system $n_{1}+n_{2}+\ldots+n_{q}=2(q+1),\binom{n_{1}}{2}+\ldots+\binom{n_{q}}{2} \geq 2(q+1)$ subject to $n_{i} \in\{0, \ldots, q-1\}$ for each i. This is easy.

Lemma 4.3. Let $q \in\{2,3,4\}$. If $M \in \mathcal{U}(q)$ has rank 3 and has a $U_{2, q}$-restriction, then $W_{2}(M) \leq q^{2}+q+1$ and $W_{2}^{e}(M) \leq q^{2}$ for each nonloop e of M.

Proof. We may assume that M is simple and, by Lemma 4.1, that M has no $U_{2, q+1}$-restriction; let $M \mid L$ be a $U_{2, q}$-restriction of M and let $f \in L$. If $W_{2}^{f}(M) \geq q^{2}+1$ then, since each $x \in L-\{f\}$ is
on at most q lines not containing f, there are at most $(|L|-1) q=$ $q^{2}-q$ lines that intersect L but not f. Therefore there are at least $\left(q^{2}+1\right)-\left(q^{2}-q\right)=q+1$ lines that do not intersect L. This is a contradiction by Lemma 4.2. So $W_{2}^{f}(M) \leq q^{2}$ for each e in a $U_{2, q^{-}}$ restriction of M; since $W^{2}(M)=W_{2}^{f}(M)+\delta_{M}(f) \leq W_{2}^{f}(M)+q+1$ for every f this resolves the first part of the lemma, as well as the second part if e is in a $U_{2, q}$-restriction.

It remains to bound $W_{2}^{e}(M)$ if e is in no $U_{2, q}$-restriction. If $\delta_{M}(e) \geq$ $q+1$ then we have $W_{2}^{e}(M)=W_{2}(M)-\delta_{e}(M) \leq q^{2}$ as required, so we may assume that $\delta_{M}(e) \leq q$. Therefore e is in at most q lines containing at most $q-2$ other points each, so $|E(M)-e| \leq q(q-2)$. Each $x \in E(M)-e$ is in at most q lines not containing e and each such line contains at least 2 points of $E(M)-e$, so $W_{2}^{e}(M) \leq \frac{1}{2} q|E(M)-e|=$ $\frac{1}{2} q^{2}(q-2) \leq q^{2}$, since $\frac{1}{2}(q-2) \leq 1$.

Lemma 4.4. If $q \in\{2,3,4\}$ and $M \in \mathcal{U}(q)$ has rank 3 and has no $U_{2, q}$-restriction, then $W_{2}(M) \leq q^{2}+q+1$ and $W_{2}^{e}(M) \leq q^{2}$ for each nonloop e of M.

Proof. We may assume that M is simple; let $n=|M|$. If $q=2$ then the result is vacuous and if $q=3$ then M has no $U_{2,3}$-restriction so $M \cong U_{3, n}$ and $n \leq 5$ so both conclusions are clear. It remains to resolve the $q=4$ case.

Suppose that $W_{2}(M) \geq 4^{2}+4+2=22$. Every line of M contains either two or three points; for each $f \in E(M)$ let ℓ_{f} be the number of 3 -point lines of M containing f. Let ℓ be the total number of 3-point lines of M. Each 3-point line of M contains 3 pairs of points of M, so $22 \leq W_{2}(M)=\binom{n}{2}-2 \ell$. Moreover, every $e \in E(M)$ is in at most 5 lines so $n \leq 1+2 \ell_{f}+\left(5-\ell_{f}\right)=6+\ell_{f}$. Summing this expression over all $f \in E(M)$ gives $n^{2} \leq 6 n+3 \ell$. Therefore $\left.2(6 n+3 \ell)+3\binom{n}{2}-2 \ell\right) \geq$ $2 n^{2}+66$, giving $0 \geq n^{2}-21 n+132=\left(n-\frac{21}{2}\right)^{2}+\frac{87}{4}$, a contradiction; therefore $W_{2}(M) \leq 4^{2}+4+1$. From here, it is also easy to obtain a contradiction to $W_{2}^{e}(M)>4^{2}$ in a manner similar to the proof of Lemma 4.3.

