THE NUMBER OF RANK-k FLATS IN A MATROID WITH NO $U_{2, n}$-MINOR

PETER NELSON

Abstract

We show that, if k and ℓ are positive integers and r is sufficiently large, then the number of rank- k flats in a rank- r matroid M with no $U_{2, \ell+2}$-minor is less than or equal to number of rank- k flats in a rank- r projective geometry over $\operatorname{GF}(q)$, where q is the largest prime power not exceeding ℓ.

1. Introduction

Let $W_{k}(M)$ denote the number of rank- k flats in a matroid M. For example, we have $W_{k}(\mathrm{PG}(r-1, q))=\left[\begin{array}{l}r \\ k \\ k\end{array}\right]_{q}$, the q-binomial coefficient for r and k. The following conjecture appears in Oxley [4 p. 582], attributed to Bonin:

Conjecture 1.1. If q is a prime power, $k \geq 0$ is an integer and M is a rank-r matroid with no $U_{2, q+2}$-minor, then $W_{k}(M) \leq\left[\begin{array}{c}r \\ k\end{array}\right]_{q}$.

Unfortunately for $k=2, r=3$ this conjecture is false for all $q \geq 13$; we discuss counterexamples due to Blokhuis (private communication) soon. Our main theorem, on the other hand, resolves the conjecture whenever r is large compared to q and k. In fact we show more, obtaining an eventually best-possible bound on W_{k} when excluding an arbitrary rank-2 uniform minor:

Theorem 1.2. Let $\ell \geq 2$ and $k \geq 0$ be integers. If r is sufficiently large and M is a rank-r matroid with no $U_{2, \ell+2}$-minor, then $W_{k}(M) \leq\left[\begin{array}{c}r \\ k\end{array}\right]_{q}$, where q is the largest prime power so that $q \leq \ell$.

This was shown for $k=1$ in [1]. The bound is attained by projective geometries over GF (q), so cannot be improved.

Our theorem does not resolve Conjecture 1.1 in the case where r is not too large compared to k; in particular, the conjecture remains open in the interesting case when $k=r-1$ (that is, where W_{k} is the number of hyperplanes).

[^0]We now discuss the counterexamples for $r=3$ and $k=2$, first giving the construction of Blokhuis. For each simple rank-3 matroid M, let $\mathcal{L}^{+}(M)$ be the set of lines of M containing at least 3 points. Note that $\mathcal{L}^{+}(M)$ determines M.

Lemma 1.3. If q is a prime power then there is a rank-3 matroid $M(q)$ with no $U_{2,2 q}$-minor such that $W_{2}(M(q))=\frac{1}{2} q^{2}(q+1)$.
Proof. Let $N \cong \mathrm{AG}(2, q)$. Let \mathcal{L} be a set of q pairwise disjoint lines of N. If $M(q)$ is the simple rank-3 matroid with $E(M(q))=E(N)$ and $\mathcal{L}^{+}(M(q))=\mathcal{L}^{+}(N)-\mathcal{L}$, then $M(q)$ has $q^{2}+q\binom{q}{2}=\frac{1}{2} q^{2}(q+1)$ lines and each element of $M(q)$ lies on $2 q-1$ lines of $M(q)$, so $M(q)$ has no $U_{2,2 q}$-minor.

We now verify that, when $r=3$ and $k=2$, Conjecture 1.1 is false for nearly all q :

Corollary 1.4. Let $q>125$ be a prime power. There is a rank-3 matroid M with no $U_{2, q+2}$-minor such that $W_{2}(M)>\left[\begin{array}{l}3 \\ 2\end{array}\right]_{q}$.

Proof. Let q^{\prime} be a power of 2 so that $\frac{1}{4}(q+2)<q^{\prime} \leq \frac{1}{2}(q+2)$. Now $M\left(q^{\prime}\right)$ of Lemma 1.3 has no $U_{2,2 q^{\prime}}$-minor so has no $U_{2, q+2}$-minor, and
$W_{2}\left(M\left(q^{\prime}\right)\right)=\frac{1}{2}\left(q^{\prime}\right)^{2}\left(q^{\prime}+1\right)>\frac{1}{128}(q+2)^{3} \geq(q+2)^{2}>q^{2}+q+1=\left[\begin{array}{l}3 \\ 2\end{array}\right]_{q}$.

