PROJECTIVE GEOMETRIES IN EXPONENTIALLY DENSE MATROIDS. II

PETER NELSON

Abstract

We show for each positive integer a that, if \mathcal{M} is a minor-closed class of matroids not containing all rank- $(a+1)$ uniform matroids, then there exists an integer c such that either every rank- r matroid in \mathcal{M} can be covered by at most r^{c} rank- a sets, or \mathcal{M} contains the $\operatorname{GF}(q)$-representable matroids for some prime power q, and every rank- r matroid in \mathcal{M} can be covered by at most $c q^{r}$ rank- a sets. In the latter case, this determines the maximum density of matroids in \mathcal{M} up to a constant factor.

1. Introduction

If M is a matroid and a is a positive integer, then $\tau_{a}(M)$ denotes the a-covering number of M, the minimum number of sets of rank at most a in M required to cover $E(M)$. We will prove the following theorem:

Theorem 1.1. Let $a \geq 1$ be an integer. If \mathcal{M} is a minor-closed class of matroids, then there is an integer $c>0$ such that either
(1) $\tau_{a}(M) \leq r(M)^{c}$ for all $M \in \mathcal{M}$,
(2) there is a prime power q so that $\tau_{a}(M) \leq c q^{r(M)}$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids, or
(3) \mathcal{M} contains all rank- $(a+1)$ uniform matroids.

This theorem also appears in [10], and a weaker version, where the upper bound in (2) is replaced by $r(M)^{c} q^{r(M)}$, was proved in [5]; our proof is built with this weaker result as a starting point. $\tau_{1}(M)$ is just the number of points in M, and the above theorem was shown in this case by Geelen and Kabell [2].

Theorem 1.1 resolves the 'polynomial-exponential' part of the following conjecture of Geelen [1]:

Conjecture 1.2 (Growth Rate Conjecture). Let $a \geq 1$ be an integer. If \mathcal{M} is a minor-closed class of matroids, then there is an integer $c>0$ so that either

$$
\text { (1) } \tau_{a}(M) \leq c r(M) \text { for all } M \in \mathcal{M} \text {, }
$$

(2) $\tau_{a}(M) \leq \operatorname{cr}(M)^{2}$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all graphic matroids or all bicircular matroids,
(3) there is a prime power q so that $\tau_{a}(M) \leq c q^{r(M)}$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids, or
(4) \mathcal{M} contains all rank- $(a+1)$ uniform matroids.

This conjecture was proved for $a=1$ by Geelen, Kabell, Kung and Whittle $[2,4,7]$ and is known as the 'Growth Rate Theorem'.

If (4) holds, then $\tau_{a}(M)$ is not bounded by any function of $r(M)$ for all $M \in \mathcal{M}$, as a rank- $(a+1)$ uniform matroid (and consequently any matroid with such a minor) can require arbitrarily many rank- a sets to cover. Our bounds on τ_{a} are thus given with respect to some particular rank- $(a+1)$ uniform minor that is excluded. We prove Theorem 1.1 as a consequence of the two theorems below; the first is proved in [5], and the second is the main technical result of this paper.

Theorem 1.3. For all integers a, b, n with $n \geq 1$ and $1 \leq a<b$, there is an integer m such that, if M is a matroid of rank at least 2 with no $U_{a+1, b}$-minor and $\tau_{a}(M) \geq r(M)^{m}$, then M has a rank-n projective geometry minor.
Theorem 1.4. For all integers a, b, n, q with $n \geq 1, q \geq 2$ and $1 \leq$ $a<b$, there is an integer c such that, if M is a matroid with no $U_{a+1, b^{-}}$ minor and $\tau_{a}(M) \geq c q^{r(M)}$, then M has a rank-n projective geometry minor over a finite field with more than q elements.

2. Preliminaries

We use the notation of Oxley [11]. A rank-1 flat is a point, and a rank- 2 flat is a line. If M is a matroid, and $X, Y \subseteq E(M)$, then $\sqcap_{M}(X, Y)$ denotes the local connectivity between X and Y in M, defined by $\sqcap_{M}(X, Y)=r_{M}(X)+r_{M}(Y)-r_{M}(X \cup Y)$. If $\sqcap_{M}(X, Y)=0$, then X and Y are skew in M. Additionally, we write $\epsilon(M)$ for $\tau_{1}(M)$, the number of points in a matroid M.

For integers a and b with $1 \leq a<b$, we write $\mathcal{U}(a, b)$ for the class of matroids with no $U_{a+1, b}$-minor. The first tool in our proof is a theorem of Geelen and Kabell [3] which shows that τ_{a} is bounded as a function of rank across $\mathcal{U}(a, b)$.
Theorem 2.1. Let a and b be integers with $1 \leq a<b$. If $M \in \mathcal{U}(a, b)$ satisfies $r(M)>a$, then $\tau_{a}(M) \leq\binom{ b-1}{a}^{r(M)-a}$.

