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Abstract. We show that, if k and ` are positive integers and r
is sufficiently large, then the number of rank-k flats in a rank-r
matroid M with no U2,`+2-minor is less than or equal to number
of rank-k flats in a rank-r projective geometry over GF(q), where
q is the largest prime power not exceeding `.

1. Introduction

Let Wk(M) denote the number of rank-k flats in a matroid M . For
example, we have Wk(PG(r − 1, q)) =

[
r
k

]
q
, the q-binomial coefficient

for r and k. The following conjecture appears in Oxley [4 p. 582],
attributed to Bonin:

Conjecture 1.1. If q is a prime power, k ≥ 0 is an integer and M is
a rank-r matroid with no U2,q+2-minor, then Wk(M) ≤

[
r
k

]
q
.

Unfortunately for k = 2, r = 3 this conjecture is false for all q ≥ 13;
we discuss counterexamples due to Blokhuis (private communication)
soon. Our main theorem, on the other hand, resolves the conjecture
whenever r is large compared to q and k. In fact we show more, ob-
taining an eventually best-possible bound on Wk when excluding an
arbitrary rank-2 uniform minor:

Theorem 1.2. Let ` ≥ 2 and k ≥ 0 be integers. If r is sufficiently large
and M is a rank-r matroid with no U2,`+2-minor, then Wk(M) ≤

[
r
k

]
q
,

where q is the largest prime power so that q ≤ `.

This was shown for k = 1 in [1]. The bound is attained by projective
geometries over GF(q), so cannot be improved.

Our theorem does not resolve Conjecture 1.1 in the case where r is
not too large compared to k; in particular, the conjecture remains open
in the interesting case when k = r−1 (that is, where Wk is the number
of hyperplanes).

This research was partially supported by a grant from the Office of Naval Re-
search [N00014-12-1-0031].
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We now discuss the counterexamples for r = 3 and k = 2, first giving
the construction of Blokhuis. For each simple rank-3 matroid M , let
L+(M) be the set of lines of M containing at least 3 points. Note that
L+(M) determines M .

Lemma 1.3. If q is a prime power then there is a rank-3 matroid M(q)
with no U2,2q-minor such that W2(M(q)) = 1

2
q2(q + 1).

Proof. Let N ∼= AG(2, q). Let L be a set of q pairwise disjoint lines of
N . If M(q) is the simple rank-3 matroid with E(M(q)) = E(N) and
L+(M(q)) = L+(N) − L, then M(q) has q2 + q

(
q
2

)
= 1

2
q2(q + 1) lines

and each element of M(q) lies on 2q− 1 lines of M(q), so M(q) has no
U2,2q-minor. �

We now verify that, when r = 3 and k = 2, Conjecture 1.1 is false
for nearly all q:

Corollary 1.4. Let q > 125 be a prime power. There is a rank-3
matroid M with no U2,q+2-minor such that W2(M) >

[
3
2

]
q
.

Proof. Let q′ be a power of 2 so that 1
4
(q + 2) < q′ ≤ 1

2
(q + 2). Now

M(q′) of Lemma 1.3 has no U2,2q′-minor so has no U2,q+2-minor, and

W2(M(q′)) = 1
2
(q′)2(q′+ 1) > 1

128
(q+ 2)3 ≥ (q+ 2)2 > q2 + q+ 1 =

[
3
2

]
q
.

�

If more care is taken, then the same construction can in fact be
shown to provide counterexamples for all q ≥ 13. Smaller values of q
will be considered in detail in a future paper.

Despite these examples, it is likely that the rank-3 case is sporadic
and that Conjecture 1.1 holds unconditionally for all r ≥ 4. We also
conjecture a strengthened version of Theorem 1.2, in which r is not
required to be large compared to k:

Conjecture 1.5. Let ` ≥ 2 be an integer. If r is sufficiently large and
M is a rank-r matroid with no U2,`+2-minor, then Wk(M) ≤

[
r
k

]
q

for

all integers k ≥ 0, where q is the largest prime power such that q ≤ `.

