PROJECTIVE GEOMETRIES IN EXPONENTIALLY DENSE MATROIDS. II

PETER NELSON

ABSTRACT. We show for each positive integer a that, if \mathcal{M} is a minor-closed class of matroids not containing all rank-(a + 1) uniform matroids, then there exists an integer c such that either every rank-r matroid in \mathcal{M} can be covered by at most r^c rank-a sets, or \mathcal{M} contains the GF(q)-representable matroids for some prime power q, and every rank-r matroid in \mathcal{M} can be covered by at most cq^r rank-a sets. In the latter case, this determines the maximum density of matroids in \mathcal{M} up to a constant factor.

1. INTRODUCTION

If M is a matroid and a is a positive integer, then $\tau_a(M)$ denotes the *a*-covering number of M, the minimum number of sets of rank at most a in M required to cover E(M). We will prove the following theorem:

Theorem 1.1. Let $a \ge 1$ be an integer. If \mathcal{M} is a minor-closed class of matroids, then there is an integer c > 0 such that either

- (1) $\tau_a(M) \leq r(M)^c$ for all $M \in \mathcal{M}$,
- (2) there is a prime power q so that $\tau_a(M) \leq cq^{r(M)}$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all GF(q)-representable matroids, or
- (3) \mathcal{M} contains all rank-(a+1) uniform matroids.

This theorem also appears in [10], and a weaker version, where the upper bound in (2) is replaced by $r(M)^c q^{r(M)}$, was proved in [5]; our proof is built with this weaker result as a starting point. $\tau_1(M)$ is just the number of points in M, and the above theorem was shown in this case by Geelen and Kabell [2].

Theorem 1.1 resolves the 'polynomial-exponential' part of the following conjecture of Geelen [1]:

Conjecture 1.2 (Growth Rate Conjecture). Let $a \ge 1$ be an integer. If \mathcal{M} is a minor-closed class of matroids, then there is an integer c > 0 so that either

(1)
$$\tau_a(M) \leq cr(M)$$
 for all $M \in \mathcal{M}$,

- (2) $\tau_a(M) \leq cr(M)^2$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all graphic matroids or all bicircular matroids,
- (3) there is a prime power q so that $\tau_a(M) \leq cq^{r(M)}$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all GF(q)-representable matroids, or
- (4) \mathcal{M} contains all rank-(a+1) uniform matroids.

This conjecture was proved for a = 1 by Geelen, Kabell, Kung and Whittle [2,4,7] and is known as the 'Growth Rate Theorem'.

If (4) holds, then $\tau_a(M)$ is not bounded by any function of r(M) for all $M \in \mathcal{M}$, as a rank-(a + 1) uniform matroid (and consequently any matroid with such a minor) can require arbitrarily many rank-a sets to cover. Our bounds on τ_a are thus given with respect to some particular rank-(a + 1) uniform minor that is excluded. We prove Theorem 1.1 as a consequence of the two theorems below; the first is proved in [5], and the second is the main technical result of this paper.

Theorem 1.3. For all integers a, b, n with $n \ge 1$ and $1 \le a < b$, there is an integer m such that, if M is a matroid of rank at least 2 with no $U_{a+1,b}$ -minor and $\tau_a(M) \ge r(M)^m$, then M has a rank-n projective geometry minor.

Theorem 1.4. For all integers a, b, n, q with $n \ge 1$, $q \ge 2$ and $1 \le a < b$, there is an integer c such that, if M is a matroid with no $U_{a+1,b}$ -minor and $\tau_a(M) \ge cq^{r(M)}$, then M has a rank-n projective geometry minor over a finite field with more than q elements.

2. Preliminaries

We use the notation of Oxley [11]. A rank-1 flat is a *point*, and a rank-2 flat is a *line*. If M is a matroid, and $X, Y \subseteq E(M)$, then $\sqcap_M(X,Y)$ denotes the *local connectivity* between X and Y in M, defined by $\sqcap_M(X,Y) = r_M(X) + r_M(Y) - r_M(X \cup Y)$. If $\sqcap_M(X,Y) = 0$, then X and Y are *skew* in M. Additionally, we write $\epsilon(M)$ for $\tau_1(M)$, the number of points in a matroid M.

For integers a and b with $1 \leq a < b$, we write $\mathcal{U}(a, b)$ for the class of matroids with no $U_{a+1,b}$ -minor. The first tool in our proof is a theorem of Geelen and Kabell [3] which shows that τ_a is bounded as a function of rank across $\mathcal{U}(a, b)$.

Theorem 2.1. Let a and b be integers with $1 \le a < b$. If $M \in \mathcal{U}(a, b)$ satisfies r(M) > a, then $\tau_a(M) \le {\binom{b-1}{a}}^{r(M)-a}$.