5. Five

We now consider the number of lines in rank-3 matroids in $\mathcal{U}(5)$, first dealing with those that have no $U_{2,5}$-restriction.

Lemma 5.1. If $M \in \mathcal{U}(5)$ has rank 3 and has no $U_{2,5}$-restriction, then $W_{2}(M) \leq 5^{2}+5+1$.

Proof. We may assume that M is simple. Let $n=|M|$ and for each $i \in\{2,3,4\}$, let ℓ_{i} be the number of lines of length i in M, noting that every line of M has length 2,3 or 4 . Suppose for a contradiction that $\ell_{2}+\ell_{3}+\ell_{4} \geq 32$. Let P be the set of pairs (e, L) where $e \in L$. We have $2 \ell_{2}+3 \ell_{3}+4 \ell_{4}=|P|=\sum_{e \in E(M)} \delta_{M}(e) \leq 6 n$. There are $\binom{n}{2}$ pairs of elements of M, each of which is contained in exactly one line of M, and an i-element line contains $\binom{i}{2}$ such pairs. We therefore have $\ell_{2}+3 \ell_{3}+6 \ell_{4}=\binom{n}{2}$. Now

$$
\begin{aligned}
\ell_{4} & =\left(\ell_{2}+3 \ell_{3}+6 \ell_{4}\right)+3\left(\ell_{2}+\ell_{3}+\ell_{4}\right)-2\left(2 \ell_{2}+3 \ell_{3}+4 \ell_{4}\right) \\
& \geq\binom{ n}{2}+3 \cdot 32-2 \cdot 6 n
\end{aligned}
$$

nd $\ell_{1}+3 \ell_{3}=\binom{n}{2}-6 \ell_{4} \leq 72 n-18 \cdot 32-5\binom{n}{2}=\frac{-5}{2}\left(n-\frac{149}{10}\right)^{2}-\frac{839}{40}<0$, a contradiction.

Lemma 5.2. If $M \in \mathcal{U}(5)$ is a rank-3 matroid with no $U_{2,5}$-restriction and e is a nonloop of M, then $W_{2}^{e}(M) \leq 5^{2}$.

Proof. We may assume that M is simple. If $\delta_{M}(e)=6$ then $W_{2}^{e}(M) \leq$ $31-6=25$ by the previous lemma, so we may assume that $\delta_{M}(e) \leq 5$. Let $n=|M|$ and let $\ell_{2}^{e}, \ell_{3}^{e}$ and ℓ_{4}^{e} be the number of lines of length 2,3 and 4 respectively that do not contain e. Suppose for a contradiction that $\ell_{2}^{e}+\ell_{3}^{e}+\ell_{4}^{e} \geq 26$. Let P be the set of pairs (f, L), where L is a line not containing e and $f \in L$. Clearly $|P|=2 \ell_{2}^{e}+3 \ell_{3}^{e}+4 \ell_{4}^{e}$, but also, since every $f \neq e$ is on at most 5 lines not containing e, we have $|P| \leq 5(n-1)$, so $2 \ell_{2}^{e}+3 \ell_{3}^{e}+4 \ell_{4}^{e} \leq 5(n-1)$. Finally, let Q be the set of two-element sets $\left\{f_{1}, f_{2}\right\} \subset E(M)$ that span a line not containing e. As before, we have $|Q|=\ell_{2}^{e}+3 \ell_{3}^{e}+6 \ell_{4}^{e}$. On the other hand, there are at most 5 lines of M through e and each contains at most 3 other points, so there are at most $5\binom{3}{2}=15$ two-element subsets of $E(M)-\{e\}$ that are not in Q. Therefore $|Q|=\binom{n-1}{2}-s$ for some $s \in\{0, \ldots, 15\}$, and $\ell_{2}^{e}+3 \ell_{3}^{e}+6 \ell_{4}^{e}=\binom{n-1}{2}-s$. Now

$$
\begin{aligned}
\ell_{4}^{e} & =\left(\ell_{2}^{e}+3 \ell_{3}^{e}+6 \ell_{4}^{e}\right)+3\left(\ell_{2}^{e}+\ell_{3}^{e}+\ell_{4}^{e}\right)-2\left(2 \ell_{2}^{e}+3 \ell_{3}^{e}+4 \ell_{4}^{e}\right) \\
& \geq\binom{ n-1}{2}-s+3 \cdot 26-2(5(n-1)) \\
& =\binom{n-1}{2}-10 n+88-s .
\end{aligned}
$$