2. Preliminaries

We follow the notation of Oxley [4]. In particular for each integer
` ≥ 0 we write U(`) for the class of matroids with no U2,`+2-minor.

The first theorem we need gives a bound on W1 for all matroids in
U(`), and was proved by Kung [3]. Note that this resolves the k = 1
case of Conjecture 1.1.
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Theorem 2.1. If ` ≥ 2 and M ∈ U(`), then W1(M) ≤ `r(M)−1
`−1 .

We often use the cruder bound W1(M) < `r(M). The next result,
which provides a large affine geometry restriction in a dense matroid
in U(`) of very large rank, appears in [2].

Theorem 2.2. There is a function f : Z3 × R → Z such that, for
all n, ` ∈ Z+, α ∈ R+ and prime powers q, if M ∈ U(`) satisfies
W1(M) ≥ αqr(M) and r(M) ≥ f(`, n, q, α), then M has either an
AG(n, q)-restriction or a PG(n, q′)-minor for some q′ > q.

We now consider the parameter Wk(M), known as the k-th Whitney
number of M of the second kind, and its value on projective geome-
tries. It is well-known (see [4 p.162], for example) that PG(r − 1, q)
has exactly

[
r
k

]
q

rank-k flats, where
[
r
k

]
q

is the ‘q-binomial coefficient’

defined recursively by
[
r
0

]
q

=
[
r
r

]
q

= 1 and
[
r
k

]
q

= qk
[
r−1
k

]
q

+
[
r−1
k−1

]
q

for

0 < k < r. An equivalent definition is given by[
r

k

]
q

=
(qr − 1)(qr−1 − 1) . . . (qr−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Using these definitions, it is not hard to show that
[
r
k

]
q

satisfies a few

basic properties, which we will use freely:

Lemma 2.3. For every prime power q and all integers 0 < k < r, the
following hold:

(1)
[
r
k

]
q
≥ qki

[
r−i
k

]
q

for all i ∈ {0, . . . , r}.
(2) qk(r−k) ≤

[
r
k

]
q
≤ qrk.

(3)
[
r
k

]
q

=
[
r−1
k

]
q

+ qr−k
[
r−1
k−1

]
q
.

We now consider Wk(M) for a general matroid M . For each e ∈
E(M) let Fk(M ; e) denote the set of rank-k flats of M containing e,
and let W e

k (M) = Wk(M) − |Fk(M ; e)| denote the number of rank-
k flats of M not containing e. We will also freely use some basic
properties of Wk:

Lemma 2.4. If k ≥ 1 and ` ≥ 2 are integers, M is a matroid, and e
is a nonloop of M then the following hold:

(1) Wk(M) ≤ W1(M)k.
(2) Wk(M) < `kr(M) if M ∈ U(`).
(3) |Fk(M ; e)| = Wk−1(M/e).
(4) Wk(M) = Wk−1(M/e) +

∑
F∈Fk+1(M ;e)W

e
k (M |F ).
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Proof. (1) follows from the fact that every rank-k flat is spanned by k
points, and (2) follows from (1) and Theorem 2.1. (3) is easy. Now
by (3), there are Wk−1(M/e) rank-k flats of M containing e. For each
other rank-k flat F ′ of M , the set F = clM(F ′∪{e}) is the unique rank-
(k+ 1) flat of M containing e and F ′, and each such F corresponds to
W e

k (M |F ) different F ′. Combining these statements gives (4). �

3. Geometry

In this section, we deal with projective and affine geometries over
GF(q), using them to provide a U2,q2+1-minor in various situations. We
repeatedly use the fact that, if M has an AG(r(M)−1, q)-restriction R
and e ∈ E(R), then M/e has a PG(r(M/e)−1, q)-restriction contained
in E(R). The first lemma we need was also essentially proved in [1].