Proof. We first prove the result when r(M) = a + 1, then proceed by induction. If r(M) = a + 1, then observe that $M|B \cong U_{a+1,a+1}$ for any basis B of M; let $X \subseteq E(M)$ be maximal such that $M|X \cong$

 $\mathbf{2}$

 $U_{a+1,|X|}$. We may assume that |X| < b, and by maximality of X, every $e \in E(M) - X$ is spanned by a rank-*a* set of X. Therefore, $\tau_a(M) \leq \binom{|X|}{a} \leq \binom{b-1}{a}$. Suppose that r(M) > a + 1, and inductively assume that the result

Suppose that r(M) > a + 1, and inductively assume that the result holds for matroids of smaller rank. Let $e \in E(M)$. We have $\tau_{a+1}(M) \leq \tau_a(M/e) \leq {\binom{b-1}{a}}^{r(M)-a-1}$ by induction, and by the base case each rank-(a+1) set in M admits a cover with at most ${\binom{b-1}{a}}$ sets of rank at most a. Therefore $\tau_a(M) \leq {\binom{b-1}{a}} \tau_{a+1}(M) \leq {\binom{b-1}{a}}^{r(M)-a}$, as required. \Box

The base case of this theorem gives $\tau_a(M) \leq {\binom{b-1}{a}}\tau_a(M/e)$ for all $M \in \mathcal{U}(a, b)$ and $e \in E(M)$; an inductive argument yields the following:

Corollary 2.2. Let a and b be integers with $1 \le a < b$. If $M \in \mathcal{U}(a, b)$ and $C \subseteq E(M)$, then $\tau_a(M/C) \ge {\binom{b-1}{a}}^{-r_M(C)} \tau_a(M)$.

Our starting point in our proof is the main technical result of [5]. Note that this theorem gives Theorem 1.3 when q = 1.

Theorem 2.3. There is an integer-valued function $f_{2,3}(a, b, n, q)$ so that, for any integers $1 \le a < b$, $q \ge 1$ and $n \ge 1$, if $M \in \mathcal{U}(a, b)$ satisfies r(M) > 1 and $\tau_a(M) \ge r(M)^{f_{2,3}(a,b,n,q)}q^{r(M)}$, then M has a PG(n-1,q')-minor for some prime power q' > q.

3. Stacks

We now define an obstruction to GF(q)-representability. If q is a prime power and h and t are nonnegative integers, then a matroid Sis a (q, h, t)-stack if there are pairwise disjoint subsets F_1, F_2, \ldots, F_h of E(S) such that the union of the F_i is spanning in S, and for each $i \in \{1, \ldots, h\}$ the matroid $(S/(F_1 \cup \ldots \cup F_{i-1}))|F_i$ has rank at most tand is not GF(q)-representable. We write $F_i(S)$ for F_i , and when the value of t is unimportant, we refer simply to a (q, h)-stack.

Note that a stack has rank between 2h and th, and that contracting or restricting to the sets in some initial segment of F_1, \ldots, F_h yields a smaller stack; we use these facts freely.

We now show that the structure of a stack cannot be completely destroyed by a small projection. The following two lemmas are similar; the first does not control rank, and the second does.

Lemma 3.1. Let q be a prime power, and $k \ge 0$ be an integer. If M is a matroid, $C \subseteq E(M)$, and M has a $(k(r_M(C) + 1), q)$ -stack restriction, then (M/C)|E(S) has a (k, q)-stack restriction.

Proof. Let S be a $(k(r_M(C) + 1), q)$ -stack in M, with $F_i = F_i(S)$ for each i. By adding parallel extensions if needed, we may assume that $C \cap E(S) = \emptyset$. If $r_M(C) = 0$ then the result is trivial; suppose that $r_M(C) > 0$ and that the lemma holds for sets C of smaller rank. Let $F = F_1 \cup \ldots \cup F_k$. If C is skew to F in M, then (M/C)|F is a (k,q)-stack, giving the lemma. Otherwise M/F has a $(kr_M(C),q)$ -stack restriction, and $r_M(C) > r_{M/F}(C)$. By the inductive hypothesis, $M/(F \cup C)$ has a (k,q)-stack restriction S'; therefore $F \cup F_1(S'), F_2(S'), \ldots, F_k(S')$ give a (k,q)-stack restriction of M/C.

Lemma 3.2. Let q be a prime power, and a, h and t be integers with $a \ge 0, h \ge 1$ and $t \ge 2$. If M is a matroid with an ((a+1)h, q, t)-stack restriction S, and $X \subseteq E(M)$ is a set satisfying $\sqcap_M(X, E(S)) \le a$, then there exists $C \subseteq E(S)$ so that (M/C)|E(S) has an (h, q, t)-stack restriction S', and X and E(S') are skew in M/C.

Proof. Let $F = F_1(S) \cup \ldots \cup F_h(S)$. If F is skew to X in M, then F contains an (h, q, t)-stack S' satisfying the lemma with $C = \emptyset$. Otherwise, M/F has an (ah, q, t)-stack restriction S_0 contained in E(S), and $\prod_{M/F} (X - F, E(S_0)) < \prod_M (X - F, E(S)) \le a$; the lemma follows routinely by induction on a.

This low local connectivity is obtained via the following lemma, which applies more generally. We will just use the case when M|Y is a stack.

