THE NUMBER OF POINTS IN A MATROID WITH
NO n-POINT LINE AS A MINOR

JIM GEELEN AND PETER NELSON

ABSTRACT. For any positive integer | we prove that if M is a
simple matroid with no (I 4+ 2)-point line as a minor and with

. (M) _
sufficiently large rank, then |E(M)| < ;: !
largest prime power less than or equal to [. Equality is attained

by projective geometries over GF(q).

, where ¢ is the

1. INTRODUCTION
Kung [5] proved the following theorem.

Theorem 1.1. For any integer | > 2, if M is a simple matroid with

no Uy io-minor, then |E(M)| < %

The above bound is tight in the case that [ is a prime power and
M is a projective geometry. In fact, among matroids of rank at least
4, projective geometries are the only matroids that attain the bound;
see [5]. Therefore, the bound is not tight when [ is not a prime power.
We prove the following bound that was conjectured by Kung [5,4].

Theorem 1.2. Let | > 2 be a positive integer and let q be the largest
prime power less than or equal to l. If M s a simple matroid with no
q" M) 1

7 .

Us,ro-minor and with sufficiently large rank, then |E(M)| < 4———

The case where [ = 6 was resolved by Bonin and Kung in [2].

We will also prove that the only matroids of large rank that attain
the bound in Theorem 1.2 are the projective geometries over GF(q);
see Corollary 4.2.

A matroid M is round if E(M) cannot be partitioned into two sets
of rank less than r(M). We prove Theorem 1.2 by reducing it to the
following result.

Date: June 4, 2010.
1991 Mathematics Subject Classification. 05B35.
Key words and phrases. matroids, growth rate, minors.
This research was partially supported by a grant from the Natural Sciences and
Engineering Research Council of Canada.
1



2 GEELEN AND NELSON

Theorem 1.3. For each prime power q, there exists a positive integer n
such that, if M is a round matroid with a PG(n — 1,q)-minor but no
Us g241-minor, then e(M) < %.

For any integer [ > 2, there is an integer k such that 2F~! < [ < 2%,
Therefore, if ¢ is the largest prime power less than or equal to [, then
[ < 2q. So, to prove Theorem 1.2, it would suffice to prove the weaker
version of Theorem 1.3 where Us 4241 is replaced by Us 9411. With this
in mind, we find the stronger version somewhat surprising.

We further reduce Theorem 1.3 to the following result.

Theorem 1.4. For each prime power q there exists an integer n such
that, if M is a round matroid that contains a Us 4 o-restriction and a
PG(n — 1, q)-minor, then M contains a Us g2 q1-minor.

The following conjecture, if true, would imply all of the results above.

Conjecture 1.5. For each prime power q, there exists a positive in-
teger n such that, if M is a round matroid with a PG(n — 1, q)-minor
but no Us g2y 1-minor, then M is GF(q)-representable.

The conjecture may hold with n = 3 for all q. Moreover, the
conjecture may also hold when “round” is replaced by “vertically 4-
connected”.

2. PRELIMINARIES

We assume that the reader is familiar with matroid theory; we use
the notation and terminology of Oxley [6]. A rank-1 flat in a matroid
is referred to as a point and a rank-2 flat is a line. A line is long if it
has at least 3 points. The number of points in M is denoted e(M).

Let M be a matroid and let A, B C E(M). We define My (A, B) =
rau(A) + ry(B) — ry(A U B); this is the local connectivity between
A and B. This definition is motivated by geometry. Suppose that
M is a restriction of PG(n — 1,¢) and let )y and F be the flats of
PG(n — 1, q) that are spanned by A and B respectively. Then Fy N Fp
has rank My (A, B). We say that two sets A, B C E(M) are skew if
M (A, B) = 0.

We let U(1) denote the class of matroids with no Usyo-minor. Our
proof of Theorem 1.2 relies heavily on the following result of Geelen
and Kabell [3, Theorem 2.1].