Proof. We first prove the result when $r(M)=a+1$, then proceed by induction. If $r(M)=a+1$, then observe that $M \mid B \cong U_{a+1, a+1}$ for any basis B of M; let $X \subseteq E(M)$ be maximal such that $M \mid X \cong$
$U_{a+1,|X|}$. We may assume that $|X|<b$, and by maximality of X, every $e \in E(M)-X$ is spanned by a rank- a set of X. Therefore, $\tau_{a}(M) \leq\binom{|X|}{a} \leq\binom{ b-1}{a}$.

Suppose that $r(M)>a+1$, and inductively assume that the result holds for matroids of smaller rank. Let $e \in E(M)$. We have $\tau_{a+1}(M) \leq$ $\tau_{a}(M / e) \leq\binom{ b-1}{a}^{r(M)-a-1}$ by induction, and by the base case each rank$(a+1)$ set in M admits a cover with at most $\binom{b-1}{a}$ sets of rank at most a. Therefore $\tau_{a}(M) \leq\binom{ b-1}{a} \tau_{a+1}(M) \leq\binom{ b-1}{a}^{r(M)-a}$, as required.

The base case of this theorem gives $\tau_{a}(M) \leq\binom{ b-1}{a} \tau_{a}(M / e)$ for all $M \in \mathcal{U}(a, b)$ and $e \in E(M)$; an inductive argument yields the following:

Corollary 2.2. Let a and b be integers with $1 \leq a<b$. If $M \in \mathcal{U}(a, b)$ and $C \subseteq E(M)$, then $\tau_{a}(M / C) \geq\binom{ b-1}{a}^{-r_{M}(C)} \tau_{a}(M)$.

Our starting point in our proof is the main technical result of [5]. Note that this theorem gives Theorem 1.3 when $q=1$.

Theorem 2.3. There is an integer-valued function $f_{2.3}(a, b, n, q)$ so that, for any integers $1 \leq a<b, q \geq 1$ and $n \geq 1$, if $M \in \mathcal{U}(a, b)$ satisfies $r(M)>1$ and $\tau_{a}(M) \geq r(M)^{f_{2.3}(a, b, n, q)} q^{r(M)}$, then M has a $\operatorname{PG}\left(n-1, q^{\prime}\right)$-minor for some prime power $q^{\prime}>q$.

3. Stacks

We now define an obstruction to $\mathrm{GF}(q)$-representability. If q is a prime power and h and t are nonnegative integers, then a matroid S is a (q, h, t)-stack if there are pairwise disjoint subsets $F_{1}, F_{2}, \ldots, F_{h}$ of $E(S)$ such that the union of the F_{i} is spanning in S, and for each $i \in\{1, \ldots, h\}$ the matroid $\left(S /\left(F_{1} \cup \ldots \cup F_{i-1}\right)\right) \mid F_{i}$ has rank at most t and is not $\operatorname{GF}(q)$-representable. We write $F_{i}(S)$ for F_{i}, and when the value of t is unimportant, we refer simply to a (q, h)-stack.

Note that a stack has rank between $2 h$ and $t h$, and that contracting or restricting to the sets in some initial segment of F_{1}, \ldots, F_{h} yields a smaller stack; we use these facts freely.

We now show that the structure of a stack cannot be completely destroyed by a small projection. The following two lemmas are similar; the first does not control rank, and the second does.

Lemma 3.1. Let q be a prime power, and $k \geq 0$ be an integer. If M is a matroid, $C \subseteq E(M)$, and M has a $\left(k\left(r_{M}(C)+1\right)\right.$, $\left.q\right)$-stack restriction, then $(M / C) \mid E(S)$ has a (k, q)-stack restriction.

Proof. Let S be a $\left(k\left(r_{M}(C)+1\right), q\right)$-stack in M, with $F_{i}=F_{i}(S)$ for each i. By adding parallel extensions if needed, we may assume that $C \cap E(S)=\varnothing$. If $r_{M}(C)=0$ then the result is trivial; suppose that $r_{M}(C)>0$ and that the lemma holds for sets C of smaller rank. Let $F=F_{1} \cup \ldots \cup F_{k}$. If C is skew to F in M, then $(M / C) \mid F$ is a (k, q)-stack, giving the lemma. Otherwise M / F has a $\left(k r_{M}(C), q\right)$-stack restriction, and $r_{M}(C)>r_{M / F}(C)$. By the inductive hypothesis, $M /(F \cup C)$ has a (k, q)-stack restriction S^{\prime}; therefore $F \cup F_{1}\left(S^{\prime}\right), F_{2}\left(S^{\prime}\right), \ldots, F_{k}\left(S^{\prime}\right)$ give a (k, q)-stack restriction of M / C.

Lemma 3.2. Let q be a prime power, and a, h and t be integers with $a \geq 0, h \geq 1$ and $t \geq 2$. If M is a matroid with an $((a+1) h, q, t)$-stack restriction S, and $X \subseteq E(M)$ is a set satisfying $\sqcap_{M}(X, E(S)) \leq a$, then there exists $C \subseteq E(S)$ so that $(M / C) \mid E(S)$ has an (h, q, t)-stack restriction S^{\prime}, and X and $E\left(S^{\prime}\right)$ are skew in M / C.