Lemma 3.3. If $M \in \mathcal{U}(a,b)$ and $Y \subseteq E(M)$, then there is a set $X \subseteq E(M)$ so that $\tau_a(M|X) \ge {\binom{b-1}{a}}^{a-r_M(Y)}\tau_a(M)$ and $\sqcap_M(X,Y) \le a$. *Proof.* We may assume that $r_M(Y) > a$. Let B be a basis for M containing a basis B_Y for M|Y. We have $r(M/(B - B_Y)) = r_M(Y)$, so $\tau_a(M/(B - B_Y)) \le {\binom{b-1}{a}}^{r_M(Y)-a}$ by Theorem 2.1. Applying a majority argument to a smallest cover of $M/(B - B_Y)$ with sets of rank at most a gives a set $X' \subseteq E(M)$ so that $r_{M/(B-B_Y)}(X) \le a$, and $\tau_a(M|X) \ge {\binom{b-1}{a}}^{a-r_M(Y)}\tau_a(M)$. Moreover, $B - B_Y$ is skew to Y in M, so $\sqcap_M(X,Y) \le \sqcap_{M/(B-B_Y)}(X,Y) \le a$.

4. THICKNESS AND WEIGHTED COVERS

The next section requires a modified notion of covering number in which elements of a cover are weighted by rank. All results in the current section are also proved in [5].

A cover of a matroid M is a collection of sets with union E(M), and for an integer $d \geq 1$, we say the *d*-weight of a cover \mathcal{F} of M is

the sum $\sum_{F \in \mathcal{F}} d^{r_M(F)}$, and write $\operatorname{wt}^d_M(\mathcal{F})$ for this sum. Thus, a rank-1 set has weight d, a rank-2 set has rank d^2 , etc. We write $\tau^d(M)$ for the minimum d-weight of a cover of M, and we say a cover of M is d-minimal if it has d-weight equal to $\tau^d(M)$.

Since $r_M(X) \leq r_{M/e}(X - \{e\}) + 1$ for all $X \subseteq E(M)$, we have $\tau^d(M) \leq d\tau^d(M/e)$ for every nonloop e of M; a simple induction argument gives the following lemma:

Lemma 4.1. If d is a positive integer and M is a matroid, then $\tau^d(M/C) \ge d^{-r_M(C)}\tau^d(M)$ for all $C \subseteq E(M)$.

We say a matroid M is d-thick if $\tau_{r(M)-1}(M) \ge d$, and a set $X \subseteq E(M)$ is d-thick in M if M|X is d-thick. Note that any d-thick matroid of rank 2 has a $U_{2,d}$ -restriction. Moreover, it is clear that $\tau_{r(M)-1}(M) \le \tau_{r(M)-2}(M/e)$ for any nonloop e of M, so it follows that d-thickness is preserved by contraction. Thus, any d-thick matroid of rank at least 2 has a $U_{2,d}$ -minor, and the rank-(a + 1) case of Theorem 2.1 yields the following:

Lemma 4.2. Let a, b, d be integers with $1 \le a < b$ and $d > {\binom{b-1}{a}}$. If M is a d-thick matroid of rank greater than a, then M has a $U_{a+1,b}$ -minor.

This controls the nature of a d-minimal cover of M in several ways:

Lemma 4.3. Let a, b, d be integers with $1 \le a < b$ and $d > {\binom{b-1}{a}}$. If \mathcal{F} is a d-minimal cover of a matroid $M \in \mathcal{U}(a, b)$, then

- (1) every $F \in \mathcal{F}$ is d-thick in M,
- (2) every $F \in \mathcal{F}$ has rank at most a, and
- (3) $\tau_a(M) \le \tau^d(M) \le d^a \tau_a(M).$

Proof. If some set $F \in \mathcal{F}$ is not *d*-thick, then *F* is the union of sets F_1, \ldots, F_{d-1} of smaller rank. Thus, $(\mathcal{F} - \{F\}) \cup \{F_1, \ldots, F_{d-1}\}$ is a cover of *M* of weight at most $\operatorname{wt}_M^d(\mathcal{F}) - d^{r_M(F)} + (d-1)d^{r_M(F)-1} < \operatorname{wt}_d^M(\mathcal{F})$, contradicting *d*-minimality of \mathcal{F} . Therefore, every set in *F* is *d*-thick in *M*, giving (1). (2) now follows from Lemma 4.2.

To see the upper bound in (3), observe that any smallest cover of M with sets of rank at most a has size $\tau_a(M)$ and d-weight at most $d^a \tau_a(M)$. The lower bound follows from the fact that every set has d-weight at least 1, and \mathcal{F} , by (2), is a d-minimal cover of M containing sets of rank at most a.

5. Stacking Up

Our first lemma finds, in a dense matroid, a dense minor with a large stack restriction. We consider the modified notion of density τ^d .

Lemma 5.1. There is an integer-valued function $\alpha_{5.1}(a, b, h, q, \lambda)$ so that, for any prime power q and integers a, b, h, λ with $1 \le a < b, m \ge 0$, and $\lambda \ge 1$, if $d > \max(q+1, {\binom{b-1}{a}})$ is an integer and $M \in \mathcal{U}(a, b)$ satisfies $\tau^d(M) \ge \alpha_{5.1}(a, b, h, q, \lambda)q^{r(M)}$, then M has a contraction-minor N with an (h, q, a + 1)-stack restriction, satisfying $\tau^d(N) \ge \lambda q^{r(N)}$.

Proof. Let a, b, q and d be integers such that $1 \leq a < b, q \geq 2$ and $d > \max(q+1, {\binom{b-1}{a}})$. Set $\alpha_{5,1}(a, b, 0, q, \lambda) = \lambda$, and for each h > 0 recursively set $\alpha_{5,1}(a, b, h, q, \lambda) = d^{a+1}\alpha_{5,1}(a, b, m-1, q, \lambda q^{a+1})$. Note that all values this function takes for h > 0 are multiples of d.

