THE NUMBER OF RANK-tk FLATS IN A MATROID
WITH NO U,,-MINOR

PETER NELSON

ABSTRACT. We show that, if k£ and ¢ are positive integers and r
is sufficiently large, then the number of rank-k flats in a rank-r
matroid M with no Us s4o-minor is less than or equal to number
of rank-k flats in a rank-r projective geometry over GF(q), where
q is the largest prime power not exceeding /.

1. INTRODUCTION

Let Wi (M) denote the number of rank-% flats in a matroid M. For

example, we have Wi (PG(r — 1,q)) = [Z]q, the g-binomial coeflicient

for r and k. The following conjecture appears in Oxley [4 p. 582],
attributed to Bonin:

Conjecture 1.1. If q is a prime power, k > 0 is an integer and M 1is

a rank-r matroid with no Us 4 o-minor, then Wy (M) < [Z]q.

Unfortunately for k = 2, » = 3 this conjecture is false for all ¢ > 13;
we discuss counterexamples due to Blokhuis (private communication)
soon. Our main theorem, on the other hand, resolves the conjecture
whenever r is large compared to g and k. In fact we show more, ob-
taining an eventually best-possible bound on W) when excluding an
arbitrary rank-2 uniform minor:

Theorem 1.2. Let ¢ > 2 and k > 0 be integers. If r is sufficiently large
and M is a rank-r matroid with no Usgyo-minor, then Wi (M) < [;]q,
where q is the largest prime power so that q < (.

This was shown for £ = 1 in [1]. The bound is attained by projective
geometries over GF(q), so cannot be improved.

Our theorem does not resolve Conjecture 1.1 in the case where r is
not too large compared to k; in particular, the conjecture remains open
in the interesting case when k = r —1 (that is, where W}, is the number
of hyperplanes).

This research was partially supported by a grant from the Office of Naval Re-
search [N00014-12-1-0031].
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We now discuss the counterexamples for r = 3 and k = 2, first giving
the construction of Blokhuis. For each simple rank-3 matroid M, let
Lt(M) be the set of lines of M containing at least 3 points. Note that
Lt(M) determines M.

Lemma 1.3. If q is a prime power then there is a rank-3 matroid M (q)
with no Us og-minor such that Wa(M(q)) = 3¢*(q + 1).

Proof. Let N = AG(2,q). Let L be a set of ¢ pairwise disjoint lines of
N. If M(q) is the simple rank-3 matroid with E(M(q)) = E(N) and
LT(M(q)) = LT(N) — L, then M(q) has ¢* + ¢({) = 2¢*(¢ + 1) lines
and each element of M(q) lies on 2q — 1 lines of M(q), so M (q) has no

Us 24-minor. O

We now verify that, when r = 3 and k = 2, Conjecture 1.1 is false
for nearly all ¢:

Corollary 1.4. Let ¢ > 125 be a prime power. There is a rank-3

matroid M with no Us 4io-minor such that Wo(M) > B}q.

Proof. Let ¢' be a power of 2 so that 1(¢+2) < ¢’ < %(q + 2). Now
M(q') of Lemma 1.3 has no Us sy-minor so has no Us 44o-minor, and

Wa(M(q) = 5(¢)*(¢' +1) > 135(a+2)* = (a+2)* > ¢ +q+1 =[] .

O

If more care is taken, then the same construction can in fact be
shown to provide counterexamples for all ¢ > 13. Smaller values of ¢
will be considered in detail in a future paper.

Despite these examples, it is likely that the rank-3 case is sporadic
and that Conjecture 1.1 holds unconditionally for all » > 4. We also
conjecture a strengthened version of Theorem 1.2, in which r is not
required to be large compared to k:

Conjecture 1.5. Let { > 2 be an integer. If r is sufficiently large and
M is a rank-r matroid with no Usgio-minor, then Wi(M) < mq for
all integers k > 0, where q s the largest prime power such that g < (.

2. PRELIMINARIES

We follow the notation of Oxley [4]. In particular for each integer
¢ > 0 we write U(¢) for the class of matroids with no Us ¢1o-minor.

The first theorem we need gives a bound on W; for all matroids in
U(L), and was proved by Kung [3]. Note that this resolves the k = 1
case of Conjecture 1.1.
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Theorem 2.1. If £ > 2 and M € U(L), then Wy(M) < L5021,

We often use the cruder bound Wy (M) < ("), The next result,
which provides a large affine geometry restriction in a dense matroid
in U({) of very large rank, appears in [2].

