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Abstract. We show for each positive integer a that, if M is a
minor-closed class of matroids not containing all rank-(a + 1) uni-
form matroids, then there exists an integer c such that either every
rank-r matroid in M can be covered by at most rc rank-a sets,
or M contains the GF(q)-representable matroids for some prime
power q, and every rank-r matroid inM can be covered by at most
cqr rank-a sets. In the latter case, this determines the maximum
density of matroids in M up to a constant factor.

1. Introduction

If M is a matroid and a is a positive integer, then τa(M) denotes the
a-covering number of M , the minimum number of sets of rank at most
a in M required to cover E(M). We will prove the following theorem:

Theorem 1.1. Let a ≥ 1 be an integer. If M is a minor-closed class
of matroids, then there is an integer c > 0 such that either

(1) τa(M) ≤ r(M)c for all M ∈M,
(2) there is a prime power q so that τa(M) ≤ cqr(M) for all M ∈M

and M contains all GF(q)-representable matroids, or
(3) M contains all rank-(a+ 1) uniform matroids.

This theorem also appears in [10], and a weaker version, where the
upper bound in (2) is replaced by r(M)cqr(M), was proved in [5]; our
proof is built with this weaker result as a starting point. τ1(M) is just
the number of points in M , and the above theorem was shown in this
case by Geelen and Kabell [2].

Theorem 1.1 resolves the ‘polynomial-exponential’ part of the fol-
lowing conjecture of Geelen [1]:

Conjecture 1.2 (Growth Rate Conjecture). Let a ≥ 1 be an integer.
IfM is a minor-closed class of matroids, then there is an integer c > 0
so that either

(1) τa(M) ≤ cr(M) for all M ∈M,
1
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(2) τa(M) ≤ cr(M)2 for all M ∈ M and M contains all graphic
matroids or all bicircular matroids,

(3) there is a prime power q so that τa(M) ≤ cqr(M) for all M ∈M
and M contains all GF(q)-representable matroids, or

(4) M contains all rank-(a+ 1) uniform matroids.

This conjecture was proved for a = 1 by Geelen, Kabell, Kung and
Whittle [2,4,7] and is known as the ‘Growth Rate Theorem’.

If (4) holds, then τa(M) is not bounded by any function of r(M) for
all M ∈M, as a rank-(a+ 1) uniform matroid (and consequently any
matroid with such a minor) can require arbitrarily many rank-a sets to
cover. Our bounds on τa are thus given with respect to some particular
rank-(a + 1) uniform minor that is excluded. We prove Theorem 1.1
as a consequence of the two theorems below; the first is proved in [5],
and the second is the main technical result of this paper.

Theorem 1.3. For all integers a, b, n with n ≥ 1 and 1 ≤ a < b, there
is an integer m such that, if M is a matroid of rank at least 2 with
no Ua+1,b-minor and τa(M) ≥ r(M)m, then M has a rank-n projective
geometry minor.

Theorem 1.4. For all integers a, b, n, q with n ≥ 1, q ≥ 2 and 1 ≤
a < b, there is an integer c such that, if M is a matroid with no Ua+1,b-
minor and τa(M) ≥ cqr(M), then M has a rank-n projective geometry
minor over a finite field with more than q elements.

2. Preliminaries

We use the notation of Oxley [11]. A rank-1 flat is a point, and
a rank-2 flat is a line. If M is a matroid, and X, Y ⊆ E(M), then
uM(X, Y ) denotes the local connectivity between X and Y in M , de-
fined by uM(X, Y ) = rM(X) + rM(Y )− rM(X ∪ Y ). If uM(X, Y ) = 0,
then X and Y are skew in M . Additionally, we write ε(M) for τ1(M),
the number of points in a matroid M .

For integers a and b with 1 ≤ a < b, we write U(a, b) for the class of
matroids with no Ua+1,b-minor. The first tool in our proof is a theorem
of Geelen and Kabell [3] which shows that τa is bounded as a function
of rank across U(a, b).

Theorem 2.1. Let a and b be integers with 1 ≤ a < b. If M ∈ U(a, b)

satisfies r(M) > a, then τa(M) ≤
(

b−1
a

)r(M)−a
.