Lemma 3.1. If q is a prime power and M is a simple matroid of rank
at least 3 with a proper PG(r(M) − 1, q)-restriction, then M has a
U2,q2+1-minor.

Proof. Let R be a PG(r(M)− 1, q)-restriction of M . We may assume
that E(M) = E(R) ∪ {e} for some e /∈ E(R). The point e is spanned
by at most one line of R; by repeatedly contracting points not on such
a line and simplifying we obtain a simple rank-3 minor of M ′ such
that E(M ′) = E(R′) ∪ {e} and R′ ∼= PG(2, q). Now e is spanned
by at most one line of R′ and such a line contains q + 1 elements of
E(R′), so W1(M

′/e) ≥ |E(R′)|− q = q2 + 1, and so M ′/e has a U2,q2+1-
restriction. �

In particular, if M has rank at least 3, has a PG(r(M) − 1, q)-
restriction and is not GF(q)-representable then M has a U2,q2+1-minor;
we use this idea in the next two lemmas.

Lemma 3.2. Let q be a prime power and m ≥ 2 and b ≥ 1 be inte-
gers. If M is a matroid with an AG(m+ b, q)-restriction R, a rank-m
restriction S that is not GF(q)-representable, and every cocircuit of M
has rank at least r(M)− b, then M has a U2,q2+1-minor.

Proof. We may assume that no minor of M satisfies the hypotheses.
Note that contracting elements of M preserves the cocircuit prop-
erty, so E(M) = clM(E(R)) ∪ clM(E(S)). If r(M) > r(R) then
E(M) − clM(E(R)) contains a cocircuit of M of rank at most r(S) =
m < r(M) − b, a contradiction. Therefore R is spanning in M . Let
f ∈ E(R) − clM(E(S)); the matroid M/f has a PG(r(M/f) − 1, q)-
restriction, has rank at least 3 and is not GF(q)-representable, so has
a U2,q2+1-minor by Lemma 3.1. �
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Lemma 3.3. Let q be a prime power and k ≥ 1 be an integer. If M is a
matroid such that r(M) ≥ k+3, M has an AG(r(M)−1, q)-restriction

and M has no U2,q2+1-minor, then Wk(M) ≤
[
r(M)
k

]
q
.

Proof. Let R be an AG(r(M)− 1, q)-restriction of M . We may assume
that M is simple. We make two claims, considering two different types
of rank-k flat.

3.3.1. If F is a flat of M with F ∩ E(R) 6= ∅, then F has a basis
contained in E(R).

Proof of claim: For each e ∈ E(R), the matroid M/e has rank at least
3 and has a PG(r(M) − 2, q)-restriction contained in E(R) − {e}, so
it follows from Lemma 3.1 that, for every e ∈ E(R), each nonloop of
M/e is parallel in M/e to some element of E(R)−{e}. Therefore every
x ∈ E(M) is in some line of M containing e and another element y of
E(R). Thus, if F is a flat of M and e ∈ F ∩E(R), then F has a basis
contained in E(R), as we can include e, and then can exchange each
x ∈ F − E(R) with its corresponding y ∈ E(R). �

3.3.2. If F is a rank-k flat of M such that F ∩ E(R) = ∅, then F is
a rank-k flat of M/e \(E(R)− {e}) for all e ∈ E(R).

Proof of claim: Let F be a rank-k flat of M that is disjoint from E(R)
and let e ∈ E(R). Let F ′ = clM(F∪{e}). By the first claim, F ′ contains
a rank-(k+1) flat G of R; note that R|G ∼= AG(k, q). If F ′ = F∪G then
the claim holds. Otherwise, F ′ 6= F ∪ G and F ′ is the disjoint union
of a rank-(k + 1) affine geometry, a rank-k flat, and at least one other
point, so M |F ′ is not GF(q)-representable. Let f ∈ E(R) − F ′. The
matroid M/f has rank at least 3, has a PG(r(M/f)− 1, q)-restriction
contained in E(R) and has M |F ′ as a restriction, so Lemma 3.1 gives
a contradiction. �

Let e ∈ E(R). By 3.3.1, the number of rank-k flats of M that
intersect E(R) is Wk(R). By 3.3.2, the number of other rank-k flats of
M is at most Wk(M/e \E(R)). Now M/e has rank at least 3 and has
a PG(r(M) − 2, q)-restriction, so we may assume by Lemma 3.1 that
si(M/e) ∼= PG(r(M)− 2, q) and so M/e \E(R) is GF(q)-representable.
Therefore

Wk(M) ≤ Wk(R) +Wk(M/e \E(R))

≤ Wk(AG(r(M)− 1, q)) +Wk(PG(r(M)− 2), q).

This upper bound is clearly equal to Wk(PG(r(M)− 1, q)) =
[
r
k

]
q
.

�
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4. The Main Theorem

We now restate and prove Theorem 1.2.

Theorem 4.1. There is a function g : Z2 → Z so that, for all integers
` ≥ 2 and k ≥ 0, if M ∈ U(`) satisfies r(M) ≥ g(`, k) then Wk(M) ≤[
r(M)
k

]
q
, where q is the largest prime power not exceeding `.

Proof. Set g(`, 0) = 0 for all `; note that this trivially satisfies the
conditions of the theorem. Let ` ≥ 2 and k > 0 be integers, and q be
the largest prime power such that q ≤ `. If ` = 2 then M is binary and
the bound is obvious; we may therefore assume that ` ≥ q ≥ 3. Suppose
recursively that g(`, i) has been defined for each i ∈ {0, . . . , k−1}. Let
r0 = max(k + 3,max0≤i≤k−1 g(`, i)). Note that 2q−k ≤ 2

3
; let b be a

positive integer so that kqk
2−b + (2q−k)b+1 ≤ 1

6
`−k(k+1). Recall that the

function f was defined in Theorem 2.2; set g(`, k) to be an integer n

such that q−k
2
2n > `kf(`,r0+b,q,q−k).

Suppose inductively that g(`, k− 1) satisfies the theorem statement.
If g(`, k) does not, then there exists M0 ∈ U(`) such that r(M0) ≥ n

and Wk(M0) >
[
r(M0)

k

]
q
. We will obtain a contradiction by finding a

U2,`+2-minor of M ; since q2 + 1 ≥ ` + 2 it is also enough to find a
U2,q2+1-minor.

LetM be minor-minimal such thatM is a minor ofM0 andWk(M) >

2r(M0)−r(M)
[
r(M)
k

]
q
. Note that M is simple; let r = r(M). We often use

the fact that Wk(M ′) < (2q−k)r−r(M
′)Wk(M) for each proper minor M ′

of M , which follows from minimality and (1) of Lemma 2.3.

4.1.1. M has an AG(r0 + b, q)-restriction.

Proof of claim: Observe that

Wk(M) > 2r(M0)−r
[
r
k

]
q
≥ 2n−rqk(r−k) = q−k

2
2n(qk/2)r > `kf(`,r0+b,q,q−k),

so r > f(`, r0 + b, q, q−k). By choice of M and Lemmas 2.3 and 2.4 we
have W1(M)k ≥ Wk(M) >

[
r
k

]
q
≥ qk(r−k), so W1(M) ≥ q−kqr. The

required restriction exists by Theorem 2.2, since PG(r0 + b, q′) has a
U2,`+2-minor for all q′ > q. �

4.1.2. Every cocircuit of M has rank at least r − b.

Proof of claim: Suppose not; let C be a cocircuit of M of rank less than
r− b, let H be the hyperplane E(M)−C, and let B be a rank-(r− b)
set containing C. Note that E(M) = H ∪B.