Theorem 2.2. There is a function f : Z> x R — 7Z such that, for
all n, 0 € Z7, a € R™ and prime powers q, if M € U(L) satisfies
Wi(M) > ag™ and r(M) > f({,n,q,a), then M has either an
AG(n, q)-restriction or a PG(n,q")-minor for some ¢’ > q.

We now consider the parameter Wy (M), known as the k-th Whitney
number of M of the second kind, and its value on projective geome-
tries. It is well-known (see [4 p.162], for example) that PG(r — 1,¢q)

has exactly [Z]q rank-k flats, where [Z]q is the ‘g-binomial coefficient’

defined recursively by mq = mq =1 and [}] .= ¢ [7«;1}(] + [Z:ﬂq for

0 < k <r. An equivalent definition is given by

H ) [C i YRR i
k], (¢ =D =1)...(¢—-1)

Using these definitions, it is not hard to show that [;]q satisfies a few

basic properties, which we will use freely:

Lemma 2.3. For every prime power q and all integers 0 < k < r, the
following hold:

(J)H >q’“[k}qf07°allz€{0 ,7}.
(2) ¢ <[], <
r r—1 r—1
(3) [;qu [ k j|q+q [k J :
We now consider W (M) for a general matroid M. For each e €
E(M) let Fr(M;e) denote the set of rank-k flats of M containing e,
and let WE(M) = Wi(M) — |Fr(M;e)| denote the number of rank-

k flats of M not containing e. We will also freely use some basic
properties of Wy:

Lemma 2.4. If k > 1 and { > 2 are integers, M is a matroid, and e
15 a nonloop of M then the following hold:
(1) Wi (M) < Wi(M)F.
(2) Wi (M) < 05 M) f M€ U(0).
(3) |Fu(M;e)| = Wi_1(M/e).
(4) WelM) = Wi s (M/e) + X per,. gy Wi (M),
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Proof. (1) follows from the fact that every rank-k flat is spanned by &
points, and (2) follows from (1) and Theorem 2.1. (3) is easy. Now
by (3), there are Wjy_1(M/e) rank-k flats of M containing e. For each
other rank-k flat [ of M, the set F' = cly(F"U{e}) is the unique rank-
(k+1) flat of M containing e and F”, and each such F' corresponds to
W¢e(M|F) different F'. Combining these statements gives (4). O

3. GEOMETRY

In this section, we deal with projective and affine geometries over
GF(q), using them to provide a U, 42 ;-minor in various situations. We
repeatedly use the fact that, if M has an AG(r(M)—1, ¢)-restriction R
and e € E(R), then M /e has a PG(r(M/e)—1, q)-restriction contained
in E(R). The first lemma we need was also essentially proved in [1].

Lemma 3.1. If q is a prime power and M is a simple matroid of rank
at least 3 with a proper PG(r(M) — 1, q)-restriction, then M has a
Us g241-minor.

Proof. Let R be a PG(r(M) — 1, g)-restriction of M. We may assume
that E(M) = E(R) U {e} for some e ¢ E(R). The point e is spanned
by at most one line of R; by repeatedly contracting points not on such
a line and simplifying we obtain a simple rank-3 minor of M’ such
that E(M') = E(R') U {e} and R = PG(2,q). Now e is spanned
by at most one line of R and such a line contains ¢ + 1 elements of
E(R'),so Wi(M'[e) > |[E(R')|—q =q¢*+1, and so M'/e has a U, g2 -
restriction. U

In particular, if M has rank at least 3, has a PG(r(M) — 1,¢)-
restriction and is not GF(g)-representable then M has a Us ;2 ;-minor;
we use this idea in the next two lemmas.

Lemma 3.2. Let q be a prime power and m > 2 and b > 1 be inte-
gers. If M is a matroid with an AG(m + b, q)-restriction R, a rank-m
restriction S that is not GF(q)-representable, and every cocircuit of M
has rank at least r(M) — b, then M has a Uy p2.41-minor.