When h = 0, the lemma holds with N = M. Let h > 0 be an integer, and suppose inductively that $\alpha_{5.1}$ as defined satisfies the lemma for smaller values of h. Let $M \in \mathcal{U}(a, b)$ be contraction-minimal satisfying $\tau^d(M) \ge \alpha q^{r(M)}$; we show that M has the required minor N.

5.1.1. There is a set $X \subseteq E(M)$ such that $r_M(X) \leq a+1$ and M|X is not GF(q)-representable.

Proof of claim: Let e be a nonloop of M and let \mathcal{F} and \mathcal{F}' be d-minimal covers of M and M/e respectively. We consider two cases:

Case 1: $r_M(F) = 1$ for all $F \in \mathcal{F}$ and $r_{M/e}(F) = 1$ for all $F \in \mathcal{F}'$.

Note that $\tau^{d}(M) = d|\mathcal{F}|$ and $\tau^{d}(M/e) = d|\mathcal{F}'|$. By minimality of M, this gives $|\mathcal{F}| \geq d^{-1}\alpha q^{r(M)}$ and $|\mathcal{F}'| < d^{-1}\alpha q^{r(M)-1}$, so $|\mathcal{F}'| \leq d^{-1}\alpha q^{r(M)-1} - 1$, as this expression is an integer. Moreover, $|\mathcal{F}| = \epsilon(M)$ and $|\mathcal{F}'| = \epsilon(M/e)$, so $\epsilon(M) \geq d^{-1}\alpha q^{r(M)} \geq q\epsilon(M/e) + q > q\epsilon(M/e) + 1$. Since the points of M/e correspond to lines of M through e, it follows by a majority argument that some line L through e contains at least q + 1 other points of M, and therefore that X = L will satisfy the lemma.

Case 2: $r_N(F) \ge 2$ for some $F \in \mathcal{F}$ or $r_{M/e}(F) \ge 2$ for some $F \in \mathcal{F}'$. If $X \in \mathcal{F}$ satisfies $r_M(X) \ge 2$, then by Lemma 4.3, X is d-thick in M and has rank at most a. Since $d \ge q + 2$ and thickness is preserved by contraction, the matroid M|X has a $U_{2,q+2}$ -minor and therefore X satisfies the claim. If $X \in \mathcal{F}'$ satisfies $r_{M/e}(X) \ge 2$, then $r_M(X \cup \{e\}) \le a + 1$ and $X \cup \{e\}$ will satisfy the claim for similar reasons.

Now $\tau^d(M/X) \geq d^{-(a+1)}\tau^d(M) \geq d^{-(a+1)}\alpha q^{r(M/X)} \geq \alpha_{5.1}(a, b, h - 1, q, \lambda q^{a+1})q^{r(M/X)}$, so M/X has a contraction-minor $M/(X \cup C)$ with an (h-1, q, a+1)-stack restriction S', satisfying $\tau^d(M') \geq \lambda q^{a+1}q^{r(M')}$. We may assume that C is independent in M/X; let N = M/C. We have N|X = M|X and N/X has an (h-1, q, a+1)-stack restriction, so N has an (h, q, a+1)-stack restriction. Morever $\tau^d(N) \geq \tau^d(N/X) \geq$

 $\lambda q^{a+1}q^{r(N/X)} = \lambda q^{a+1-r_N(X)}q^{r(N)}$. Since $r_N(X) \leq a+1$, the matroid N is the required minor.

6. Exploiting a Stack

We defined a stack as an example of a matroid that is 'far' from being GF(q)-representable. In this section we make this concrete by proving that a stack on top of a projective geometry yields a large uniform minor or a large projective geometry over a larger field.

We first need an easily proved lemma from [6], telling us that a small projection of a projective geometry does not contain a large stack:

Lemma 6.1. Let q be a prime power and h be a nonnegative integer. If M is a matroid and $X \subseteq E(M)$ satisfies $r_M(X) \leq h$ and $\operatorname{si}(M \setminus X) \cong \operatorname{PG}(r(M) - 1, q)$, then M/X has no (q, h + 1)-stack restriction.

Next we show that a large stack on top of a projective geometry guarantees (in a minor) a large flat with limited connectivity to sets in the geometry:

Lemma 6.2. Let q be a prime power and $k \ge 0$ be an integer. If M is a matroid with a PG(r(M) - 1, q)-restriction R and a (k^4, q) -stack restriction, then there is a minor M' of M of rank at least r(M) - k, with a PG(r(M') - 1, q)-restriction R' and a rank-k flat K such that $\prod_{M'}(X, K) \le \frac{1}{2}r_{M'}(X)$ for all $X \subseteq E(R')$.

Proof. Let $J \subseteq E(M)$ be maximal so that $\sqcap_M(X, J) \leq \frac{1}{2}r_M(X)$ for all $X \subseteq E(R)$. Note that $J \cap E(R) = \emptyset$. We may assume that $r_M(J) < k$, as otherwise J = K and M' = M will do. Let M' = M/J.

6.2.1. For each nonloop e of M', there is a set $Z_e \subseteq E(R)$ such that $r_{M'}(Z_e) \leq k$ and $e \in cl_{M'}(Z_e)$.