Let e ∈ C; note that the matroid M/e has no loops and that
r((M/e)|(B − e)) = r − (b + 1) ≥ r0. Let FB be the collection of
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rank-k flats of M/e that intersect B. Each F ∈ FB is the closure of
the union of a rank-i flat of (M/e)|(B −{e}) and a rank-(k− i) flat of
(M/e)|H for some i ∈ {1, . . . , k}, so

|FB| ≤
k−1∑
i=1

Wi((M/e)|(B − e))Wk−i((M/e)|H) +Wk((M/e)|(B − e))

≤
k−1∑
i=1

[
r − b− 1

i

]
q

[
r − 1

k − i

]
q

+ (2q−k)b+1Wk(M)

≤
k−1∑
i=1

qi(r−b−1)+(k−i)(r−1) + (2q−k)b+1Wk(M)

≤ kq−bqk(r−1) + (2q−k)b+1Wk(M)

≤ kqk
2−b
[
r

k

]
q

+ (2q−k)b+1Wk(M)

<
(
kqk

2−b + (2q−k)b+1
)
Wk(M)

≤ 1
6
`−k(k+1)Wk(M).

For each rank-k flat F0 of M/e that is not in FB, we have F0 ⊆ H
so (M/e)|F0 = M |F0. The closure in M of F = F0 ∪ {e} contains no
elements of B − {e}, so F ∈ Fk+1(M ; e) and W e

k (M |F ) = 1. For each
other F ∈ Fk+1 we have W e

k (F ) < `k(k+1) by Lemma 2.4. Therefore∑
F∈Fk+1(M ;e)

W e
k (M |F ) ≤ `k(k+1)|FB|+ (Wk(M/e)− |FB|)

< `k(k+1)|FB|+ 2q−kWk(M)

≤ `k(k+1)
(
1
6
`−k(k+1)Wk(M)

)
+ 2

3
Wk(M)

= 5
6
Wk(M).

Now, since r(M/e) ≥ r0, by what is above we have

Wk(M) = Wk−1(M/e) +
∑

F∈Fk+1(M ;e)

W e
k (M |F )

<

[
r − 1

k − 1

]
q

+ 5
6
Wk(M)

< qk−r
[
r

k

]
q

+ 5
6
Wk(M),

a contradiction, as
[
r
k

]
q
< Wk(M) and qk−r ≤ qk−r0 ≤ q−3 < 1

6
. �
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Let N be a minor-minimal minor of M such that

(1) N has an AG(r0 + b, q)-restriction,
(2) every cocircuit of N has rank at least r(N)− b, and

(3) Wk(N) >
[
r(N)
k

]
q
.

Let R be an AG(r0 + b, q)-restriction of N . Since r0 ≥ k + 1, we may
assume by 4.1.1, 4.1.2 and Lemma 3.2 that every rank-(k+1)-restriction
of N is GF(q)-representable. Note that N has no loops.

4.1.3. Wk(N/e) >
[
r(N)−1

k

]
q

for all e ∈ E(N).

Proof of claim: Since every rank-(k + 1) restriction of N is GF(q)-
representable, the value of W e

k (N |F ) for each rank-(k + 1) flat F does
not exceed qk, its value on PG(k, q). Therefore

∑
F∈Fk+1(e)

W e
k (N |F ) ≤

qk|Fk+1(N ; e)| = qkWk(N/e), and so by (4) of Lemma 2.4 we get
Wk(N) ≤ Wk−1(N/e)+qkWk(N/e). Now r(N/e) ≥ r0 so Wk−1(N/e) ≤[
r(N)−1
k−1

]
q

by the inductive hypothesis, and Wk(N) >
[
r(N)
k

]
q
, which

implies that Wk(N/e) > q−k
([

r(N)
k

]
q
−
[
r(N)−1
k−1

]
q

)
=
[
r(N)−1

k

]
q
. �

Thus, properties (1) and (2) and (3) are all preserved by contracting
elements of E(N)− clN(E(R)), so it follows from minimality that R is
spanning in N . We now obtain a contradiction from Lemma 3.3. �
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