If more care is taken, then the same construction can in fact be shown to provide counterexamples for all $q \geq 13$. Smaller values of q will be considered in detail in a future paper.

Despite these examples, it is likely that the rank-3 case is sporadic and that Conjecture 1.1 holds unconditionally for all $r \geq 4$. We also conjecture a strengthened version of Theorem 1.2, in which r is not required to be large compared to k :

Conjecture 1.5. Let $\ell \geq 2$ be an integer. If r is sufficiently large and M is a rank-r matroid with no $U_{2, \ell+2}$-minor, then $W_{k}(M) \leq\left[\begin{array}{l}r \\ k\end{array}\right]_{q}$ for all integers $k \geq 0$, where q is the largest prime power such that $q \leq \ell$.

2. Preliminaries

We follow the notation of Oxley [4]. In particular for each integer $\ell \geq 0$ we write $\mathcal{U}(\ell)$ for the class of matroids with no $U_{2, \ell+2}$-minor.

The first theorem we need gives a bound on W_{1} for all matroids in $\mathcal{U}(\ell)$, and was proved by Kung [3]. Note that this resolves the $k=1$ case of Conjecture 1.1.

Theorem 2.1. If $\ell \geq 2$ and $M \in \mathcal{U}(\ell)$, then $W_{1}(M) \leq \frac{\ell^{r(M)}-1}{\ell-1}$.
We often use the cruder bound $W_{1}(M)<\ell^{r(M)}$. The next result, which provides a large affine geometry restriction in a dense matroid in $\mathcal{U}(\ell)$ of very large rank, appears in [2].

Theorem 2.2. There is a function $f: \mathbb{Z}^{3} \times \mathbb{R} \rightarrow \mathbb{Z}$ such that, for all $n, \ell \in \mathbb{Z}^{+}, \alpha \in \mathbb{R}^{+}$and prime powers q, if $M \in \mathcal{U}(\ell)$ satisfies $W_{1}(M) \geq \alpha q^{r(M)}$ and $r(M) \geq f(\ell, n, q, \alpha)$, then M has either an $\mathrm{AG}(n, q)$-restriction or a $\mathrm{PG}\left(n, q^{\prime}\right)$-minor for some $q^{\prime}>q$.

We now consider the parameter $W_{k}(M)$, known as the k-th Whitney number of M of the second kind, and its value on projective geometries. It is well-known (see [4 p.162], for example) that $\operatorname{PG}(r-1, q)$ has exactly $\left[\begin{array}{c}r \\ k\end{array}\right]_{q}$ rank- k flats, where $\left[\begin{array}{c}r \\ k\end{array}\right]_{q}$ is the ' q-binomial coefficient' defined recursively by $\left[\begin{array}{c}r \\ 0\end{array}\right]_{q}=\left[\begin{array}{c}r \\ r\end{array}\right]_{q}=1$ and $\left[\begin{array}{c}r \\ k\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}r-1 \\ k\end{array}\right]_{q}+\left[\begin{array}{c}r-1 \\ k-1\end{array}\right]_{q}$ for $0<k<r$. An equivalent definition is given by

$$
\left[\begin{array}{l}
r \\
k
\end{array}\right]_{q}=\frac{\left(q^{r}-1\right)\left(q^{r-1}-1\right) \ldots\left(q^{r-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)} .
$$

Using these definitions, it is not hard to show that $\left[\begin{array}{l}r \\ k\end{array}\right]_{q}$ satisfies a few basic properties, which we will use freely:

Lemma 2.3. For every prime power q and all integers $0<k<r$, the following hold:
(1) $\left[\begin{array}{c}r \\ k\end{array}\right]_{q} \geq q^{k i}\left[\begin{array}{c}r-i \\ k\end{array}\right]_{q}$ for all $i \in\{0, \ldots, r\}$.
(2) $q^{k(r-k)} \leq\left[\begin{array}{l}r \\ k\end{array}\right]_{q} \leq q^{r k}$.
(3) $\left[\begin{array}{l}r \\ k\end{array}\right]_{q}=\left[\begin{array}{c}r-1 \\ k\end{array}\right]_{q}+q^{r-k}\left[\begin{array}{c}r-1 \\ k-1\end{array}\right]_{q}$.