Proof of claim: Let e be a nonloop of M'. By maximality of J there is some $X \subseteq E(R)$ such that $\sqcap_M(X, J \cup \{e\}) > \frac{1}{2}r_M(X)$. Let $c = \sqcap_M(X, J \cup \{e\})$, noting that $\frac{1}{2}r_M(X) < c \leq r_M(J \cup \{e\}) \leq k$. We also have $\frac{1}{2}r_M(X) \geq \sqcap_M(X, J) \geq c - 1$, so $\sqcap_M(X, J) = c - 1$, giving $e \in \operatorname{cl}_M(X)$. Now $r_M(X) \leq 2c - 1$ and $r_{M/J}(X) = r_M(X) - \sqcap_M(X, J) \leq (2c - 1) - (c - 1) = c \leq k$. Therefore $Z_e = X$ satisfies the claim. \square

If e is not parallel in M' to a nonloop of R, then $M'|(e \cup Z_e)$ is not GF(q)-representable, as it is a simple cosimple extension of a projective geometry; this fact still holds in any contraction-minor for which e is a nonloop satisfying this condition. Let $j \in \{0, \ldots, k\}$ be maximal such that M' has a (q, j, k)-stack restriction T with the property that, for

each $i \in \{1, \ldots, j\}$, the matroid $T/(F_1(T) \cup \ldots \cup F_{i-1}(T))|F_i(T)$ has a basis contained in E(R). For each i, let $F_i = F_i(T)$, and $B_i \subseteq E(R)$ be such a basis. We split into cases depending on whether $j \geq k$.

Case 1: j < k.

Let $M'' = M'/E(T) = M/(E(T) \cup J)$. If M'' has a nonloop x that is not parallel in M'/E(T) to an element of E(R), then the restriction $M''|(x \cup (Z_x - E(T)))$ has rank at most k, is not GF(q)-representable, and has a basis contained in $Z_x \subseteq E(R)$; this contradicts the maximality of j. Therefore we may assume that every nonloop of M'' is parallel to an element of R, so $\operatorname{si}(M'') \cong \operatorname{si}(M|(E(R) \cup E(T) \cup J)/(E(T) \cup J))$. We have $r_M(E(T) \cup J) \leq jk + k - 1 < k^2$, so by Lemma 6.1 the matroid M'' has no (k^2, q) -stack restriction. However, S is a (k^4, q) -stack restriction of M and $k^4 \geq k^2(r_M(E(T) \cup J) + 1)$, so M'' has a (k^2, q) -stack restriction by Lemma 3.1. This is a contradiction.

Case 2: j = k.

For each $i \in \{0, \ldots, k\}$, let $M_i = M'/(F_1 \cup \ldots \cup F_i)$ and $R_i = R|\operatorname{cl}_R(B_{i+1} \cup \ldots \cup B_k)$. Note that R_i is a $\operatorname{PG}(r(M_i) - 1, q)$ -restriction of M_i . We make a technical claim:

6.2.2. For each $i \in \{0, \ldots, k\}$, there is a rank-(k - i) independent set K_i of M_i so that $\sqcap_{M_i}(X, K_i) \leq \frac{1}{2}r_{M_i}(X)$ for all $X \subseteq E(R_0) \cap E(M_i)$.

Proof. When i = k, there is nothing to prove. Suppose inductively that $i \in \{0, \ldots, k-1\}$ and that the claim holds for larger i. Let K_{i+1} be a rank-(k - i - 1) independent set in M_{i+1} so that $\sqcap_{M_{i+1}}(X, K_{i+1}) \leq \frac{1}{2}r_{M_i}(X)$ for all $X \subseteq E(R_0) \cap E(M_{i+1})$. The restriction $M_i|F_{i+1}$ is not GF(q)-representable; let e be a nonloop of $M_i|F_{i+1}$ that is not parallel in M_i to a nonloop of R_i . Set $K_i = K_{i+1} \cup \{e\}$, noting that K_i is independent in M_i . Let $X \subseteq E(R_0) \cap E(M_i)$; since $M_{i+1} = M_i/F_{i+1}$ we have

$$\sqcap_{M_i}(X, K_i) = \sqcap_{M_{i+1}}(X - F_{i+1}, K_i) + \sqcap_{M_i}(K_i, F_{i+1}) + \sqcap_{M_i}(X, F_{i+1})$$

$$- \sqcap_{M_i}(X \cup K_i, F_{i+1}).$$

Now *e* is a loop and $K_i - \{e\}$ is independent in M_{i+1} , so $\sqcap_{M_i}(K_i, F_{i+1}) = 1$, and $\sqcap_{M_{i+1}}(X - F_{i+1}, K_i) = \sqcap_{M_{i+1}}(X - F_{i+1}, K_{i+1}) \leq \frac{1}{2}r_{M_{i+1}}(X) = \frac{1}{2}(r_{M_i}(X) - \sqcap_{M_i}(X, F_{i+1}))$. This gives

$$\sqcap_{M_i}(X, K_i) \le \frac{1}{2} r_{M_i}(X) + 1 + \frac{1}{2} \sqcap_{M_i} (X, F_{i+1}) - \sqcap_{M_i}(X \cup K_i, F_{i+1}).$$