Proof. Let $F=F_{1}(S) \cup \ldots \cup F_{h}(S)$. If F is skew to X in M, then F contains an (h, q, t)-stack S^{\prime} satisfying the lemma with $C=\varnothing$. Otherwise, M / F has an $(a h, q, t)$-stack restriction S_{0} contained in $E(S)$, and $\sqcap_{M / F}\left(X-F, E\left(S_{0}\right)\right)<\sqcap_{M}(X-F, E(S)) \leq a$; the lemma follows routinely by induction on a.

This low local connectivity is obtained via the following lemma, which applies more generally. We will just use the case when $M \mid Y$ is a stack.

Lemma 3.3. If $M \in \mathcal{U}(a, b)$ and $Y \subseteq E(M)$, then there is a set $X \subseteq E(M)$ so that $\tau_{a}(M \mid X) \geq\binom{ b-1}{a}^{a-r_{M}(Y)} \tau_{a}(M)$ and $\sqcap_{M}(X, Y) \leq a$.

Proof. We may assume that $r_{M}(Y)>a$. Let B be a basis for M containing a basis B_{Y} for $M \mid Y$. We have $r\left(M /\left(B-B_{Y}\right)\right)=r_{M}(Y)$, so $\tau_{a}\left(M /\left(B-B_{Y}\right)\right) \leq\binom{ b-1}{a}^{r_{M}(Y)-a}$ by Theorem 2.1. Applying a majority argument to a smallest cover of $M /\left(B-B_{Y}\right)$ with sets of rank at most a gives a set $X^{\prime} \subseteq E(M)$ so that $r_{M /\left(B-B_{Y}\right)}(X) \leq a$, and $\tau_{a}(M \mid X) \geq\binom{ b-1}{a}^{a-r_{M}(Y)} \tau_{a}(M)$. Moreover, $B-B_{Y}$ is skew to Y in M, so $\Pi_{M}(X, Y) \leq \Pi_{M /\left(B-B_{Y}\right)}(X, Y) \leq a$.

4. Thickness and Weighted Covers

The next section requires a modified notion of covering number in which elements of a cover are weighted by rank. All results in the current section are also proved in [5].

A cover of a matroid M is a collection of sets with union $E(M)$, and for an integer $d \geq 1$, we say the d-weight of a cover \mathcal{F} of M is
the sum $\sum_{F \in \mathcal{F}} d^{r_{M}(F)}$, and write $\mathrm{wt}_{M}^{d}(\mathcal{F})$ for this sum. Thus, a rank-1 set has weight d, a rank- 2 set has rank d^{2}, etc. We write $\tau^{d}(M)$ for the minimum d-weight of a cover of M, and we say a cover of M is d-minimal if it has d-weight equal to $\tau^{d}(M)$.

Since $r_{M}(X) \leq r_{M / e}(X-\{e\})+1$ for all $X \subseteq E(M)$, we have $\tau^{d}(M) \leq d \tau^{d}(M / e)$ for every nonloop e of M; a simple induction argument gives the following lemma:

Lemma 4.1. If d is a positive integer and M is a matroid, then $\tau^{d}(M / C) \geq d^{-r_{M}(C)} \tau^{d}(M)$ for all $C \subseteq E(M)$.

We say a matroid M is d-thick if $\tau_{r(M)-1}(M) \geq d$, and a set $X \subseteq$ $E(M)$ is d-thick in M if $M \mid X$ is d-thick. Note that any d-thick matroid of rank 2 has a $U_{2, d}$-restriction. Moreover, it is clear that $\tau_{r(M)-1}(M) \leq$ $\tau_{r(M)-2}(M / e)$ for any nonloop e of M, so it follows that d-thickness is preserved by contraction. Thus, any d-thick matroid of rank at least 2 has a $U_{2, d}$-minor, and the rank- $(a+1)$ case of Theorem 2.1 yields the following:

Lemma 4.2. Let a, b, d be integers with $1 \leq a<b$ and $d>\binom{b-1}{a}$. If M is a d-thick matroid of rank greater than a, then M has a $U_{a+1, b}$-minor.

This controls the nature of a d-minimal cover of M in several ways:
Lemma 4.3. Let a, b, d be integers with $1 \leq a<b$ and $d>\binom{b-1}{a}$. If \mathcal{F} is a d-minimal cover of a matroid $M \in \mathcal{U}(a, b)$, then
(1) every $F \in \mathcal{F}$ is d-thick in M,
(2) every $F \in \mathcal{F}$ has rank at most a, and
(3) $\tau_{a}(M) \leq \tau^{d}(M) \leq d^{a} \tau_{a}(M)$.

Proof. If some set $F \in \mathcal{F}$ is not d-thick, then F is the union of sets F_{1}, \ldots, F_{d-1} of smaller rank. Thus, $(\mathcal{F}-\{F\}) \cup\left\{F_{1}, \ldots, F_{d-1}\right\}$ is a cover of M of weight at $\operatorname{most~}_{\mathrm{wt}_{M}^{d}}(\mathcal{F})-d^{r_{M}(F)}+(d-1) d^{r_{M}(F)-1}<\mathrm{wt}_{d}^{M}(\mathcal{F})$, contradicting d-minimality of \mathcal{F}. Therefore, every set in F is d-thick in M, giving (1). (2) now follows from Lemma 4.2.