Theorem 2.1. There is an integer-valued function a(l,q,n) such that,
for any positive integers I, q,n with | > q > 2, if M € U(l) is a matroid
with e(M) > a(l,q,n)q" ™), then M contains a PG(n—1,¢')-minor for
some prime-power ¢ > q.
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The following result is an important special case of Theorem 1.4.

Lemma 2.2. If M is a round matroid that contains a U, 4io-restriction
and a PG(2, q)-restriction, then M has a Us 4241 -minor.

Proof. Suppose that M is a minimum-rank counterexample. Let
L,P C E(M) such that M|L = Us 442 and M|P = PG(2,q). If M
has rank 3, then we may assume that E(M) = P U {e}. Since M|P is
modular, e is in at most one long line of M. Then, since |P| = ¢*+q+1,
we have €(M/e) > ¢*+1 and, hence, M has a U, 42, -minor. This con-
tradiction implies that (M) > 3. Since M is round, there is an element
e that is spanned by neither L nor P. Now M /e is round and contains
both M|L and M|P as restrictions. This contradicts our choice of
M. O

The base case of the following lemma is essentially proved in
(3, Lemma 2.4].

Lemma 2.3. Let A € R. Let k and [ > q > 2 be positive integers, and
let A and B be disjoint sets of elements in a matroid M € U(l) with
Mar(A, B) <k and ep(A) > A\g™ ). Then there is a set A’ C A that
is skew to B and satisfies epr(A’) > N ~Fqrm(A),

Proof. By possibly contracting some elements in B — cly;(A), we may
assume that A spans B and thus that ry(B) = My (A, B). When
k = 1, this means B has rank 1. We resolve this base case first.

Let e be a non-loop element of B. We may assume that A is minimal
with €y (A) > A\g"™  and that E(M) = AU{e}. Let W be a flat of M
not containing e, such that ry, (W) = r(M)—2. Let Hy, Hy, ..., H,, be
the hyperplanes of M containing W, with e € Hy. The sets {H; — W :
1 < i < m} are a disjoint cover of E(M) — W. Additionally, the
matroid si(M/W) is isomorphic to the line Us 41, so we know that
m <.

By the minimality of A, we get ep(HyN A) < Ag"™)~1 50

exr(A— Hy) > Mg — 1)g"*)=1,

Since the hyperplanes Hy, ..., H,, cover E(M) — H,, a majority argu-
ment gives some 1 <7 < m such that

1 A
em(H;NA) > EGM(A — Hy) > T(q — 1)qT(M)_1,

Setting A’ = AN H; gives a set of the required number of points that
is skew to e and therefore to B, which is what we want.

Now suppose that the result holds for £ = ¢ and consider the case
that k =t + 1. Let A and B be disjoint sets of elements in a matroid
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M with My (A, B) <t+1 and €j(A) > A\g"™. As mentioned earlier,
we have 7y(B) = My (A, B) <t+ 1. Let e be any non-loop element
of B. By the base case, there exists A" C A that is skew to {e} and
satisfies epr(A’) > M~1g™ (A Since e ¢ clp(A’) and ry(B) < t41, we
have My (A", B) < t. N ow the result follows routinely by the induction
hypothesis. U

The following two results are used in the reduction of Theorem 1.2
to Theorem 1.3.

Lemma 2.4. Let f(k) be an integer-valued function such that f(k) >
2f(k —1) =1 for each k > 1 and f(1) > 1. If M is a matroid with
e(M) > f(r(M)) and r(M) > 1, then there is a round restriction N of
M such that e(N) > f(r(N)) and r(N) > 1.

Proof. We may assume that M is not round and, hence, there is a
partition (A, B) of E(M) such that ry(A) < r(M) and ry(B) < r(M).
Clearly rp(A) > 1 and rp(B) > 1. Inductively we may assume that
em(A) < f(ry(A)) and ey (B) < f(rar(B)). Thus (M) < e(M|A) +
€(M|B) < f(ru(A)) + f(ru(B)) =2 < 2f(r(M) — 1) = 2 < f(r(M)),

which is a contradiction. O

Lemma 2.5. Let ¢ > 4 and t > 1 be integers and let M be a matroid

with e(M) > © ]bi)l L and r(M) > 3t. If M is not round, then either M

has a Us g2 o-minor or there is a round restriction N of M such that

r(N) >t and e(N) > qri;i)l_l.