Therefore, using $s \leq 15$ we have $\ell_{2}^{e}+3 \ell_{3}^{e}=|Q|-6 \ell_{4} \leq\binom{ n-1}{2}-s-$ $6\left(\binom{n-1}{2}-10 n+88-s\right)=60 n-528-5\binom{n-1}{2}+5 s \leq 60 n-453-5\binom{n-1}{2}=$ $\frac{-5}{2}\left(n-\frac{27}{2}\right)^{2}-\frac{19}{8}<0$, a contradiction.
Lemma 5.3. If $M \in \mathcal{U}(5)$ has rank 3 and has a $U_{2,5}$-restriction, then $W_{2}(M) \leq 5^{2}+5+1$.

Proof. Let M be a counterexample for which $|M|$ is minimized. Note that M is simple, that $W_{2}(M) \geq 32$, and that, by Lemma $4.1, M$ has no $U_{2,6}$-restriction.

Let $L=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Each element of L lies on at most five other lines, so there are at least $32-5 \cdot 5-1=6$ lines $L_{0,1}, L_{0,2}, \ldots, L_{0,6}$ of M that do not intersect L. For each $i \in\{1, \ldots, 6\}$ let $a_{2 i-1}$ and $a_{2 i}$ be distinct elements of $L_{0, i}$. Note that each $e \in E(M)-L$ lies on five lines meeting L so lies on at most one other line; it follows that the set $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{12}\right\}$ has twelve elements and that $\mathcal{L}_{0}=\left\{L_{0,0}, \ldots, L_{0,6}\right\}$ is a partition of A into pairs.

For each $i \in\{1, \ldots, 5\}$ let \mathcal{L}_{i}^{\prime} be the set of lines of M containing x_{i} other than L and let $\mathcal{L}_{i}=\left\{L^{\prime}-\left\{x_{i}\right\}: L^{\prime} \in \mathcal{L}_{i}^{\prime}\right\}$. We have $\left|\mathcal{L}_{i}\right| \leq 5$ and clearly \mathcal{L}_{i} is a partition of A. If there are six lines through x_{i} each containing at least two other points, then $W_{2}\left(M \backslash x_{i}\right)=W_{2}(M)$, contradicting minimality of $|M|$. Therefore $\left|L^{\prime}\right| \leq 1$ for some $L^{\prime} \in \mathcal{L}_{i}$. Since M has no $U_{2,6}$-restriction we also have $\left|L^{\prime}\right| \leq 4$ for each $L \in \mathcal{L}_{i}$. Finally, since each two-element subset of A either spans a line in \mathcal{L}_{0} or a line in \mathcal{L}_{i}^{\prime} for a unique i, each such pair is contained in a block of exactly one of the partitions $\mathcal{L}_{0}, \ldots, \mathcal{L}_{5}$. By Lemma 2.3 this is impossible.

Lemma 5.4. If $M \in \mathcal{U}(5)$ has rank 3 then $W_{2}^{e}(M) \leq 5^{2}$ for each nonloop e of M.

Proof. Let (M, e) be a counterexample for which $|M|$ is minimized. Note that M simple and that, by Lemma $5.2, M$ has a $U_{2,5}$-restriction $M \mid L$. If $\delta_{M}(e) \geq 6$ then $W_{2}^{e}(M) \leq 5^{2}+5+1-6=25$ by Lemma 5.3, so $\delta_{M}(e) \leq 5$. If there is some $f \in E(M)-\{e\}$ on six lines each containing at least two other points, then $W_{2}^{e}(M \backslash f)=W_{2}^{e}(M)$, contradicting minimality. Therefore every $x \in E(M)$ is on at most five lines that contain two other points (note that e also has this property).