Proof. We first prove the result when r(M) = a + 1, then proceed
by induction. If r(M) = a + 1, then observe that M |B ∼= Ua+1,a+1

for any basis B of M ; let X ⊆ E(M) be maximal such that M |X ∼=
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Ua+1,|X|. We may assume that |X| < b, and by maximality of X,
every e ∈ E(M) − X is spanned by a rank-a set of X. Therefore,

τa(M) ≤
(|X|

a

)
≤
(

b−1
a

)
.

Suppose that r(M) > a + 1, and inductively assume that the result
holds for matroids of smaller rank. Let e ∈ E(M). We have τa+1(M) ≤
τa(M/e) ≤

(
b−1
a

)r(M)−a−1
by induction, and by the base case each rank-

(a+ 1) set in M admits a cover with at most
(

b−1
a

)
sets of rank at most

a. Therefore τa(M) ≤
(

b−1
a

)
τa+1(M) ≤

(
b−1
a

)r(M)−a
, as required. �

The base case of this theorem gives τa(M) ≤
(

b−1
a

)
τa(M/e) for all

M ∈ U(a, b) and e ∈ E(M); an inductive argument yields the following:

Corollary 2.2. Let a and b be integers with 1 ≤ a < b. If M ∈ U(a, b)

and C ⊆ E(M), then τa(M/C) ≥
(

b−1
a

)−rM (C)
τa(M).

Our starting point in our proof is the main technical result of [5].
Note that this theorem gives Theorem 1.3 when q = 1.

Theorem 2.3. There is an integer-valued function f2.3(a, b, n, q) so
that, for any integers 1 ≤ a < b, q ≥ 1 and n ≥ 1, if M ∈ U(a, b)
satisfies r(M) > 1 and τa(M) ≥ r(M)f2.3(a,b,n,q)qr(M), then M has a
PG(n− 1, q′)-minor for some prime power q′ > q.

3. Stacks

We now define an obstruction to GF(q)-representability. If q is a
prime power and h and t are nonnegative integers, then a matroid S
is a (q, h, t)-stack if there are pairwise disjoint subsets F1, F2, . . . , Fh

of E(S) such that the union of the Fi is spanning in S, and for each
i ∈ {1, . . . , h} the matroid (S/(F1 ∪ . . . ∪ Fi−1))|Fi has rank at most t
and is not GF(q)-representable. We write Fi(S) for Fi, and when the
value of t is unimportant, we refer simply to a (q, h)-stack.

Note that a stack has rank between 2h and th, and that contracting
or restricting to the sets in some initial segment of F1, . . . , Fh yields a
smaller stack; we use these facts freely.

We now show that the structure of a stack cannot be completely
destroyed by a small projection. The following two lemmas are similar;
the first does not control rank, and the second does.

Lemma 3.1. Let q be a prime power, and k ≥ 0 be an integer. If
M is a matroid, C ⊆ E(M), and M has a (k(rM(C) + 1), q)-stack
restriction, then (M/C)|E(S) has a (k, q)-stack restriction.
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Proof. Let S be a (k(rM(C) + 1), q)-stack in M , with Fi = Fi(S) for
each i. By adding parallel extensions if needed, we may assume that
C ∩ E(S) = ∅. If rM(C) = 0 then the result is trivial; suppose that
rM(C) > 0 and that the lemma holds for sets C of smaller rank. Let
F = F1∪. . .∪Fk. If C is skew to F inM , then (M/C)|F is a (k, q)-stack,
giving the lemma. Otherwise M/F has a (krM(C), q)-stack restriction,
and rM(C) > rM/F (C). By the inductive hypothesis, M/(F ∪C) has a
(k, q)-stack restriction S ′; therefore F ∪ F1(S

′), F2(S
′), . . . , Fk(S ′) give

a (k, q)-stack restriction of M/C. �

Lemma 3.2. Let q be a prime power, and a, h and t be integers with
a ≥ 0, h ≥ 1 and t ≥ 2. If M is a matroid with an ((a+ 1)h, q, t)-stack
restriction S, and X ⊆ E(M) is a set satisfying uM(X,E(S)) ≤ a,
then there exists C ⊆ E(S) so that (M/C)|E(S) has an (h, q, t)-stack
restriction S ′, and X and E(S ′) are skew in M/C.

Proof. Let F = F1(S) ∪ . . . ∪ Fh(S). If F is skew to X in M , then F
contains an (h, q, t)-stack S ′ satisfying the lemma with C = ∅. Oth-
erwise, M/F has an (ah, q, t)-stack restriction S0 contained in E(S),
and uM/F (X − F,E(S0)) < uM(X − F,E(S)) ≤ a; the lemma follows
routinely by induction on a. �

This low local connectivity is obtained via the following lemma,
which applies more generally. We will just use the case when M |Y
is a stack.