It therefore suffices to show that $\sqcap_{M_i}(X \cup K_i, F_{i+1}) \ge 1 + \frac{1}{2} \sqcap_{M_i}(X, F_{i+1})$. Note that $e \in K_i \cap F_{i+1}$, so $\sqcap_{M_i}(X \cup K_i, F_{i+1}) \ge \max(1, \sqcap_{M_i}(X, F_{i+1}))$. Given this, it is easy to see that the inequality can only be violated if $\sqcap_{M_i}(X \cup K_i, F_{i+1}) = \sqcap_{M_i}(X, F_{i+1}) = 1$. If this is the case, then $\sqcap_{M_i}(X, B_{i+1}) = 1$ and so there is some $f \in E(R_{i+1})$ spanned by X and

 B_{i+1} , since both are subsets of the projective geometry R_{i+1} . But e and f are not parallel by choice of e, so $\sqcap_{M_i}(X \cup K_i, F_{i+1}) \ge r_{M_i}(\{e, f\}) = 2$, a contradiction. \square

Since $r(M_0) = r(M') > r(M) - k$, taking i = 0 in the claim now gives the lemma.

Finally, we use the flat found in the previous lemma and Theorem 2.3 to find a large projective geometry minor over a larger field.

Lemma 6.3. There is an integer-valued function $f_{6.3}(a, b, n, q, t)$ so that, for any prime power q and integers n, a, b with $n \ge 1$ and $1 \le a < b$, if $M \in \mathcal{U}(a, b)$ has a $\operatorname{PG}(r(M) - 1, q)$ -restriction and an $(f_{6.3}(a, b, n, q, t), q, t)$ -stack restriction, then M has a $\operatorname{PG}(n - 1, q')$ -minor for some q' > q.

Proof. Let q be a prime power, and t, n, a, b be integers so that $t \ge 0$, $n \ge 1$, and $1 \le a < b$. Let $k \ge 2a$ be an integer so that $q^{t^{-1}r^{1/4}-2a} \ge r^{f_{2.3}(a,b,n,q)}$ for all integers $r \ge k$. Set $f_{6.3}(a,b,n,q,t) = k^4$.

Let M be a matroid with a $\operatorname{PG}(r(M) - 1, q)$ -restriction R and a (k^4, q, t) -stack restriction S. We will show that M has a $\operatorname{PG}(n - 1, q')$ minor for some q' > q; we may assume (by contracting points of R not spanned by S if necessary) that r(M) = r(S). By Lemma 6.2, there is a minor M' of M, of rank at least r(M) - k, with a $\operatorname{PG}(r(M') - 1, q)$ restriction R' and a rank-k flat K such that $\sqcap_{M'}(K, X) \leq \frac{1}{2}r_{M'}(X)$ for all $X \subseteq E(R')$. Let r = r(M'), $M_0 = M'/K$ and $r_0 = r(M_0)$. Since $k^4 + 2k \leq 2k^4 \leq r(M) \leq tk^4$ and $r_0 = r - k \geq r(M) - 2k$, we have

$$r \ge \frac{tk^4}{tk^4 - k} r_0 > \left(1 + \frac{1}{tk^3}\right) r_0 \ge r_0 + t^{-1} (r_0)^{1/4}$$

By choice of k, every rank-a set in M_0 has rank at most 2a in M', so $\tau_a(M_0) \geq \tau_{2a}(M')$. Moreover, a counting argument gives $\tau_{2a}(M') \geq \tau_{2a}(R') \geq \frac{q^r-1}{q^{2a}-1} > q^{r-2a}$, since $r > k \geq 2a$. Therefore

$$\tau_a(M_0) \ge \tau_{2a}(M') \ge q^{r_0 + t^{-1}(r_0)^{1/4} - 2a} \ge (r_0)^{f_{2,3}(a,b,n,q)} q^{r_0},$$

and the result follows from Theorem 2.3.

7. Connectivity

A matroid M is weakly round if there do not exist sets A and B with union E(M), so that $r_M(A) \leq r(M) - 2$ and $r_M(B) \leq r(M) - 1$. This is a variation on roundness, a notion equivalent to infinite vertical connectivity introduced by Kung [9] under the name of non-splitting. Note that weak roundness is preserved by contractions.

It would suffice in this paper to consider roundness in place of weak roundness, but we use weak roundness in order that a partial result, Lemma 8.1, is slightly stronger; this may be useful in future work.

Lemma 7.1. Let $a \ge 1$ and $q \ge 2$ be integers, and $\alpha \ge 0$ be a real number. If M is a matroid with $\tau_a(M) \ge \alpha q^{r(M)}$, then M has a weakly round restriction N such that $\tau_a(N) \ge \alpha q^{r(N)}$.

Proof. If $r(M) \leq 2$, then M is weakly round, and N = M will do; assume that r(M) > 2, and M is not weakly round. There are sets $A, B \subseteq E(M)$ such that r(M|A) < r(M), r(M|B) < r(M) and $A \cup B =$ E(M). Now, $\tau_a(M|A) + \tau_a(M|B) \geq \tau_a(M) \geq \alpha q^{r(M)}$, so one of M|Aor M|B satisfies $\tau_a \geq \frac{1}{2}\alpha q^{r(M)} \geq \alpha q^{r(M)-1}$. The lemma follows by induction. \Box

The way we exploit weak roundness of M is to contract one restriction of M into another restriction of larger rank:

Lemma 7.2. Let M be a weakly round matroid, and $X, Y \subseteq E(M)$ be sets with $r_M(X) < r_M(Y)$. There is a minor N of M so that N|X = M|X, N|Y = M|Y, and Y is spanning in N.