We now consider $W_{k}(M)$ for a general matroid M. For each $e \in$ $E(M)$ let $\mathcal{F}_{k}(M ; e)$ denote the set of rank- k flats of M containing e, and let $W_{k}^{e}(M)=W_{k}(M)-\left|\mathcal{F}_{k}(M ; e)\right|$ denote the number of rankk flats of M not containing e. We will also freely use some basic properties of W_{k} :

Lemma 2.4. If $k \geq 1$ and $\ell \geq 2$ are integers, M is a matroid, and e is a nonloop of M then the following hold:
(1) $W_{k}(M) \leq W_{1}(M)^{k}$.
(2) $W_{k}(M)<\ell^{k r(M)}$ if $M \in \mathcal{U}(\ell)$.
(3) $\left|\mathcal{F}_{k}(M ; e)\right|=W_{k-1}(M / e)$.
(4) $W_{k}(M)=W_{k-1}(M / e)+\sum_{F \in \mathcal{F}_{k+1}(M ; e)} W_{k}^{e}(M \mid F)$.

Proof. (1) follows from the fact that every rank- k flat is spanned by k points, and (2) follows from (1) and Theorem 2.1. (3) is easy. Now by (3), there are $W_{k-1}(M / e)$ rank- k flats of M containing e. For each other rank- k flat F^{\prime} of M, the set $F=\operatorname{cl}_{M}\left(F^{\prime} \cup\{e\}\right)$ is the unique rank$(k+1)$ flat of M containing e and F^{\prime}, and each such F corresponds to $W_{k}^{e}(M \mid F)$ different F^{\prime}. Combining these statements gives (4).

3. Geometry

In this section, we deal with projective and affine geometries over $\mathrm{GF}(q)$, using them to provide a $U_{2, q^{2}+1}$-minor in various situations. We repeatedly use the fact that, if M has an $\mathrm{AG}(r(M)-1, q)$-restriction R and $e \in E(R)$, then M / e has a $\mathrm{PG}(r(M / e)-1, q)$-restriction contained in $E(R)$. The first lemma we need was also essentially proved in [1].

Lemma 3.1. If q is a prime power and M is a simple matroid of rank at least 3 with a proper $\operatorname{PG}(r(M)-1, q)$-restriction, then M has a $U_{2, q^{2}+1}$-minor.

Proof. Let R be a $\operatorname{PG}(r(M)-1, q)$-restriction of M. We may assume that $E(M)=E(R) \cup\{e\}$ for some $e \notin E(R)$. The point e is spanned by at most one line of R; by repeatedly contracting points not on such a line and simplifying we obtain a simple rank-3 minor of M^{\prime} such that $E\left(M^{\prime}\right)=E\left(R^{\prime}\right) \cup\{e\}$ and $R^{\prime} \cong \operatorname{PG}(2, q)$. Now e is spanned by at most one line of R^{\prime} and such a line contains $q+1$ elements of $E\left(R^{\prime}\right)$, so $W_{1}\left(M^{\prime} / e\right) \geq\left|E\left(R^{\prime}\right)\right|-q=q^{2}+1$, and so M^{\prime} / e has a $U_{2, q^{2}+1^{-}}$ restriction.

In particular, if M has rank at least 3, has a $\operatorname{PG}(r(M)-1, q)$ restriction and is not $\operatorname{GF}(q)$-representable then M has a $U_{2, q^{2}+1}$-minor; we use this idea in the next two lemmas.