Lemma 3.3. If M ∈ U(a, b) and Y ⊆ E(M), then there is a set

X ⊆ E(M) so that τa(M |X) ≥
(

b−1
a

)a−rM (Y )
τa(M) and uM(X, Y ) ≤ a.

Proof. We may assume that rM(Y ) > a. Let B be a basis for M con-
taining a basis BY for M |Y . We have r(M/(B − BY )) = rM(Y ), so

τa(M/(B − BY )) ≤
(

b−1
a

)rM (Y )−a
by Theorem 2.1. Applying a major-

ity argument to a smallest cover of M/(B − BY ) with sets of rank
at most a gives a set X ′ ⊆ E(M) so that rM/(B−BY )(X) ≤ a, and

τa(M |X) ≥
(

b−1
a

)a−rM (Y )
τa(M). Moreover, B −BY is skew to Y in M ,

so uM(X, Y ) ≤ uM/(B−BY )(X, Y ) ≤ a. �

4. Thickness and Weighted Covers

The next section requires a modified notion of covering number in
which elements of a cover are weighted by rank. All results in the
current section are also proved in [5].

A cover of a matroid M is a collection of sets with union E(M),
and for an integer d ≥ 1, we say the d-weight of a cover F of M is



EXPONENTIALLY DENSE MATROIDS 5

the sum
∑

F∈F d
rM (F ), and write wtd

M(F) for this sum. Thus, a rank-1
set has weight d, a rank-2 set has rank d2, etc. We write τ d(M) for
the minimum d-weight of a cover of M , and we say a cover of M is
d-minimal if it has d-weight equal to τ d(M).

Since rM(X) ≤ rM/e(X − {e}) + 1 for all X ⊆ E(M), we have
τ d(M) ≤ dτ d(M/e) for every nonloop e of M ; a simple induction ar-
gument gives the following lemma:

Lemma 4.1. If d is a positive integer and M is a matroid, then
τ d(M/C) ≥ d−rM (C)τ d(M) for all C ⊆ E(M).

We say a matroid M is d-thick if τr(M)−1(M) ≥ d, and a set X ⊆
E(M) is d-thick in M if M |X is d-thick. Note that any d-thick matroid
of rank 2 has a U2,d-restriction. Moreover, it is clear that τr(M)−1(M) ≤
τr(M)−2(M/e) for any nonloop e of M , so it follows that d-thickness is
preserved by contraction. Thus, any d-thick matroid of rank at least 2
has a U2,d-minor, and the rank-(a + 1) case of Theorem 2.1 yields the
following:

Lemma 4.2. Let a, b, d be integers with 1 ≤ a < b and d >
(

b−1
a

)
. If M

is a d-thick matroid of rank greater than a, then M has a Ua+1,b-minor.

This controls the nature of a d-minimal cover of M in several ways:

Lemma 4.3. Let a, b, d be integers with 1 ≤ a < b and d >
(

b−1
a

)
. If

F is a d-minimal cover of a matroid M ∈ U(a, b), then

(1) every F ∈ F is d-thick in M ,
(2) every F ∈ F has rank at most a, and
(3) τa(M) ≤ τ d(M) ≤ daτa(M).

Proof. If some set F ∈ F is not d-thick, then F is the union of sets
F1, . . . , Fd−1 of smaller rank. Thus, (F−{F})∪{F1, . . . , Fd−1} is a cover
of M of weight at most wtd

M(F)− drM (F ) + (d− 1)drM (F )−1 < wtM
d (F),

contradicting d-minimality of F . Therefore, every set in F is d-thick
in M , giving (1). (2) now follows from Lemma 4.2.

To see the upper bound in (3), observe that any smallest cover of
M with sets of rank at most a has size τa(M) and d-weight at most
daτa(M). The lower bound follows from the fact that every set has d-
weight at least 1, and F , by (2), is a d-minimal cover of M containing
sets of rank at most a. �

5. Stacking Up

Our first lemma finds, in a dense matroid, a dense minor with a large
stack restriction. We consider the modified notion of density τ d.
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Lemma 5.1. There is an integer-valued function α5.1(a, b, h, q, λ) so
that, for any prime power q and integers a, b, h, λ with 1 ≤ a < b, m ≥
0, and λ ≥ 1, if d > max(q+1,

(
b−1
a

)
) is an integer and M ∈ U(a, b) sat-

isfies τ d(M) ≥ α5.1(a, b, h, q, λ)qr(M), then M has a contraction-minor
N with an (h, q, a+ 1)-stack restriction, satisfying τ d(N) ≥ λqr(N).