To see the upper bound in (3), observe that any smallest cover of M with sets of rank at most a has size $\tau_{a}(M)$ and d-weight at most $d^{a} \tau_{a}(M)$. The lower bound follows from the fact that every set has d weight at least 1 , and \mathcal{F}, by (2), is a d-minimal cover of M containing sets of rank at most a.

5. Stacking Up

Our first lemma finds, in a dense matroid, a dense minor with a large stack restriction. We consider the modified notion of density τ^{d}.

Lemma 5.1. There is an integer-valued function $\alpha_{5.1}(a, b, h, q, \lambda)$ so that, for any prime power q and integers a, b, h, λ with $1 \leq a<b, m \geq$ 0 , and $\lambda \geq 1$, if $d>\max \left(q+1,\binom{b-1}{a}\right)$ is an integer and $M \in \mathcal{U}(a, b)$ satisfies $\tau^{d}(M) \geq \alpha_{5.1}(a, b, h, q, \lambda) q^{r(M)}$, then M has a contraction-minor N with an (h,q,a+1)-stack restriction, satisfying $\tau^{d}(N) \geq \lambda q^{r(N)}$.

Proof. Let a, b, q and d be integers such that $1 \leq a<b, q \geq 2$ and $d>\max \left(q+1,\binom{b-1}{a}\right)$. Set $\alpha_{5.1}(a, b, 0, q, \lambda)=\lambda$, and for each $h>0$ recursively set $\alpha_{5.1}(a, b, h, q, \lambda)=d^{a+1} \alpha_{5.1}\left(a, b, m-1, q, \lambda q^{a+1}\right)$. Note that all values this function takes for $h>0$ are multiples of d.

When $h=0$, the lemma holds with $N=M$. Let $h>0$ be an integer, and suppose inductively that $\alpha_{5.1}$ as defined satisfies the lemma for smaller values of h. Let $M \in \mathcal{U}(a, b)$ be contraction-minimal satisfying $\tau^{d}(M) \geq \alpha q^{r(M)}$; we show that M has the required minor N.
5.1.1. There is a set $X \subseteq E(M)$ such that $r_{M}(X) \leq a+1$ and $M \mid X$ is not $\mathrm{GF}(q)$-representable.

Proof of claim: Let e be a nonloop of M and let \mathcal{F} and \mathcal{F}^{\prime} be d-minimal covers of M and M / e respectively. We consider two cases:

Case 1: $r_{M}(F)=1$ for all $F \in \mathcal{F}$ and $r_{M / e}(F)=1$ for all $F \in \mathcal{F}^{\prime}$.
Note that $\tau^{d}(M)=d|\mathcal{F}|$ and $\tau^{d}(M / e)=d\left|\mathcal{F}^{\prime}\right|$. By minimality of M, this gives $|\mathcal{F}| \geq d^{-1} \alpha q^{r(M)}$ and $\left|\mathcal{F}^{\prime}\right|<d^{-1} \alpha q^{r(M)-1}$, so $\left|\mathcal{F}^{\prime}\right| \leq$ $d^{-1} \alpha q^{r(M)-1}-1$, as this expression is an integer. Moreover, $|\mathcal{F}|=\epsilon(M)$ and $\left|\mathcal{F}^{\prime}\right|=\epsilon(M / e)$, so $\epsilon(M) \geq d^{-1} \alpha q^{r(M)} \geq q \epsilon(M / e)+q>q \epsilon(M / e)+1$. Since the points of M / e correspond to lines of M through e, it follows by a majority argument that some line L through e contains at least $q+1$ other points of M, and therefore that $X=L$ will satisfy the lemma.

Case 2: $r_{N}(F) \geq 2$ for some $F \in \mathcal{F}$ or $r_{M / e}(F) \geq 2$ for some $F \in \mathcal{F}^{\prime}$.
If $X \in \mathcal{F}$ satisfies $r_{M}(X) \geq 2$, then by Lemma $4.3, X$ is d-thick in M and has rank at most a. Since $d \geq q+2$ and thickness is preserved by contraction, the matroid $M \mid X$ has a $U_{2, q+2}$-minor and therefore X satisfies the claim. If $X \in \mathcal{F}^{\prime}$ satisfies $r_{M / e}(X) \geq 2$, then $r_{M}(X \cup\{e\}) \leq$ $a+1$ and $X \cup\{e\}$ will satisfy the claim for similar reasons.

Now $\tau^{d}(M / X) \geq d^{-(a+1)} \tau^{d}(M) \geq d^{-(a+1)} \alpha q^{r(M / X)} \geq \alpha_{5.1}(a, b, h-$ $\left.1, q, \lambda q^{a+1}\right) q^{r(M / X)}$, so M / X has a contraction-minor $M /(X \cup C)$ with an $(h-1, q, a+1)$-stack restriction S^{\prime}, satisfying $\tau^{d}\left(M^{\prime}\right) \geq \lambda q^{a+1} q^{r\left(M^{\prime}\right)}$. We may assume that C is independent in M / X; let $N=M / C$. We have $N|X=M| X$ and N / X has an $(h-1, q, a+1)$-stack restriction, so N has an $(h, q, a+1)$-stack restriction. Morever $\tau^{d}(N) \geq \tau^{d}(N / X) \geq$
$\lambda q^{a+1} q^{r(N / X)}=\lambda q^{a+1-r_{N}(X)} q^{r(N)}$. Since $r_{N}(X) \leq a+1$, the matroid N is the required minor.