If $e \in L$ then observe that each $f \in L-\{e\}$ is on at most 5 other lines not containing e, so there are at least $26-20=6$ lines of M disjoint from e. Let B be a set formed by choosing of a pair of elements from each of these lines. In a similar manner to the previous lemma, we obtain six partitions of B that contradict Lemma 2.3. We thus assume that $e \notin L$.

Let $L=\left\{x_{1}, \ldots, x_{5}\right\}$. Each $x \in L$ lies on at most four lines other than L not containing e, so there exist $26-1-20=5$ lines $L_{0,1}, \ldots, L_{0,5}$ of M disjoint from $L \cup\{e\}$. If there are six such disjoint lines, then we again obtain a contradiction with Lemma 2.3; we therefore assume that every x_{i} in L lies on exactly four other lines of M disjoint from L, so $\delta_{M}\left(x_{i}\right)=6$ for each $i \in\{1, \ldots, 5\}$.

For each $j \in\{1, \ldots, 5\}$ let $a_{2 j-1}, a_{2 j}$ be distinct elements of $L_{0, j}$. Let $A=\left\{a_{1}, \ldots, a_{10}\right\}$ and let $N=M \mid(L \cup A \cup\{e\})$. As in the proof of the previous lemma the lines $L_{0, j}$ partition A into pairs, and so $|N|=16$. Since e lies on at most 5 lines of N each containing at most three other points, the elements of $E(N)-\{e\}$ partition into three-element sets $L_{1, e}, \ldots, L_{5, e}$ such that $L_{j, e} \cup\{e\}$ is a four-element line of N for each j.

As before we consider the lines through each element of L, and for each $x_{i} \in L$ we obtain a partition $\mathcal{L}_{i}=\left\{L_{i, 1}, \ldots, L_{i, 5}\right\}$ of $A \cup\{e\}$ into five blocks corresponding to the lines of N through x_{i} other than L. Again we have $4 \geq\left|L_{i, 1}\right| \geq\left|L_{i, 2}\right| \geq \ldots \geq\left|L_{i, 5}\right|=1$, (we have $\left|L_{i, 5}\right|=1$ here by minimality of M and the fact that $\left.\delta_{M}\left(x_{i}\right)=6\right)$ and $\sum_{j=1}^{5}\left|L_{i, j}\right|=11$ for each i. Moreover, for each i the point x_{i} is on the four-element line $L_{i, e}$, so for some j we have $\left|L_{i, j}\right|=3$. Finally, there are $\binom{11}{2}-5=50$ pairs of elements in $A \cup\{e\}$ that do not span one of the lines $L_{0, i}$, so $\sum_{i=1}^{5} \sum_{j=1}^{5}\binom{\left|L_{i, j}\right|}{2}=50$.

If $4 \geq n_{1} \geq \ldots \geq n_{5}=1$ are integers summing to 11 such that some n_{i} is 3 , then $\binom{n_{1}}{2}+\ldots+\binom{n_{5}}{2} \leq 10$ with equality only if $\left(n_{1}, n_{2}, \ldots, n_{5}\right)=$ $(4,3,2,1,1)$. Therefore $\left(\left|L_{i, 1}\right|,\left|L_{i, 2}\right|, \ldots,\left|L_{i, 5}\right|\right)=(4,3,2,1,1)$ for each i; note that $L_{i, e} \cup\left\{x_{i}\right\}=L_{i, 2}$. Therefore, in the fifteen-element matroid $N \backslash e$, each $x_{i} \in L$ lies on two five-element lines; two three-element lines and two two-element lines. For each integer k Let \mathcal{J}_{k} be the set of k-element lines of $N \backslash e$.