Proof. We may assume that no minor of M satisfies the hypotheses.
Note that contracting elements of M preserves the cocircuit prop-
erty, so E(M) = cly(E(R)) U cly(E(S)). If »(M) > r(R) then
E(M) — cly(E(R)) contains a cocircuit of M of rank at most r(S) =
m < r(M) — b, a contradiction. Therefore R is spanning in M. Let
f € E(R) — cly(E(S)); the matroid M/ f has a PG(r(M/f) — 1,q)-
restriction, has rank at least 3 and is not GF(g)-representable, so has
a Uy 4241-minor by Lemma 3.1. O
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Lemma 3.3. Let g be a prime power and k > 1 be an integer. If M is a
matroid such that r(M) > k+3, M has an AG(r(M)— 1, q)-restriction
and M has no Us g2y 1-minor, then Wi(M) < [T(%)}q.

Proof. Let R be an AG(r(M) — 1, g)-restriction of M. We may assume
that M is simple. We make two claims, considering two different types
of rank-k flat.

3.3.1. If F is a flat of M with F N E(R) # &, then F has a basis
contained in E(R).

Proof of claim: For each e € E(R), the matroid M /e has rank at least
3 and has a PG(r(M) — 2, ¢)-restriction contained in E(R) — {e}, so
it follows from Lemma 3.1 that, for every e € E(R), each nonloop of
M /e is parallel in M /e to some element of E(R)—{e}. Therefore every
x € E(M) is in some line of M containing e and another element y of
E(R). Thus, if F' is a flat of M and e € F'N E(R), then F has a basis
contained in F(R), as we can include e, and then can exchange each
xr € F'— E(R) with its corresponding y € E(R). O

3.3.2. If F is a rank-k flat of M such that FF'N E(R) = @, then F is
a rank-k flat of M /e \(E(R) — {e}) for all e € E(R).

Proof of claim: Let F be a rank-k flat of M that is disjoint from E(R)
and let e € E(R). Let F' = clp;(FU{e}). By the first claim, F” contains
arank-(k+1) flat G of R; note that R|G = AG(k,q). If F' = FUG then
the claim holds. Otherwise, F’ # F'U G and F’ is the disjoint union
of a rank-(k + 1) affine geometry, a rank-k flat, and at least one other
point, so M|F" is not GF(q)-representable. Let f € E(R) — F’'. The
matroid M/ f has rank at least 3, has a PG(r(M/f) — 1, ¢)-restriction
contained in F(R) and has M|F" as a restriction, so Lemma 3.1 gives
a contradiction. d

Let e € E(R). By 3.3.1, the number of rank-k flats of M that
intersect E(R) is Wi(R). By 3.3.2, the number of other rank-% flats of
M is at most Wy (M /e \ E(R)). Now M /e has rank at least 3 and has
a PG(r(M) — 2, q)-restriction, so we may assume by Lemma 3.1 that
si(M/e) = PG(r(M)—2,q) and so M/e\E(R) is GF(q)-representable.
Therefore

Wi(M) < Wi(R) + Wi (M/e \E(R))
< Wi(AG(r(M) = 1,q)) + Wi (PG(r(M) = 2),q).

This upper bound is clearly equal to Wy (PG(r(M) —1,q)) = [;]q.
U
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4. THE MAIN THEOREM
We now restate and prove Theorem 1.2.

Theorem 4.1. There is a function g : Z*> — 7 so that, for all integers
(>2and k>0, if M €Ul) satisfies r(M) > g(¢, k) then Wi(M) <

[T(fy)]q, where q is the largest prime power not exceeding £.

Proof. Set g(£,0) = 0 for all ¢; note that this trivially satisfies the
conditions of the theorem. Let ¢ > 2 and k£ > 0 be integers, and ¢ be
the largest prime power such that ¢ < ¢. If ¢ = 2 then M is binary and
the bound is obvious; we may therefore assume that ¢ > ¢ > 3. Suppose
recursively that g(¢,7) has been defined for each i € {0,...,k—1}. Let
ro = max(k + 3, maxo<i<r_1 g(£,4)). Note that 2¢7% < %; let b be a
positive integer so that k¢" ~? + (2¢~%)PH! < $07HkH1) - Recall that the
function f was defined in Theorem 2.2; set ¢g(¢, k) to be an integer n
such that ¢ **2n > ¢kf(trotbaa™®),

Suppose inductively that g(¢, k — 1) satisfies the theorem statement.
If g(¢, k) does not, then there exists My € U({) such that r(My) > n
and Wy (M) > [T(A:O)}q. We will obtain a contradiction by finding a

Us¢o-minor of M; since ¢* + 1 > £ + 2 it is also enough to find a
Us 4241-minor.