6. Exploiting a Stack

We defined a stack as an example of a matroid that is 'far' from being $\mathrm{GF}(q)$-representable. In this section we make this concrete by proving that a stack on top of a projective geometry yields a large uniform minor or a large projective geometry over a larger field.

We first need an easily proved lemma from [6], telling us that a small projection of a projective geometry does not contain a large stack:

Lemma 6.1. Let q be a prime power and h be a nonnegative integer. If M is a matroid and $X \subseteq E(M)$ satisfies $r_{M}(X) \leq h$ and $\operatorname{si}(M \backslash X) \cong$ $\mathrm{PG}(r(M)-1, q)$, then M / X has no $(q, h+1)$-stack restriction.

Next we show that a large stack on top of a projective geometry guarantees (in a minor) a large flat with limited connectivity to sets in the geometry:

Lemma 6.2. Let q be a prime power and $k \geq 0$ be an integer. If M is a matroid with a $\mathrm{PG}(r(M)-1, q)$-restriction R and a $\left(k^{4}, q\right)$-stack restriction, then there is a minor M^{\prime} of M of rank at least $r(M)-k$, with a $\mathrm{PG}\left(r\left(M^{\prime}\right)-1, q\right)$-restriction R^{\prime} and a rank-k flat K such that $\sqcap_{M^{\prime}}(X, K) \leq \frac{1}{2} r_{M^{\prime}}(X)$ for all $X \subseteq E\left(R^{\prime}\right)$.

Proof. Let $J \subseteq E(M)$ be maximal so that $\sqcap_{M}(X, J) \leq \frac{1}{2} r_{M}(X)$ for all $X \subseteq E(R)$. Note that $J \cap E(R)=\varnothing$. We may assume that $r_{M}(J)<k$, as otherwise $J=K$ and $M^{\prime}=M$ will do. Let $M^{\prime}=M / J$.
6.2.1. For each nonloop e of M^{\prime}, there is a set $Z_{e} \subseteq E(R)$ such that $r_{M^{\prime}}\left(Z_{e}\right) \leq k$ and $e \in \operatorname{cl}_{M^{\prime}}\left(Z_{e}\right)$.
Proof of claim: Let e be a nonloop of M^{\prime}. By maximality of J there is some $X \subseteq E(R)$ such that $\sqcap_{M}(X, J \cup\{e\})>\frac{1}{2} r_{M}(X)$. Let $c=$ $\sqcap_{M}(X, J \cup\{e\})$, noting that $\frac{1}{2} r_{M}(X)<c \leq r_{M}(J \cup\{e\}) \leq k$. We also have $\frac{1}{2} r_{M}(X) \geq \sqcap_{M}(X, J) \geq c-1$, so $\sqcap_{M}(X, J)=c-1$, giving $e \in \operatorname{cl}_{M}(X)$. Now $r_{M}(X) \leq 2 c-1$ and $r_{M / J}(X)=r_{M}(X)-\sqcap_{M}(X, J) \leq$ $(2 c-1)-(c-1)=c \leq k$. Therefore $Z_{e}=X$ satisfies the claim.

If e is not parallel in M^{\prime} to a nonloop of R, then $M^{\prime} \mid\left(e \cup Z_{e}\right)$ is not $\mathrm{GF}(q)$-representable, as it is a simple cosimple extension of a projective geometry; this fact still holds in any contraction-minor for which e is a nonloop satisfying this condition. Let $j \in\{0, \ldots, k\}$ be maximal such that M^{\prime} has a (q, j, k)-stack restriction T with the property that, for
each $i \in\{1, \ldots, j\}$, the matroid $T /\left(F_{1}(T) \cup \ldots \cup F_{i-1}(T)\right) \mid F_{i}(T)$ has a basis contained in $E(R)$. For each i, let $F_{i}=F_{i}(T)$, and $B_{i} \subseteq E(R)$ be such a basis. We split into cases depending on whether $j \geq k$.

Case 1: $j<k$.
Let $M^{\prime \prime}=M^{\prime} / E(T)=M /(E(T) \cup J)$. If $M^{\prime \prime}$ has a nonloop x that is not parallel in $M^{\prime} / E(T)$ to an element of $E(R)$, then the restriction $M^{\prime \prime} \mid\left(x \cup\left(Z_{x}-E(T)\right)\right)$ has rank at most k, is not $\mathrm{GF}(q)$-representable, and has a basis contained in $Z_{x} \subseteq E(R)$; this contradicts the maximality of j. Therefore we may assume that every nonloop of $M^{\prime \prime}$ is parallel to an element of R, so $\operatorname{si}\left(M^{\prime \prime}\right) \cong \operatorname{si}(M \mid(E(R) \cup E(T) \cup J) /(E(T) \cup J))$. We have $r_{M}(E(T) \cup J) \leq j k+k-1<k^{2}$, so by Lemma 6.1 the matroid $M^{\prime \prime}$ has no $\left(k^{2}, q\right)$-stack restriction. However, S is a $\left(k^{4}, q\right)$-stack restriction of M and $k^{4} \geq k^{2}\left(r_{M}(E(T) \cup J)+1\right)$, so $M^{\prime \prime}$ has a $\left(k^{2}, q\right)$-stack restriction by Lemma 3.1. This is a contradiction.