Lemma 3.2. Let q be a prime power and $m \geq 2$ and $b \geq 1$ be integers. If M is a matroid with an $\mathrm{AG}(m+b, q)$-restriction R, a rank-m restriction S that is not $\mathrm{GF}(q)$-representable, and every cocircuit of M has rank at least $r(M)-b$, then M has a $U_{2, q^{2}+1}$-minor.

Proof. We may assume that no minor of M satisfies the hypotheses. Note that contracting elements of M preserves the cocircuit property, so $E(M)=\operatorname{cl}_{M}(E(R)) \cup \operatorname{cl}_{M}(E(S))$. If $r(M)>r(R)$ then $E(M)-\mathrm{cl}_{M}(E(R))$ contains a cocircuit of M of rank at most $r(S)=$ $m<r(M)-b$, a contradiction. Therefore R is spanning in M. Let $f \in E(R)-\operatorname{cl}_{M}(E(S))$; the matroid M / f has a $\operatorname{PG}(r(M / f)-1, q)-$ restriction, has rank at least 3 and is not $\mathrm{GF}(q)$-representable, so has a $U_{2, q^{2}+1^{-}}$-minor by Lemma 3.1.

Lemma 3.3. Let q be a prime power and $k \geq 1$ be an integer. If M is a matroid such that $r(M) \geq k+3$, M has an $\mathrm{AG}(r(M)-1, q)$-restriction and M has no $U_{2, q^{2}+1}$-minor, then $W_{k}(M) \leq\left[\begin{array}{c}r(M) \\ k\end{array}\right]_{q}$.
Proof. Let R be an $\mathrm{AG}(r(M)-1, q)$-restriction of M. We may assume that M is simple. We make two claims, considering two different types of rank- k flat.
3.3.1. If F is a flat of M with $F \cap E(R) \neq \varnothing$, then F has a basis contained in $E(R)$.

Proof of claim: For each $e \in E(R)$, the matroid M / e has rank at least 3 and has a $\operatorname{PG}(r(M)-2, q)$-restriction contained in $E(R)-\{e\}$, so it follows from Lemma 3.1 that, for every $e \in E(R)$, each nonloop of M / e is parallel in M / e to some element of $E(R)-\{e\}$. Therefore every $x \in E(M)$ is in some line of M containing e and another element y of $E(R)$. Thus, if F is a flat of M and $e \in F \cap E(R)$, then F has a basis contained in $E(R)$, as we can include e, and then can exchange each $x \in F-E(R)$ with its corresponding $y \in E(R)$.
3.3.2. If F is a rank-k flat of M such that $F \cap E(R)=\varnothing$, then F is a rank-k flat of $M / e \backslash(E(R)-\{e\})$ for all $e \in E(R)$.

Proof of claim: Let F be a rank- k flat of M that is disjoint from $E(R)$ and let $e \in E(R)$. Let $F^{\prime}=\operatorname{cl}_{M}(F \cup\{e\})$. By the first claim, F^{\prime} contains a rank- $(k+1)$ flat G of R; note that $R \mid G \cong \mathrm{AG}(k, q)$. If $F^{\prime}=F \cup G$ then the claim holds. Otherwise, $F^{\prime} \neq F \cup G$ and F^{\prime} is the disjoint union of a rank- $(k+1)$ affine geometry, a rank- k flat, and at least one other point, so $M \mid F^{\prime}$ is not $\operatorname{GF}(q)$-representable. Let $f \in E(R)-F^{\prime}$. The matroid M / f has rank at least 3 , has a $\operatorname{PG}(r(M / f)-1, q)$-restriction contained in $E(R)$ and has $M \mid F^{\prime}$ as a restriction, so Lemma 3.1 gives a contradiction.