Proof. Let a, b, q and d be integers such that 1 ≤ a < b, q ≥ 2 and
d > max(q + 1,

(
b−1
a

)
). Set α5.1(a, b, 0, q, λ) = λ, and for each h > 0

recursively set α5.1(a, b, h, q, λ) = da+1α5.1(a, b,m − 1, q, λqa+1). Note
that all values this function takes for h > 0 are multiples of d.

When h = 0, the lemma holds with N = M . Let h > 0 be an integer,
and suppose inductively that α5.1 as defined satisfies the lemma for
smaller values of h. Let M ∈ U(a, b) be contraction-minimal satisfying
τ d(M) ≥ αqr(M); we show that M has the required minor N .

5.1.1. There is a set X ⊆ E(M) such that rM(X) ≤ a + 1 and M |X
is not GF(q)-representable.

Proof of claim: Let e be a nonloop of M and let F and F ′ be d-minimal
covers of M and M/e respectively. We consider two cases:

Case 1: rM(F ) = 1 for all F ∈ F and rM/e(F ) = 1 for all F ∈ F ′.
Note that τ d(M) = d|F| and τ d(M/e) = d|F ′|. By minimality of

M , this gives |F| ≥ d−1αqr(M) and |F ′| < d−1αqr(M)−1, so |F ′| ≤
d−1αqr(M)−1−1, as this expression is an integer. Moreover, |F| = ε(M)
and |F ′| = ε(M/e), so ε(M) ≥ d−1αqr(M) ≥ qε(M/e)+q > qε(M/e)+1.
Since the points of M/e correspond to lines of M through e, it follows
by a majority argument that some line L through e contains at least
q + 1 other points of M , and therefore that X = L will satisfy the
lemma.

Case 2: rN(F ) ≥ 2 for some F ∈ F or rM/e(F ) ≥ 2 for some F ∈ F ′.
If X ∈ F satisfies rM(X) ≥ 2, then by Lemma 4.3, X is d-thick in

M and has rank at most a. Since d ≥ q + 2 and thickness is preserved
by contraction, the matroid M |X has a U2,q+2-minor and therefore X
satisfies the claim. If X ∈ F ′ satisfies rM/e(X) ≥ 2, then rM(X∪{e}) ≤
a+ 1 and X ∪ {e} will satisfy the claim for similar reasons.

�

Now τ d(M/X) ≥ d−(a+1)τ d(M) ≥ d−(a+1)αqr(M/X) ≥ α5.1(a, b, h −
1, q, λqa+1)qr(M/X), so M/X has a contraction-minor M/(X ∪ C) with
an (h−1, q, a+1)-stack restriction S ′, satisfying τ d(M ′) ≥ λqa+1qr(M ′).
We may assume that C is independent in M/X; let N = M/C. We
have N |X = M |X and N/X has an (h−1, q, a+1)-stack restriction, so
N has an (h, q, a + 1)-stack restriction. Morever τ d(N) ≥ τ d(N/X) ≥
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λqa+1qr(N/X) = λqa+1−rN (X)qr(N). Since rN(X) ≤ a+ 1, the matroid N
is the required minor.

�

6. Exploiting a Stack

We defined a stack as an example of a matroid that is ‘far’ from being
GF(q)-representable. In this section we make this concrete by proving
that a stack on top of a projective geometry yields a large uniform
minor or a large projective geometry over a larger field.

We first need an easily proved lemma from [6], telling us that a small
projection of a projective geometry does not contain a large stack:

Lemma 6.1. Let q be a prime power and h be a nonnegative integer.
If M is a matroid and X ⊆ E(M) satisfies rM(X) ≤ h and si(M\X) ∼=
PG(r(M)− 1, q), then M/X has no (q, h+ 1)-stack restriction.