Case 2: $j=k$.
For each $i \in\{0, \ldots, k\}$, let $M_{i}=M^{\prime} /\left(F_{1} \cup \ldots \cup F_{i}\right)$ and $R_{i}=$ $R \mid \mathrm{cl}_{R}\left(B_{i+1} \cup \ldots \cup B_{k}\right)$. Note that R_{i} is a $\operatorname{PG}\left(r\left(M_{i}\right)-1, q\right)$-restriction of M_{i}. We make a technical claim:
6.2.2. For each $i \in\{0, \ldots, k\}$, there is a rank- $(k-i)$ independent set K_{i} of M_{i} so that $\sqcap_{M_{i}}\left(X, K_{i}\right) \leq \frac{1}{2} r_{M_{i}}(X)$ for all $X \subseteq E\left(R_{0}\right) \cap E\left(M_{i}\right)$.
Proof. When $i=k$, there is nothing to prove. Suppose inductively that $i \in\{0, \ldots, k-1\}$ and that the claim holds for larger i. Let K_{i+1} be a rank- $(k-i-1)$ independent set in M_{i+1} so that $\sqcap_{M_{i+1}}\left(X, K_{i+1}\right) \leq$ $\frac{1}{2} r_{M_{i}}(X)$ for all $X \subseteq E\left(R_{0}\right) \cap E\left(M_{i+1}\right)$. The restriction $M_{i} \mid F_{i+1}$ is not $\mathrm{GF}(q)$-representable; let e be a nonloop of $M_{i} \mid F_{i+1}$ that is not parallel in M_{i} to a nonloop of R_{i}. Set $K_{i}=K_{i+1} \cup\{e\}$, noting that K_{i} is independent in M_{i}. Let $X \subseteq E\left(R_{0}\right) \cap E\left(M_{i}\right)$; since $M_{i+1}=M_{i} / F_{i+1}$ we have

$$
\begin{aligned}
\sqcap_{M_{i}}\left(X, K_{i}\right) & =\sqcap_{M_{i+1}}\left(X-F_{i+1}, K_{i}\right)+\sqcap_{M_{i}}\left(K_{i}, F_{i+1}\right)+\sqcap_{M_{i}}\left(X, F_{i+1}\right) \\
& -\sqcap_{M_{i}}\left(X \cup K_{i}, F_{i+1}\right) .
\end{aligned}
$$

Now e is a loop and $K_{i}-\{e\}$ is independent in M_{i+1}, so $\sqcap_{M_{i}}\left(K_{i}, F_{i+1}\right)=$ 1 , and $\sqcap_{M_{i+1}}\left(X-F_{i+1}, K_{i}\right)=\sqcap_{M_{i+1}}\left(X-F_{i+1}, K_{i+1}\right) \leq \frac{1}{2} r_{M_{i+1}}(X)=$ $\frac{1}{2}\left(r_{M_{i}}(X)-\sqcap_{M_{i}}\left(X, F_{i+1}\right)\right)$. This gives

$$
\sqcap_{M_{i}}\left(X, K_{i}\right) \leq \frac{1}{2} r_{M_{i}}(X)+1+\frac{1}{2} \sqcap_{M_{i}}\left(X, F_{i+1}\right)-\sqcap_{M_{i}}\left(X \cup K_{i}, F_{i+1}\right) .
$$

It therefore suffices to show that $\sqcap_{M_{i}}\left(X \cup K_{i}, F_{i+1}\right) \geq 1+\frac{1}{2} \sqcap_{M_{i}}\left(X, F_{i+1}\right)$. Note that $e \in K_{i} \cap F_{i+1}$, so $\sqcap_{M_{i}}\left(X \cup K_{i}, F_{i+1}\right) \geq \max \left(1, \sqcap_{M_{i}}\left(X, F_{i+1}\right)\right)$. Given this, it is easy to see that the inequality can only be violated if $\sqcap_{M_{i}}\left(X \cup K_{i}, F_{i+1}\right)=\sqcap_{M_{i}}\left(X, F_{i+1}\right)=1$. If this is the case, then $\sqcap_{M_{i}}\left(X, B_{i+1}\right)=1$ and so there is some $f \in E\left(R_{i+1}\right)$ spanned by X and
B_{i+1}, since both are subsets of the projective geometry R_{i+1}. But e and f are not parallel by choice of e, so $\sqcap_{M_{i}}\left(X \cup K_{i}, F_{i+1}\right) \geq r_{M_{i}}(\{e, f\})=2$, a contradiction.

Since $r\left(M_{0}\right)=r\left(M^{\prime}\right)>r(M)-k$, taking $i=0$ in the claim now gives the lemma.

Finally, we use the flat found in the previous lemma and Theorem 2.3 to find a large projective geometry minor over a larger field.