Let $e \in E(R)$. By 3.3.1, the number of rank- k flats of M that intersect $E(R)$ is $W_{k}(R)$. By 3.3.2, the number of other rank- k flats of M is at most $W_{k}(M / e \backslash E(R))$. Now M / e has rank at least 3 and has a $\mathrm{PG}(r(M)-2, q)$-restriction, so we may assume by Lemma 3.1 that $\operatorname{si}(M / e) \cong \mathrm{PG}(r(M)-2, q)$ and so $M / e \backslash E(R)$ is $\mathrm{GF}(q)$-representable. Therefore

$$
\begin{aligned}
W_{k}(M) & \leq W_{k}(R)+W_{k}(M / e \backslash E(R)) \\
& \leq W_{k}(\operatorname{AG}(r(M)-1, q))+W_{k}(\operatorname{PG}(r(M)-2), q)
\end{aligned}
$$

This upper bound is clearly equal to $W_{k}(\operatorname{PG}(r(M)-1, q))=\left[\begin{array}{c}r \\ k\end{array}\right]_{q}$.

4. The Main Theorem

We now restate and prove Theorem 1.2.
Theorem 4.1. There is a function $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ so that, for all integers $\ell \geq 2$ and $k \geq 0$, if $M \in \mathcal{U}(\ell)$ satisfies $r(M) \geq g(\ell, k)$ then $W_{k}(M) \leq$ $\left[\begin{array}{c}r(M) \\ k\end{array}\right]_{q}$, where q is the largest prime power not exceeding ℓ.

Proof. Set $g(\ell, 0)=0$ for all ℓ; note that this trivially satisfies the conditions of the theorem. Let $\ell \geq 2$ and $k>0$ be integers, and q be the largest prime power such that $q \leq \ell$. If $\ell=2$ then M is binary and the bound is obvious; we may therefore assume that $\ell \geq q \geq 3$. Suppose recursively that $g(\ell, i)$ has been defined for each $i \in\{0, \ldots, k-1\}$. Let $r_{0}=\max \left(k+3, \max _{0 \leq i \leq k-1} g(\ell, i)\right)$. Note that $2 q^{-k} \leq \frac{2}{3}$; let b be a positive integer so that $k q^{k^{2}-b}+\left(2 q^{-k}\right)^{b+1} \leq \frac{1}{6} \ell^{-k(k+1)}$. Recall that the function f was defined in Theorem 2.2; set $g(\ell, k)$ to be an integer n such that $q^{-k^{2}} 2^{n}>\ell^{k f\left(\ell, r_{0}+b, q, q^{-k}\right)}$.

Suppose inductively that $g(\ell, k-1)$ satisfies the theorem statement. If $g(\ell, k)$ does not, then there exists $M_{0} \in \mathcal{U}(\ell)$ such that $r\left(M_{0}\right) \geq n$ and $W_{k}\left(M_{0}\right)>\left[\begin{array}{c}r\left(M_{0}\right) \\ k\end{array}\right]_{q}$. We will obtain a contradiction by finding a $U_{2, \ell+2}$-minor of M; since $q^{2}+1 \geq \ell+2$ it is also enough to find a $U_{2, q^{2}+1}$-minor.

Let M be minor-minimal such that M is a minor of M_{0} and $W_{k}(M)>$ $2^{r\left(M_{0}\right)-r(M)}\left[\begin{array}{c}r(M) \\ k\end{array}\right]_{q}$. Note that M is simple; let $r=r(M)$. We often use the fact that $W_{k}\left(M^{\prime}\right)<\left(2 q^{-k}\right)^{r-r\left(M^{\prime}\right)} W_{k}(M)$ for each proper minor M^{\prime} of M, which follows from minimality and (1) of Lemma 2.3.
4.1.1. M has an $\mathrm{AG}\left(r_{0}+b, q\right)$-restriction.

Proof of claim: Observe that
$W_{k}(M)>2^{r\left(M_{0}\right)-r}\left[\begin{array}{l}r \\ k\end{array}\right]_{q} \geq 2^{n-r} q^{k(r-k)}=q^{-k^{2}} 2^{n}\left(q^{k} / 2\right)^{r}>\ell^{k f\left(\ell, r_{0}+b, q, q^{-k}\right)}$,
so $r>f\left(\ell, r_{0}+b, q, q^{-k}\right)$. By choice of M and Lemmas 2.3 and 2.4 we have $W_{1}(M)^{k} \geq W_{k}(M)>\left[\begin{array}{l}r \\ k\end{array}\right]_{q} \geq q^{k(r-k)}$, so $W_{1}(M) \geq q^{-k} q^{r}$. The required restriction exists by Theorem 2.2, since $\operatorname{PG}\left(r_{0}+b, q^{\prime}\right)$ has a $U_{2, \ell+2}$-minor for all $q^{\prime}>q$.
4.1.2. Every cocircuit of M has rank at least $r-b$.