Let M be minor-minimal such that M is a minor of My and Wy (M) >
27 (Mo)=r(M) [r(f)]q. Note that M is simple; let 7 = r(M). We often use
the fact that Wy,(M') < (2¢~ %) "MW, (M) for each proper minor M’
of M, which follows from minimality and (1) of Lemma 2.3.

4.1.1. M has an AG(ro + b, q)-restriction.

Proof of claim: Observe that
Wk(M) > QT(MO)*T [Z}q > 2n—qu(r—k) — q—k22n(qk/2>r > gkf(&m—l—b,q,q*k)’

sor > f(l,ro+b,q,q%). By choice of M and Lemmas 2.3 and 2.4 we
have Wi(M)* > Wi(M) > [[] > ¢""™9, so Wi(M) > q"¢". The
required restriction exists by Theorem 2.2, since PG(rg + b,¢’) has a
Us ¢4o-minor for all ¢’ > q. O

4.1.2. Every cocircuit of M has rank at least r — b.

Proof of claim: Suppose not; let C be a cocircuit of M of rank less than
r — b, let H be the hyperplane E(M) — C, and let B be a rank-(r — b)
set containing C. Note that E(M) = H U B.

Let e € C; note that the matroid M/e has no loops and that
r(M/e)|(B —e)) = r—(b+1) > ry. Let Fp be the collection of
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rank-k flats of M /e that intersect B. Each F' € Fp is the closure of
the union of a rank-i flat of (M/e)|(B — {e}) and a rank-(k — i) flat of
(M/e)|H for some i € {1,...,k}, so

k—1

[ Fsl < ZWi((M/e)I(B — e))Wi—i((M/e)|H) + Wi((M/e)|(B —€))

k—1

<Y T 1“,;1] (2075 (M)

k
S Zqi(’r‘—b—l)-‘r(/ﬂ—i)(T—l) + (2q_k)b+1Wk(M)
1=1

S kq—bqk(r—l) + (zq—k)b+1Wk<M>

< k"] eatrrman
q

For each rank-k flat Fy of M/e that is not in Fp, we have Fy C H
so (M/e)|Fo = M|F,. The closure in M of F' = Fy U {e} contains no
elements of B — {e}, so F' € Fy11(M;e) and WE(M|F) = 1. For each
other F € Fiy1 we have WE(F) < ¢#*+1) by Lemma 2.4. Therefore

> WiMIF) < (8D Fp| 4 (Wi(Me) = | Fy])
FEFyi1(Mie)
< LM F| 4 2 Wi (M)
< pRktD) (%g—k(kJrl)Wk(M)) + %Wk(M)
= Wi (M).
Now, since r(M/e) > 1y, by what is above we have
We(M) =W (M/e)+ > Wi(M|F)

FeFi11(M;e)

r—1
< |:k‘—1:| +%Wk(M)
q
r
< g k;] + 2Wi(M),
q
q

a contradiction, as [;] < Wj(M) and ¢" " < ¢"0 < g8 < 1. O
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Let N be a minor-minimal minor of M such that
(1) N has an AG(rg + b, g)-restriction,
(2) every cocircuit of N has rank at least r(N) — b, and
(3) Wi(N) > [“}j)]q.
Let R be an AG(rq + b, q)-restriction of N. Since rq > k + 1, we may

assume by 4.1.1, 4.1.2 and Lemma 3.2 that every rank-(k+1)-restriction
of N is GF(q)-representable. Note that N has no loops.

4.1.3. Wi(N/e) > [T(]\Q_l}q for all e € E(N).

Proof of claim: Since every rank-(k + 1) restriction of N is GF(q)-
representable, the value of W¢(N|F) for each rank-(k + 1) flat F' does
not exceed ¢*, its value on PG(k, ¢). Therefore Y orer e Wi(N|F) <
| Fri1(Nse)| = ¢*Wi(N/e), and so by (4) of Lemma 2.4 we get
Wi(N) < Wi_1(N/e)+¢*Wi(N/e). Now r(N/e) > rg so Wy_1(N/e) <

[T(,iv_)l_ l]q by the inductive hypothesis, and Wy(N) > [T(,iv )}q, which

implies that Wy(N/e) > ¢=* ([T(,iv)}q — [T(;]gv_);l}q> = [T(]\Qil}q' u

Thus, properties (1) and (2) and (3) are all preserved by contracting
elements of E(N) —cly(E(R)), so it follows from minimality that R is
spanning in N. We now obtain a contradiction from Lemma 3.3. [
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