Proof. Let s = r(M) and let f(k) = (£)°~ " ( ) For any k > 1,

q—

Moreover f(1) > 1 and e(M) > f(r(M)). Then, by Lemma 2.4, there
is a round restriction N of M such that r(N) > 1 and ¢(N) > f(r(N)).

Since M is not round, r(N) < r(M) = s and, hence, ¢(N) > qr(q]i)fl
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We may assume that r(N) < t. Therefore, since s > 3t and ¢ > 4,

«(N) = f(r(N))

s—r(N) qT(N) —1
) q—1

v

Vv
Qw
VR

i)
< | A
|3
—|

—_
~~

() (5

- qg+1 q—1
M 1

N ( ¢ —1 )

Therefore, by Theorem 1.1, M has a U, 4249-minor, as required. U]

3. THE MAIN RESULTS
We start with a proof of Theorem 1.4, which we restate here.

Theorem 3.1. There is an integer-valued function n(q) such that, for
each prime power q, if M s a round matroid that contains a Us g4 2-
restriction and a PG(n(q) — 1, q)-minor, then M has a U 2 1-minor.

Proof. Recall that the function a(l,q,n) was defined in Theorem 2.1.
Let ¢ be a prime power, let a« = a(q®> —1,¢—1,3). Let n be an integer

1
n(q) = n. Suppose that the result fails for this choice of n(q) and let
M be a minimum-rank counterexample. Thus M is a round matroid
having a line L, with at least ¢ 4+ 2 points, and a minor N isomorphic
to PG(n —1,q), but M e U(¢*> — 1).

Suppose that N = M/C \ D where C is independent. If e € C' — L,
then M /e is round, contains the line L, and has N as minor — contrary
to our choice of M. Therefore C' C L and, hence, r(M) < r(N)+2 <
n+ 2.

Let X = E(M) — L. By our choice of n, we have e(M|(X — D)) >
qq”__—ll_(q2+1) _ qg%—i—q > gl > q4&(q_1>n+2 > q4oé(q_1)rM(X)'
By Lemma 2.3, there is a flat F' C X — D of M that is skew to L and
satisfies e(M|F) > a(q— 1)), Since F is skew to L, F is also skew

that is sufficiently large so that (q%) > aq’(q — 1)2. We define
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to C. Therefore M|F = N|F and hence M|F is GF(q)-representable.
Then, by Theorem 2.1, M|F has a PG(2, ¢)-minor. Therefore there is
a set Y C F such that (M|F)/Y contains a PG(2, g)-restriction. Now
MY is round, contains a (q + 2)-point line, and contains a PG(2, q)-
restriction. Then, by Lemma 2.2, M has a U ,244-minor. U

Now we will prove Theorem 1.3 which we reformulate here. The
function n(q) was defined in Theorem 3.1.

Theorem 3.2. For each prime power q, if M is a round matroid with

a PG(R(C]) - 1,(])‘min07" but no U27q2+1'm7;n07"7 then E(M) < qv(qM)l 1

Proof. Let M be a minimum-rank counterexample. By Lemma 2.2,
r(M) > n(q). Let e € E(M) be a non-loop element such that M/e

has a PG(n — 1,¢)-minor. Note that M/e is round. Then, by the
minimality of M, e(M/e) < & By Theorem 3.1, each line of M
containing e has at most ¢ + 1 pomts. Hence (M) < 14 ge(M/e) <

14+q (qT<M>71_1> — %1 Thig contradiction completes the proof. [

q—1 q—1

We can now prove our main result, Theorem 1.2, which we restate
below.