Proof of claim: Suppose not; let C be a cocircuit of M of rank less than $r-b$, let H be the hyperplane $E(M)-C$, and let B be a rank- $(r-b)$ set containing C. Note that $E(M)=H \cup B$.

Let $e \in C$; note that the matroid M / e has no loops and that $r((M / e) \mid(B-e))=r-(b+1) \geq r_{0}$. Let \mathcal{F}_{B} be the collection of
rank- k flats of M / e that intersect B. Each $F \in \mathcal{F}_{B}$ is the closure of the union of a rank- i flat of $(M / e) \mid(B-\{e\})$ and a rank- $(k-i)$ flat of $(M / e) \mid H$ for some $i \in\{1, \ldots, k\}$, so

$$
\begin{aligned}
\left|\mathcal{F}_{B}\right| & \leq \sum_{i=1}^{k-1} W_{i}((M / e) \mid(B-e)) W_{k-i}((M / e) \mid H)+W_{k}((M / e) \mid(B-e)) \\
& \leq \sum_{i=1}^{k-1}\left[\begin{array}{c}
r-b-1 \\
i
\end{array}\right]_{q}\left[\begin{array}{c}
r-1 \\
k-i
\end{array}\right]_{q}+\left(2 q^{-k}\right)^{b+1} W_{k}(M) \\
& \leq \sum_{i=1}^{k-1} q^{i(r-b-1)+(k-i)(r-1)}+\left(2 q^{-k}\right)^{b+1} W_{k}(M) \\
& \leq k q^{-b} q^{k(r-1)}+\left(2 q^{-k}\right)^{b+1} W_{k}(M) \\
& \leq k q^{k^{2}-b}\left[\begin{array}{c}
r \\
k
\end{array}\right]_{q}+\left(2 q^{-k}\right)^{b+1} W_{k}(M) \\
& <\left(k q^{k^{2}-b}+\left(2 q^{-k}\right)^{b+1}\right) W_{k}(M) \\
& \leq \frac{1}{6} \ell^{-k(k+1)} W_{k}(M)
\end{aligned}
$$

For each rank- k flat F_{0} of M / e that is not in \mathcal{F}_{B}, we have $F_{0} \subseteq H$ so $(M / e)\left|F_{0}=M\right| F_{0}$. The closure in M of $F=F_{0} \cup\{e\}$ contains no elements of $B-\{e\}$, so $F \in \mathcal{F}_{k+1}(M ; e)$ and $W_{k}^{e}(M \mid F)=1$. For each other $F \in \mathcal{F}_{k+1}$ we have $W_{k}^{e}(F)<\ell^{k(k+1)}$ by Lemma 2.4. Therefore

$$
\begin{aligned}
\sum_{F \in \mathcal{F}_{k+1}(M ; e)} W_{k}^{e}(M \mid F) & \leq \ell^{k(k+1)}\left|\mathcal{F}_{B}\right|+\left(W_{k}(M / e)-\left|\mathcal{F}_{B}\right|\right) \\
& <\ell^{k(k+1)}\left|\mathcal{F}_{B}\right|+2 q^{-k} W_{k}(M) \\
& \leq \ell^{k(k+1)}\left(\frac{1}{6} \ell^{-k(k+1)} W_{k}(M)\right)+\frac{2}{3} W_{k}(M) \\
& =\frac{5}{6} W_{k}(M) .
\end{aligned}
$$