Next we show that a large stack on top of a projective geometry
guarantees (in a minor) a large flat with limited connectivity to sets in
the geometry:

Lemma 6.2. Let q be a prime power and k ≥ 0 be an integer. If M
is a matroid with a PG(r(M) − 1, q)-restriction R and a (k4, q)-stack
restriction, then there is a minor M ′ of M of rank at least r(M) − k,
with a PG(r(M ′) − 1, q)-restriction R′ and a rank-k flat K such that
uM ′(X,K) ≤ 1

2
rM ′(X) for all X ⊆ E(R′).

Proof. Let J ⊆ E(M) be maximal so that uM(X, J) ≤ 1
2
rM(X) for all

X ⊆ E(R). Note that J∩E(R) = ∅. We may assume that rM(J) < k,
as otherwise J = K and M ′ = M will do. Let M ′ = M/J .

6.2.1. For each nonloop e of M ′, there is a set Ze ⊆ E(R) such that
rM ′(Ze) ≤ k and e ∈ clM ′(Ze).

Proof of claim: Let e be a nonloop of M ′. By maximality of J there
is some X ⊆ E(R) such that uM(X, J ∪ {e}) > 1

2
rM(X). Let c =

uM(X, J ∪ {e}), noting that 1
2
rM(X) < c ≤ rM(J ∪ {e}) ≤ k. We

also have 1
2
rM(X) ≥ uM(X, J) ≥ c − 1, so uM(X, J) = c − 1, giving

e ∈ clM(X). Now rM(X) ≤ 2c−1 and rM/J(X) = rM(X)−uM(X, J) ≤
(2c− 1)− (c− 1) = c ≤ k. Therefore Ze = X satisfies the claim. �

If e is not parallel in M ′ to a nonloop of R, then M ′|(e ∪ Ze) is not
GF(q)-representable, as it is a simple cosimple extension of a projective
geometry; this fact still holds in any contraction-minor for which e is a
nonloop satisfying this condition. Let j ∈ {0, . . . , k} be maximal such
that M ′ has a (q, j, k)-stack restriction T with the property that, for
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each i ∈ {1, . . . , j}, the matroid T/(F1(T )∪ . . .∪ Fi−1(T ))|Fi(T ) has a
basis contained in E(R). For each i, let Fi = Fi(T ), and Bi ⊆ E(R)
be such a basis. We split into cases depending on whether j ≥ k.

Case 1: j < k.
Let M ′′ = M ′/E(T ) = M/(E(T ) ∪ J). If M ′′ has a nonloop x that

is not parallel in M ′/E(T ) to an element of E(R), then the restriction
M ′′|(x∪ (Zx −E(T ))) has rank at most k, is not GF(q)-representable,
and has a basis contained in Zx ⊆ E(R); this contradicts the maximal-
ity of j. Therefore we may assume that every nonloop of M ′′ is parallel
to an element of R, so si(M ′′) ∼= si(M |(E(R)∪E(T )∪ J)/(E(T )∪ J)).
We have rM(E(T )∪J) ≤ jk+k−1 < k2, so by Lemma 6.1 the matroid
M ′′ has no (k2, q)-stack restriction. However, S is a (k4, q)-stack re-
striction of M and k4 ≥ k2(rM(E(T )∪J)+1), so M ′′ has a (k2, q)-stack
restriction by Lemma 3.1. This is a contradiction.

Case 2: j = k.
For each i ∈ {0, . . . , k}, let Mi = M ′/(F1 ∪ . . . ∪ Fi) and Ri =

R| clR(Bi+1 ∪ . . . ∪Bk). Note that Ri is a PG(r(Mi)− 1, q)-restriction
of Mi. We make a technical claim:

6.2.2. For each i ∈ {0, . . . , k}, there is a rank-(k − i) independent set
Ki of Mi so that uMi

(X,Ki) ≤ 1
2
rMi

(X) for all X ⊆ E(R0) ∩ E(Mi).

Proof. When i = k, there is nothing to prove. Suppose inductively that
i ∈ {0, . . . , k − 1} and that the claim holds for larger i. Let Ki+1 be
a rank-(k − i − 1) independent set in Mi+1 so that uMi+1

(X,Ki+1) ≤
1
2
rMi

(X) for all X ⊆ E(R0) ∩ E(Mi+1). The restriction Mi|Fi+1 is not
GF(q)-representable; let e be a nonloop of Mi|Fi+1 that is not parallel
in Mi to a nonloop of Ri. Set Ki = Ki+1 ∪ {e}, noting that Ki is
independent in Mi. Let X ⊆ E(R0) ∩ E(Mi); since Mi+1 = Mi/Fi+1

we have

uMi
(X,Ki) = uMi+1

(X − Fi+1, Ki) + uMi
(Ki, Fi+1) + uMi

(X,Fi+1)

− uMi
(X ∪Ki, Fi+1).