Lemma 6.3. There is an integer-valued function $f_{6.3}(a, b, n, q, t)$ so that, for any prime power q and integers n, a, b with $n \geq 1$ and $1 \leq$ $a<b$, if $M \in \mathcal{U}(a, b)$ has a $\mathrm{PG}(r(M)-1, q)$-restriction and an $\left(f_{6.3}(a, b, n, q, t), q, t\right)$-stack restriction, then M has a $\mathrm{PG}\left(n-1, q^{\prime}\right)$ minor for some $q^{\prime}>q$.

Proof. Let q be a prime power, and t, n, a, b be integers so that $t \geq 0$, $n \geq 1$, and $1 \leq a<b$. Let $k \geq 2 a$ be an integer so that $q^{t^{-1} r^{1 / 4}-2 a} \geq$ $r^{f_{2.3}(a, b, n, q)}$ for all integers $r \geq k$. Set $f_{6.3}(a, b, n, q, t)=k^{4}$.

Let M be a matroid with a $\operatorname{PG}(r(M)-1, q)$-restriction R and a $\left(k^{4}, q, t\right)$-stack restriction S. We will show that M has a $\operatorname{PG}\left(n-1, q^{\prime}\right)$ minor for some $q^{\prime}>q$; we may assume (by contracting points of R not spanned by S if necessary) that $r(M)=r(S)$. By Lemma 6.2, there is a minor M^{\prime} of M, of rank at least $r(M)-k$, with a $\mathrm{PG}\left(r\left(M^{\prime}\right)-1, q\right)$ restriction R^{\prime} and a rank- k flat K such that $\sqcap_{M^{\prime}}(K, X) \leq \frac{1}{2} r_{M^{\prime}}(X)$ for all $X \subseteq E\left(R^{\prime}\right)$. Let $r=r\left(M^{\prime}\right), M_{0}=M^{\prime} / K$ and $r_{0}=r\left(M_{0}\right)$. Since $k^{4}+2 k \leq 2 k^{4} \leq r(M) \leq t k^{4}$ and $r_{0}=r-k \geq r(M)-2 k$, we have

$$
r \geq \frac{t k^{4}}{t k^{4}-k} r_{0}>\left(1+\frac{1}{t k^{3}}\right) r_{0} \geq r_{0}+t^{-1}\left(r_{0}\right)^{1 / 4}
$$

By choice of k, every rank- a set in M_{0} has rank at most $2 a$ in M^{\prime}, so $\tau_{a}\left(M_{0}\right) \geq \tau_{2 a}\left(M^{\prime}\right)$. Moreover, a counting argument gives $\tau_{2 a}\left(M^{\prime}\right) \geq$ $\tau_{2 a}\left(R^{\prime}\right) \geq \frac{q^{r}-1}{q^{2 a}-1}>q^{r-2 a}$, since $r>k \geq 2 a$. Therefore

$$
\tau_{a}\left(M_{0}\right) \geq \tau_{2 a}\left(M^{\prime}\right) \geq q^{r_{0}+t^{-1}\left(r_{0}\right)^{1 / 4}-2 a} \geq\left(r_{0}\right)^{f_{2.3}(a, b, n, q)} q^{r_{0}}
$$

and the result follows from Theorem 2.3.

7. Connectivity

A matroid M is weakly round if there do not exist sets A and B with union $E(M)$, so that $r_{M}(A) \leq r(M)-2$ and $r_{M}(B) \leq r(M)-1$. This is a variation on roundness, a notion equivalent to infinite vertical connectivity introduced by Kung [9] under the name of non-splitting. Note that weak roundness is preserved by contractions.

It would suffice in this paper to consider roundness in place of weak roundness, but we use weak roundness in order that a partial result, Lemma 8.1, is slightly stronger; this may be useful in future work.

Lemma 7.1. Let $a \geq 1$ and $q \geq 2$ be integers, and $\alpha \geq 0$ be a real number. If M is a matroid with $\tau_{a}(M) \geq \alpha q^{r(M)}$, then M has a weakly round restriction N such that $\tau_{a}(N) \geq \alpha q^{r(N)}$.

Proof. If $r(M) \leq 2$, then M is weakly round, and $N=M$ will do; assume that $r(M)>2$, and M is not weakly round. There are sets $A, B \subseteq E(M)$ such that $r(M \mid A)<r(M), r(M \mid B)<r(M)$ and $A \cup B=$ $E(M)$. Now, $\tau_{a}(M \mid A)+\tau_{a}(M \mid B) \geq \tau_{a}(M) \geq \alpha q^{r(M)}$, so one of $M \mid A$ or $M \mid B$ satisfies $\tau_{a} \geq \frac{1}{2} \alpha q^{r(M)} \geq \alpha q^{r(M)-1}$. The lemma follows by induction.

The way we exploit weak roundness of M is to contract one restriction of M into another restriction of larger rank:

Lemma 7.2. Let M be a weakly round matroid, and $X, Y \subseteq E(M)$ be sets with $r_{M}(X)<r_{M}(Y)$. There is a minor N of M so that $N \mid X=$ $M|X, N| Y=M \mid Y$, and Y is spanning in N.