Now, since $r(M / e) \geq r_{0}$, by what is above we have

$$
\begin{aligned}
W_{k}(M) & =W_{k-1}(M / e)+\sum_{F \in \mathcal{F}_{k+1}(M ; e)} W_{k}^{e}(M \mid F) \\
& <\left[\begin{array}{l}
r-1 \\
k-1
\end{array}\right]_{q}+\frac{5}{6} W_{k}(M) \\
& <q^{k-r}\left[\begin{array}{r}
r \\
k
\end{array}\right]_{q}+\frac{5}{6} W_{k}(M),
\end{aligned}
$$

a contradiction, as $\left[\begin{array}{l}r \\ k\end{array}\right]_{q}<W_{k}(M)$ and $q^{k-r} \leq q^{k-r_{0}} \leq q^{-3}<\frac{1}{6}$.

Let N be a minor-minimal minor of M such that
(1) N has an $\operatorname{AG}\left(r_{0}+b, q\right)$-restriction,
(2) every cocircuit of N has rank at least $r(N)-b$, and
(3) $W_{k}(N)>\left[\begin{array}{c}r(N) \\ k\end{array}\right]_{q}$.

Let R be an $\mathrm{AG}\left(r_{0}+b, q\right)$-restriction of N. Since $r_{0} \geq k+1$, we may assume by 4.1.1, 4.1.2 and Lemma 3.2 that every rank- $(k+1)$-restriction of N is $\mathrm{GF}(q)$-representable. Note that N has no loops.
4.1.3. $W_{k}(N / e)>\left[\begin{array}{c}r(N)-1 \\ k\end{array}\right]_{q}$ for all $e \in E(N)$.

Proof of claim: Since every rank- $(k+1)$ restriction of N is $\operatorname{GF}(q)-$ representable, the value of $W_{k}^{e}(N \mid F)$ for each rank- $(k+1)$ flat F does not exceed q^{k}, its value on $\mathrm{PG}(k, q)$. Therefore $\sum_{F \in \mathcal{F}_{k+1}(e)} W_{k}^{e}(N \mid F) \leq$ $q^{k}\left|\mathcal{F}_{k+1}(N ; e)\right|=q^{k} W_{k}(N / e)$, and so by (4) of Lemma 2.4 we get $W_{k}(N) \leq W_{k-1}(N / e)+q^{k} W_{k}(N / e)$. Now $r(N / e) \geq r_{0}$ so $W_{k-1}(N / e) \leq$ $\left[\begin{array}{c}r(N)-1 \\ k-1\end{array}\right]_{q}$ by the inductive hypothesis, and $W_{k}(N)>\left[\begin{array}{c}r(N) \\ k\end{array}\right]_{q}$, which implies that $W_{k}(N / e)>q^{-k}\left(\left[\begin{array}{c}r(N) \\ k\end{array}\right]_{q}-\left[\begin{array}{c}r(N)-1 \\ k-1\end{array}\right]_{q}\right)=\left[\begin{array}{c}r(N)-1 \\ k\end{array}\right]_{q}$.

Thus, properties (1) and (2) and (3) are all preserved by contracting elements of $E(N)-\mathrm{cl}_{N}(E(R))$, so it follows from minimality that R is spanning in N. We now obtain a contradiction from Lemma 3.3.

5. Acknowledgements

I thank Joe Bonin, Jim Geelen, Joseph Kung and the referees for their very useful feedback on the manuscript.

6. References

[1] J. Geelen, P. Nelson, The number of points in a matroid with no n-point line as a minor, J. Combin. Theory. Ser. B 100 (2010), 625-630.
[2] J. Geelen, P. Nelson, A density Hales-Jewett theorem for matroids, arXiv:1210.4522 [math.CO].
[3] J.P.S. Kung, Extremal matroid theory, in: Graph Structure Theory (Seattle WA, 1991), Contemporary Mathematics 147 (1993), American Mathematical Society, Providence RI, 21-61.
[4] J. G. Oxley, Matroid Theory, Second edition, Oxford University Press, New York, 2011.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

[^0]: This research was partially supported by a grant from the Office of Naval Research [N00014-12-1-0031].