Theorem 3.3. Let | > 2 be a positive integer and let q be the largest

prime power less than or equal to l. If M is a matroid with no Uy 4o-
(M) _ 1

minor and with sufficiently large rank, then e(M) < +—— 1

Proof of Theorem 1.2. When [ is a prime-power, the result follows from
Theorem 1.1. Therefore we may assume that [ > 6 and, hence, ¢ > 5.
Recall that n(q) is defined in Theorem 3.1 and a(l,q — 1,n) is defined
in Theorem 2.1. Let n = n(q) and let k be an integer that is sufficiently

k
large so that (qfql) > qa(l,q — 1,n). Thus, for any &' > k, we get
qsl—]l >¢" ' > a(l,g—1,n)(¢— D¥. Let M € U(l) be a matroid of

rank at least 3k such that e(M) > %. By Lemma 2.5, M has a

round restriction N such that we have r(N) > k and ¢(IV) > % >
all,g—1,n)(g—1)"™). By Theorem 2.1, N has a PG(n(q)—1, ¢')-minor
for some ¢ > ¢ — 1. If ¢ > ¢, then ¢’ + 1 > [ 4 2, so this projective
geometry has a Us;yo-minor, contradicting our hypothesis. We may
therefore conclude that ¢' = ¢, so N has a PG(n(¢q) — 1, ¢)-minor. Now
we get a contradiction by Theorem 3.2. O
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4. EXTREMAL MATROIDS

In this section, we prove that the extremal matroids of large rank for
Theorem 1.2 are projective geometries. We need the following result
to recognize projective geometries; see Oxley [6, Theorem 6.1.1].

Lemma 4.1. Let M be a simple matroid of rank n > 4 such that every
line of M contains at least three points and each pair of disjoint lines
of M is skew. Then M is isomorphic to PG(n — 1,q) for some prime
power q.

We can now prove our extremal characterization.

Corollary 4.2. Let [ > 2 be a positive integer and let q be the largest
prime power less than or equal to l. If M 1is a simple matroid with
no Uy ro-minor, with e(M) = qr(qﬂi>1_17 and with sufficiently large rank,

then M is a projective geometry over GF(q).

Proof. Kung [5] proved the result for the case that [ is a prime-power.

Therefore we may assume that [ > 6 and, hence, ¢ > 5. By Theo-

rem 1.2 there is an integer k; such that, if M is a matroid with no
]VI)_]_

Uss-minor and with r(M) > ky, then (M) < © 21, Recall that
n(q) is defined in Theorem 3.1 and «(l, ¢, n) is defined in Theorem 2.1.
Let ky be large enough so that (Jil)k2 > qa(l,q — 1,n(q) + 2), and
k = max(kq, ko).

Let M € U(l) be a simple matroid of rank at least 3k such that
e(M) = qr(qhi)l_l. If M is not round, then, by Lemma 2.5, M has a
round restriction N such that 7(N) > k and €(N) > qriﬁl_ L
to Theorem 1.2. Hence M is round.

From the definition of ky, we get e(M) > a(l, ¢—1,n(q)+2)(g—1)"*D,
so by Theorem 2.1, M has a PG(n(q) + 1,¢)-minor. Therefore, by
Theorem 3.1, each line in M has at most ¢ + 1 points. Consider any

element e € E(M). By Theorem 1.2, e(M/e) < qr(]z)_%. Then

e(M) < 1+qe(M/e)

qr(M)fl_l
< l+q|——
qg—1

g™ —1
qg—1
= ¢(M).

The inequalities above must hold with equality. Therefore each line in
M has exactly ¢ + 1 points.

, contrary
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If M is not a projective geometry, then, by Lemma 4.1, there are two
disjoint lines Ly and Lo in M such that My (L, Lo) = 1. Let e € L.
Then Lo spans a line with at least ¢ 4+ 2 points in M/e. Since M has a
PG(n(q) + 1, ¢)-minor, M/e contains a PG(n(q) — 1, ¢)-minor; see [1,
Lemma 5.2]. This contradicts Theorem 3.1. O
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