Now e is a loop and Ki−{e} is independent in Mi+1, so uMi
(Ki, Fi+1) =

1, and uMi+1
(X − Fi+1, Ki) = uMi+1

(X − Fi+1, Ki+1) ≤ 1
2
rMi+1

(X) =
1
2
(rMi

(X)− uMi
(X,Fi+1)). This gives

uMi
(X,Ki) ≤ 1

2
rMi

(X) + 1 + 1
2
uMi

(X,Fi+1)− uMi
(X ∪Ki, Fi+1).

It therefore suffices to show that uMi
(X∪Ki, Fi+1) ≥ 1+ 1

2
uMi

(X,Fi+1).
Note that e ∈ Ki∩Fi+1, so uMi

(X ∪Ki, Fi+1) ≥ max(1,uMi
(X,Fi+1)).

Given this, it is easy to see that the inequality can only be violated
if uMi

(X ∪ Ki, Fi+1) = uMi
(X,Fi+1) = 1. If this is the case, then

uMi
(X,Bi+1) = 1 and so there is some f ∈ E(Ri+1) spanned by X and
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Bi+1, since both are subsets of the projective geometry Ri+1. But e and
f are not parallel by choice of e, so uMi

(X∪Ki, Fi+1) ≥ rMi
({e, f}) = 2,

a contradiction. �

Since r(M0) = r(M ′) > r(M) − k, taking i = 0 in the claim now
gives the lemma. �

Finally, we use the flat found in the previous lemma and Theorem 2.3
to find a large projective geometry minor over a larger field.

Lemma 6.3. There is an integer-valued function f6.3(a, b, n, q, t) so
that, for any prime power q and integers n, a, b with n ≥ 1 and 1 ≤
a < b, if M ∈ U(a, b) has a PG(r(M) − 1, q)-restriction and an
(f6.3(a, b, n, q, t), q, t)-stack restriction, then M has a PG(n − 1, q′)-
minor for some q′ > q.

Proof. Let q be a prime power, and t, n, a, b be integers so that t ≥ 0,
n ≥ 1, and 1 ≤ a < b. Let k ≥ 2a be an integer so that qt−1r1/4−2a ≥
rf2.3(a,b,n,q) for all integers r ≥ k. Set f6.3(a, b, n, q, t) = k4.

Let M be a matroid with a PG(r(M) − 1, q)-restriction R and a
(k4, q, t)-stack restriction S. We will show that M has a PG(n− 1, q′)-
minor for some q′ > q; we may assume (by contracting points of R not
spanned by S if necessary) that r(M) = r(S). By Lemma 6.2, there is
a minor M ′ of M , of rank at least r(M)− k, with a PG(r(M ′)− 1, q)-
restriction R′ and a rank-k flat K such that uM ′(K,X) ≤ 1

2
rM ′(X) for

all X ⊆ E(R′). Let r = r(M ′), M0 = M ′/K and r0 = r(M0). Since
k4 + 2k ≤ 2k4 ≤ r(M) ≤ tk4 and r0 = r − k ≥ r(M)− 2k, we have

r ≥ tk4

tk4 − k
r0 >

(
1 + 1

tk3

)
r0 ≥ r0 + t−1(r0)

1/4

By choice of k, every rank-a set in M0 has rank at most 2a in M ′, so
τa(M0) ≥ τ2a(M ′). Moreover, a counting argument gives τ2a(M ′) ≥
τ2a(R′) ≥ qr−1

q2a−1
> qr−2a, since r > k ≥ 2a. Therefore

τa(M0) ≥ τ2a(M ′) ≥ qr0+t−1(r0)1/4−2a ≥ (r0)
f2.3(a,b,n,q)qr0 ,

and the result follows from Theorem 2.3.
�

7. Connectivity

A matroid M is weakly round if there do not exist sets A and B
with union E(M), so that rM(A) ≤ r(M)− 2 and rM(B) ≤ r(M)− 1.
This is a variation on roundness, a notion equivalent to infinite vertical
connectivity introduced by Kung [9] under the name of non-splitting.
Note that weak roundness is preserved by contractions.
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It would suffice in this paper to consider roundness in place of weak
roundness, but we use weak roundness in order that a partial result,
Lemma 8.1, is slightly stronger; this may be useful in future work.