Let Y be the union of the lines in \mathcal{J}_{5}. By the above reasoning each $y \in Y$ lies on exactly two lines in \mathcal{J}_{5}, so it follows that $5\left|\mathcal{J}_{5}\right|=2|Y|$ and so $|Y| \equiv 0(\bmod 5)$. Since three 5-point lines account for at least 13 points, it is clear that $|Y|>10$ and so we must have $|Y|=15$ and $|Y|=E(N \backslash e)$. Therefore every element of $N \backslash e$ lies on exactly two lines in $\mathcal{J}_{5},\left|\mathcal{J}_{5}\right|=\frac{2}{5}|Y|=6$, and the elements of $N \backslash e$ are exactly the intersections of the $\binom{6}{2}$ pairs of lines in \mathcal{J}_{5}. There is now a natural mapping of $E(N \backslash e)$ to the edge set of the complete graph K_{6} with vertex set \mathcal{J}_{5}, where the elements of each $J \in \mathcal{J}_{5}$ are the edges incident with the vertex J. The lines in \mathcal{J}_{3} map to three-edge matchings. We know the lines $\mathcal{L}_{i, e}-\{e\}$ are in \mathcal{J}_{3} and partition $E(N \backslash e)$, and each $f \in E(N \backslash e)$ is contained in exactly two lines in \mathcal{J}_{3}, so \mathcal{J}_{3} is the union of two disjoint partitions of $E(N \backslash e)$. This gives two disjoint 1 -factorisations of K_{6}, a contradiction by Lemma 2.2.

6. Higher Rank

Combining all lemmas in the last two sections gives the following:

Theorem 6.1. If $q \in\{2,3,4,5\}$ and M is a rank-3 matroid in $\mathcal{U}(q)$, then $W_{2}(M) \leq q^{2}+q+1$ and $W_{2}^{e}(M) \leq q^{2}$ for each nonloop e of M.

We now generalise this to arbitrary rank. For a matroid M and a nonloop $e \in E(M)$, let $\mathcal{P}_{M}(e)$ denote the set of planes of M containing e. Note that $\left|\mathcal{P}_{M}(e)\right|=W_{2}(M / e)$. When we contract a nonloop e in a matroid M, every line through e becomes a point and every set of lines not containing e that span a plane in $\mathcal{P}_{M}(e)$ are identified into a single line. This gives the following lemma:
Lemma 6.2. If M is a matroid and $e \in E(M)$ is a nonloop, then $W_{2}(M)=W_{1}(M / e)+\sum_{P \in \mathcal{P}_{M}(e)} W_{2}^{e}(M \mid P)$.

From here we can easily verify Conjecture 1.2 for all $q \leq 5$.
Theorem 6.3. If $q \in\{2,3,4,5\}$ and $M \in \mathcal{U}(q)$ then $W_{2}(M) \leq\left[\begin{array}{c}r(M) \\ 2\end{array}\right]_{q}$.
Proof. If $r \leq 2$ then the result is obvious. Suppose inductively that $r \geq 3$ and that the result holds for smaller r, and let e be a nonloop of M. By Theorem 2.1 we have $W_{1}(M / e) \leq \frac{q^{r-1}-1}{q-1}$ and by Theorem 6.1 we have $W_{2}^{e}(M \mid P) \leq q^{2}$ for each $P \in \mathcal{P}_{M}(e)$. Therefore, by Lemma 6.2 and the inductive hypothesis,

$$
\begin{aligned}
W_{2}(M) & =W_{1}(M / e)+\sum_{P \in \mathcal{P}_{M}(e)} W_{2}^{e}(M \mid P) \\
& \leq \frac{q^{r-1}-1}{q-1}+q^{2}\left|\mathcal{P}_{M}(e)\right| \\
& =\frac{q^{r-1}-1}{q-1}+q^{2} W_{2}(M / e) \\
& \leq\left[\begin{array}{c}
r-1 \\
1
\end{array}\right]_{q}+q^{2}\left[\begin{array}{c}
r-1 \\
2
\end{array}\right]_{q} \\
& =\left[\begin{array}{c}
r \\
2
\end{array}\right]_{q}
\end{aligned}
$$

as required.

7. References

[1] J. Geelen, P. Nelson, The number of points in a matroid with no n-point line as a minor, J. Combin. Theory. Ser. B 100 (2010), 625-630.
[2] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory (Seattle WA, 1991), Contemporary Mathematics 147 (1993), American Mathematical Society, Providence RI, 21-61.
[3] P. Nelson, The number of rank- k flats in a matroid with no $U_{2, n^{-}}$ minor, arXiv:1306.0531 [math.CO]
[4] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 2011.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

[^0]: This research was partially supported by a grant from the Office of Naval Research [N00014-12-1-0031].