Proof. Let $C \subseteq E(M) - X \cup Y$ be maximal such that (M/C)|X = M|Xand (M/C)|Y = M|Y. The matroid M/C is weakly round, and by maximality of C we have $E(M/C) = \operatorname{cl}_{M/C}(X) \cup \operatorname{cl}_{M/C}(Y)$. If $r_{M/C}(Y) < r(M/C)$, then since $r_{M/C}(X) \leq r_{M/C}(Y) - 1$, the sets $\operatorname{cl}_{M/C}(X)$ and $\operatorname{cl}_{M/C}(Y)$ give a contradiction to weak roundness of M/C. Therefore Y is spanning in M/C and N = M/C satisfies the lemma. \Box

8. The Main Result

We are almost ready to prove Theorem 1.1; we first prove a more technical statement from which it will follow.

Lemma 8.1. There is an integer-valued function $f_{8,1}(a, b, n, q, t)$ so that, for any prime power q and integers a, b, n, t with $1 \le a < b$ and $t \ge 0$, if $M \in \mathcal{U}(a, b)$ is weakly round and has a $(f_{8,1}(a, b, n, q, t), q, t)$ -stack restriction and a $\operatorname{PG}(f_{8,1}(a, b, n, q, t) - 1, q)$ -minor, then M has a $\operatorname{PG}(n-1, q')$ -minor for some q' > q.

Proof. Let q be a prime power and a, b, n, t be integers with $1 \le a < b$ and $t \ge 0$. Let $d = \binom{b-1}{a}$. Let $h' = \max(a, n, f_{6.3}(a, b, n, q, t))$, and h = (a+1)h'. Let $m \ge 4th$ be an integer so that $d^{-2ht}q^{r-ht-a} \ge r^{f_{2.3}(a,b,h't+1,q-1)}(q-1)^r$ for all $r \ge m/2$. Set $f_{8.1}(a, b, n, q, t) = m$.

Let M be a weakly round matroid with a $\operatorname{PG}(m-1,q)$ -minor $N = M/C \setminus D$ and a (m,q,t)-stack restriction S. Note that S contains an (h,q,t)-stack restriction S'; let M' be a matroid formed from M by contracting a maximal subset of C that is skew to E(S'); clearly M' has N as a minor and $r(M') \leq r(N) + r(S') \leq r(N) + ht$. We have $\tau_a(M') \geq \tau_a(N) \geq \frac{q^{r(N)}-1}{q^a-1} > q^{r(M')-ht-a}$ and $r(S') \leq ht$; by Lemma 3.3 there is a set $X \subseteq E(M')$ such that $\tau_a(M'|X) \geq d^{a-ht}q^{r(M')-ht-a}$ and $\sqcap_{M'}(X, E(S')) \leq a$. By adding elements skew to E(S') to X if necessary, we may assume that $r_{M'}(X) \geq r(M') - r(S') \geq m - ht$.

By Lemma 3.2, there is a set $C' \subseteq E(S')$ such that (M'/C')|E(S') has an (h', q, t)-stack restriction S'', and E(S'') is skew to X in M'/C'. By Corollary 2.2, we have

$$\tau_a((M'/C)|X) \ge d^{a-ht-r_{M'}(C')}q^{r(M')-ht-a} \ge d^{-2ht}q^{r((M'/C)|X)-ht-a},$$

and since $r_{M'/C'}(X) \geq r_{M'}(X) - ht \geq m - 2ht \geq m/2$, it follows from Theorem 2.3 that the matroid (M'/C')|X has a $\operatorname{PG}(h't,q^*)$ -minor $N' = (M'/(C' \cup C''))|Y$ for some $q^* > q - 1$. If $q^* > q$, then we are done, since $h't \geq n - 1$. If $q^* = q$, then $M'/(C' \cup C'')$ is weakly round with a $\operatorname{PG}(h't,q)$ -restriction R' and an (h',q,t)-stack restriction S''. By Lemma 7.2 and the fact that r(S'') < r(R'), we can find a minor in which S'' is a restriction and R' is spanning, and the conclusion follows from the definition of h' and Lemma 6.3.

We now restate and prove Theorem 1.4, which follows routinely.

Theorem 8.2. There is an integer-valued function $\alpha_{8,2}(a, b, n, q)$ so that, for any integers a, b, n and q with $n \ge 1$, $q \ge 2$ and $1 \le a < b$, if $M \in \mathcal{U}(a, b)$ satisfies $\tau_a(M) \ge \alpha_{8,2}(a, b, n, q)q^{r(M)}$, then M has a PG(n-1, q')-minor for some q' > q.