Lemma 7.1. Let a ≥ 1 and q ≥ 2 be integers, and α ≥ 0 be a real
number. If M is a matroid with τa(M) ≥ αqr(M), then M has a weakly
round restriction N such that τa(N) ≥ αqr(N).

Proof. If r(M) ≤ 2, then M is weakly round, and N = M will do;
assume that r(M) > 2, and M is not weakly round. There are sets
A,B ⊆ E(M) such that r(M |A) < r(M), r(M |B) < r(M) and A∪B =
E(M). Now, τa(M |A) + τa(M |B) ≥ τa(M) ≥ αqr(M), so one of M |A
or M |B satisfies τa ≥ 1

2
αqr(M) ≥ αqr(M)−1. The lemma follows by

induction. �

The way we exploit weak roundness of M is to contract one restric-
tion of M into another restriction of larger rank:

Lemma 7.2. Let M be a weakly round matroid, and X, Y ⊆ E(M) be
sets with rM(X) < rM(Y ). There is a minor N of M so that N |X =
M |X, N |Y = M |Y , and Y is spanning in N .

Proof. Let C ⊆ E(M)−X∪Y be maximal such that (M/C)|X = M |X
and (M/C)|Y = M |Y . The matroid M/C is weakly round, and
by maximality of C we have E(M/C) = clM/C(X) ∪ clM/C(Y ). If
rM/C(Y ) < r(M/C), then since rM/C(X) ≤ rM/C(Y ) − 1, the sets
clM/C(X) and clM/C(Y ) give a contradiction to weak roundness of
M/C. Therefore Y is spanning in M/C and N = M/C satisfies the
lemma. �

8. The Main Result

We are almost ready to prove Theorem 1.1; we first prove a more
technical statement from which it will follow.

Lemma 8.1. There is an integer-valued function f8.1(a, b, n, q, t) so
that, for any prime power q and integers a, b, n, t with 1 ≤ a < b and
t ≥ 0, if M ∈ U(a, b) is weakly round and has a (f8.1(a, b, n, q, t), q, t)-
stack restriction and a PG(f8.1(a, b, n, q, t) − 1, q)-minor, then M has
a PG(n− 1, q′)-minor for some q′ > q.

Proof. Let q be a prime power and a, b, n, t be integers with 1 ≤ a < b
and t ≥ 0. Let d =

(
b−1
a

)
. Let h′ = max(a, n, f6.3(a, b, n, q, t)), and

h = (a + 1)h′. Let m ≥ 4th be an integer so that d−2htqr−ht−a ≥
rf2.3(a,b,h′t+1,q−1)(q − 1)r for all r ≥ m/2. Set f8.1(a, b, n, q, t) = m.
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Let M be a weakly round matroid with a PG(m− 1, q)-minor N =
M/C \D and a (m, q, t)-stack restriction S. Note that S contains an
(h, q, t)-stack restriction S ′; let M ′ be a matroid formed from M by
contracting a maximal subset of C that is skew to E(S ′); clearly M ′

has N as a minor and r(M ′) ≤ r(N) + r(S ′) ≤ r(N) + ht. We have

τa(M ′) ≥ τa(N) ≥ qr(N)−1
qa−1

> qr(M ′)−ht−a and r(S ′) ≤ ht; by Lemma 3.3

there is a set X ⊆ E(M ′) such that τa(M ′|X) ≥ da−htqr(M ′)−ht−a and
uM ′(X,E(S ′)) ≤ a. By adding elements skew to E(S ′) to X if neces-
sary, we may assume that rM ′(X) ≥ r(M ′)− r(S ′) ≥ m− ht.