Proof. Let a, b, n and q be integers with $n \ge 1$, $q \ge 2$ and $1 \le a < b$. Let $d = \max(q, {\binom{b-1}{a}}) + 2$. Let q^* be the smallest prime power so that $q^* \ge q$. Let $h = \max(n, f_{8,1}(a, b, n, q^*, a + 1))$. Let $\lambda > 0$ be an integer such that $\lambda d^{-a}q^r \ge r^{f_{2,3}(a,b,h,q-1)}(q-1)^r$ for all integers $r \ge 1$. Set $\alpha_{8,2}(a, b, n, q) = \alpha = \max(\lambda, f_{5,1}(a, b, h, q, \lambda))$.

Let $M \in \mathcal{U}(a, b)$ satisfy $\tau_a(M) \geq \alpha q^{r(M)}$. By Theorem 2.3, and the fact that $\alpha > \lambda$, M has a $\mathrm{PG}(h - 1, q')$ -minor for some q' > q - 1; if $q' \neq q$ then we are done because $h \geq n$, so we can assume that $q = q^* = q'$. By Lemma 7.1, M has a weakly round restriction M'with $\tau_a(M') \geq \alpha q^{r(M')}$. By Lemma 5.1, M' has a contraction-minor Nwith an (h, q, a + 1)-stack restriction, satisfying $\tau^d(N) \geq \lambda q^{r(N)}$. We have $\tau_a(N) \geq d^{-a} \tau^d(N) \geq d^{-a} \lambda q^{r(N)}$, so by definition of λ the matroid N has a $\mathrm{PG}(h - 1, q')$ -minor for some q'' > q - 1. As before, we may assume that q'' = q. Since N is weakly round, the theorem now follows by applying Lemma 8.1 to N.

Theorem 1.1 is now a fairly simple consequence.

Theorem 8.3. If $a \ge 1$ is an integer, and \mathcal{M} is a minor-closed class of matroids, then there is an integer c so that either:

- (1) $\tau_a(M) \leq r(M)^c$ for all $M \in \mathcal{M}$, or
- (2) There is a prime power q so that $\tau_a(M) \leq cq^{r(M)}$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all GF(q)-representable matroids, or
- (3) \mathcal{M} contains all rank-(a + 1) uniform matroids.

Proof. We may assume that (3) does not hold; let b > a be an integer such that $\mathcal{M} \subseteq \mathcal{U}(a, b)$. As $U_{a+1,b}$ is a simple matroid that is $\mathrm{GF}(q)$ representable whenever $q \ge b$ (see [8]), we have $\mathrm{PG}(a, q') \notin \mathcal{M}$ for all $q' \ge b$.

If, for some integer n > a, we have $\tau_a(M) < r(M)^{f_{1.3}(a,b,n)}$ for all $M \in \mathcal{M}$ of rank at least 2, then (1) holds. We may therefore assume that, for all n > a, there exists a matroid $M_n \in \mathcal{M}$ such that $r(M_n) \ge 2$ and $\tau_a(M_n) \ge r(M_n)^{f_{1.3}(a,b,n)}$.

By Theorem 1.3, it follows that for all n > a there exists a prime power q'_n such that $PG(n-1, q'_n) \in \mathcal{M}$. We have $q'_n < b$ for all n, so there are finitely many possible q'_n , and so there is a prime power $q_0 < b$ such that $PG(n-1, q_0) \in \mathcal{M}$ for infinitely many n, implying that \mathcal{M} contains all $GF(q_0)$ -representable matroids.

Let q be maximal such that \mathcal{M} contains all $\operatorname{GF}(q)$ -representable matroids. Since $\operatorname{PG}(a,q') \notin \mathcal{M}$ for all $q' \geq b$, the value q is welldefined, and moreover there is some n such that $\operatorname{PG}(n-1,q') \notin \mathcal{M}$ for all q' > q. Theorem 1.4 thus gives $\tau_a(M) \leq \alpha_{1.4}(a,b,n,q)q^{r(M)}$ for all $M \in \mathcal{M}$, giving (2). \Box

References

- J. Geelen, Some open problems on excluding a uniform matroid, Adv. in Appl. Math. 41(4) (2008), 628–637.
- [2] J. Geelen, K. Kabell, Projective geometries in dense matroids, J. Combin. Theory Ser. B 99 (2009), 1–8.
- [3] J. Geelen, K. Kabell, The Erdős-Pósa property for matroid circuits, J. Combin. Theory Ser. B 99 (2009), 407–419.
- [4] J. Geelen, J.P.S. Kung, G. Whittle, Growth rates of minor-closed classes of matroids, J. Combin. Theory. Ser. B 99 (2009), 420– 427.
- [5] J. Geelen, P. Nelson, Projective geometries in exponentially dense matroids. I, Submitted.

- [6] J. Geelen, P. Nelson, A density Hales-Jewett theorem for matroids, Submitted.
- [7] J. Geelen, G. Whittle, Cliques in dense GF(q)-representable matroids, J. Combin. Theory. Ser. B 87 (2003), 264–269.
- [8] J. W. P. Hirschfeld, Complete Arcs, Discrete Math. 174(1-3):177– 184 (1997), Combinatorics (Rome and Montesilvano, 1994).
- [9] J.P.S. Kung, Numerically regular hereditary classes of combinatorial geometries, Geom. Dedicata 21 (1986), no. 1, 85–10.
- [10] P. Nelson, Exponentially Dense Matroids, Ph.D thesis, University of Waterloo (2011).
- [11] J. G. Oxley, Matroid Theory, Oxford University Press, New York (2011).