By Lemma 3.2, there is a set C ′ ⊆ E(S ′) such that (M ′/C ′)|E(S ′)
has an (h′, q, t)-stack restriction S ′′, and E(S ′′) is skew to X in M ′/C ′.
By Corollary 2.2, we have

τa((M ′/C)|X) ≥ da−ht−rM′ (C
′)qr(M ′)−ht−a ≥ d−2htqr((M ′/C)|X)−ht−a,

and since rM ′/C′(X) ≥ rM ′(X) − ht ≥ m − 2ht ≥ m/2, it follows
from Theorem 2.3 that the matroid (M ′/C ′)|X has a PG(h′t, q∗)-minor
N ′ = (M ′/(C ′ ∪ C ′′))|Y for some q∗ > q − 1. If q∗ > q, then we are
done, since h′t ≥ n− 1. If q∗ = q, then M ′/(C ′ ∪ C ′′) is weakly round
with a PG(h′t, q)-restriction R′ and an (h′, q, t)-stack restriction S ′′.
By Lemma 7.2 and the fact that r(S ′′) < r(R′), we can find a minor in
which S ′′ is a restriction and R′ is spanning, and the conclusion follows
from the definition of h′ and Lemma 6.3. �

We now restate and prove Theorem 1.4, which follows routinely.

Theorem 8.2. There is an integer-valued function α8.2(a, b, n, q) so
that, for any integers a, b, n and q with n ≥ 1, q ≥ 2 and 1 ≤ a < b,
if M ∈ U(a, b) satisfies τa(M) ≥ α8.2(a, b, n, q)q

r(M), then M has a
PG(n− 1, q′)-minor for some q′ > q.

Proof. Let a, b, n and q be integers with n ≥ 1, q ≥ 2 and 1 ≤ a < b.
Let d = max(q,

(
b−1
a

)
) + 2. Let q∗ be the smallest prime power so that

q∗ ≥ q. Let h = max(n, f8.1(a, b, n, q
∗, a+ 1)). Let λ > 0 be an integer

such that λd−aqr ≥ rf2.3(a,b,h,q−1)(q − 1)r for all integers r ≥ 1. Set
α8.2(a, b, n, q) = α = max(λ, f5.1(a, b, h, q, λ)).

Let M ∈ U(a, b) satisfy τa(M) ≥ αqr(M). By Theorem 2.3, and the
fact that α > λ, M has a PG(h − 1, q′)-minor for some q′ > q − 1;
if q′ 6= q then we are done because h ≥ n, so we can assume that
q = q∗ = q′. By Lemma 7.1, M has a weakly round restriction M ′

with τa(M ′) ≥ αqr(M ′). By Lemma 5.1, M ′ has a contraction-minor N
with an (h, q, a + 1)-stack restriction, satisfying τ d(N) ≥ λqr(N). We
have τa(N) ≥ d−aτ d(N) ≥ d−aλqr(N), so by definition of λ the matroid
N has a PG(h − 1, q′)-minor for some q′′ > q − 1. As before, we may
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assume that q′′ = q. Since N is weakly round, the theorem now follows
by applying Lemma 8.1 to N . �

Theorem 1.1 is now a fairly simple consequence.

Theorem 8.3. If a ≥ 1 is an integer, and M is a minor-closed class
of matroids, then there is an integer c so that either:

(1) τa(M) ≤ r(M)c for all M ∈M, or
(2) There is a prime power q so that τa(M) ≤ cqr(M) for all M ∈M

and M contains all GF(q)-representable matroids, or
(3) M contains all rank-(a+ 1) uniform matroids.

Proof. We may assume that (3) does not hold; let b > a be an integer
such that M ⊆ U(a, b). As Ua+1,b is a simple matroid that is GF(q)-
representable whenever q ≥ b (see [8]), we have PG(a, q′) /∈ M for all
q′ ≥ b.

If, for some integer n > a, we have τa(M) < r(M)f1.3(a,b,n) for all
M ∈ M of rank at least 2, then (1) holds. We may therefore assume
that, for all n > a, there exists a matroid Mn ∈M such that r(Mn) ≥ 2
and τa(Mn) ≥ r(Mn)f1.3(a,b,n).

By Theorem 1.3, it follows that for all n > a there exists a prime
power q′n such that PG(n − 1, q′n) ∈ M. We have q′n < b for all n, so
there are finitely many possible q′n, and so there is a prime power q0 < b
such that PG(n − 1, q0) ∈ M for infinitely many n, implying that M
contains all GF(q0)-representable matroids.

Let q be maximal such that M contains all GF(q)-representable
matroids. Since PG(a, q′) /∈ M for all q′ ≥ b, the value q is well-
defined, and moreover there is some n such that PG(n− 1, q′) /∈M for
all q′ > q. Theorem 1.4 thus gives τa(M) ≤ α1.4(a, b, n, q)q

r(M) for all
M ∈M, giving (2). �
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