Proof. Let $C \subseteq E(M)-X \cup Y$ be maximal such that $(M / C)|X=M| X$ and $(M / C)|Y=M| Y$. The matroid M / C is weakly round, and by maximality of C we have $E(M / C)=\operatorname{cl}_{M / C}(X) \cup \operatorname{cl}_{M / C}(Y)$. If $r_{M / C}(Y)<r(M / C)$, then since $r_{M / C}(X) \leq r_{M / C}(Y)-1$, the sets $\operatorname{cl}_{M / C}(X)$ and $\mathrm{cl}_{M / C}(Y)$ give a contradiction to weak roundness of M / C. Therefore Y is spanning in M / C and $N=M / C$ satisfies the lemma.

8. The Main Result

We are almost ready to prove Theorem 1.1; we first prove a more technical statement from which it will follow.

Lemma 8.1. There is an integer-valued function $f_{8.1}(a, b, n, q, t)$ so that, for any prime power q and integers a, b, n, t with $1 \leq a<b$ and $t \geq 0$, if $M \in \mathcal{U}(a, b)$ is weakly round and has a $\left(f_{8.1}(a, b, n, q, t), q, t\right)-$ stack restriction and $a \operatorname{PG}\left(f_{8.1}(a, b, n, q, t)-1, q\right)$-minor, then M has $a \operatorname{PG}\left(n-1, q^{\prime}\right)$-minor for some $q^{\prime}>q$.

Proof. Let q be a prime power and a, b, n, t be integers with $1 \leq a<b$ and $t \geq 0$. Let $d=\binom{b-1}{a}$. Let $h^{\prime}=\max \left(a, n, f_{6.3}(a, b, n, q, t)\right)$, and $h=(a+1) h^{\prime}$. Let $m \geq 4 t h$ be an integer so that $d^{-2 h t} q^{r-h t-a} \geq$ $r^{f_{2.3}\left(a, b, h^{\prime} t+1, q-1\right)}(q-1)^{r}$ for all $r \geq m / 2$. Set $f_{8.1}(a, b, n, q, t)=m$.

Let M be a weakly round matroid with a $\operatorname{PG}(m-1, q)$-minor $N=$ $M / C \backslash D$ and a (m, q, t)-stack restriction S. Note that S contains an (h, q, t)-stack restriction S^{\prime}; let M^{\prime} be a matroid formed from M by contracting a maximal subset of C that is skew to $E\left(S^{\prime}\right)$; clearly M^{\prime} has N as a minor and $r\left(M^{\prime}\right) \leq r(N)+r\left(S^{\prime}\right) \leq r(N)+h t$. We have $\tau_{a}\left(M^{\prime}\right) \geq \tau_{a}(N) \geq \frac{q^{r(N)}-1}{q^{a}-1}>q^{r\left(M^{\prime}\right)-h t-a}$ and $r\left(S^{\prime}\right) \leq h t$; by Lemma 3.3 there is a set $X \subseteq E\left(M^{\prime}\right)$ such that $\tau_{a}\left(M^{\prime} \mid X\right) \geq d^{a-h t} q^{r\left(M^{\prime}\right)-h t-a}$ and $\sqcap_{M^{\prime}}\left(X, E\left(S^{\prime}\right)\right) \leq a$. By adding elements skew to $E\left(S^{\prime}\right)$ to X if necessary, we may assume that $r_{M^{\prime}}(X) \geq r\left(M^{\prime}\right)-r\left(S^{\prime}\right) \geq m-h t$.

By Lemma 3.2, there is a set $C^{\prime} \subseteq E\left(S^{\prime}\right)$ such that $\left(M^{\prime} / C^{\prime}\right) \mid E\left(S^{\prime}\right)$ has an $\left(h^{\prime}, q, t\right)$-stack restriction $S^{\prime \prime}$, and $E\left(S^{\prime \prime}\right)$ is skew to X in M^{\prime} / C^{\prime}. By Corollary 2.2, we have

$$
\tau_{a}\left(\left(M^{\prime} / C\right) \mid X\right) \geq d^{a-h t-r_{M^{\prime}}\left(C^{\prime}\right)} q^{r\left(M^{\prime}\right)-h t-a} \geq d^{-2 h t} q^{r\left(\left(M^{\prime} / C\right) \mid X\right)-h t-a}
$$

and since $r_{M^{\prime} / C^{\prime}}(X) \geq r_{M^{\prime}}(X)-h t \geq m-2 h t \geq m / 2$, it follows from Theorem 2.3 that the matroid $\left(M^{\prime} / C^{\prime}\right) \mid X$ has a $\mathrm{PG}\left(h^{\prime} t, q^{*}\right)$-minor $N^{\prime}=\left(M^{\prime} /\left(C^{\prime} \cup C^{\prime \prime}\right)\right) \mid Y$ for some $q^{*}>q-1$. If $q^{*}>q$, then we are done, since $h^{\prime} t \geq n-1$. If $q^{*}=q$, then $M^{\prime} /\left(C^{\prime} \cup C^{\prime \prime}\right)$ is weakly round with a $\mathrm{PG}\left(h^{\prime} t, q\right)$-restriction R^{\prime} and an $\left(h^{\prime}, q, t\right)$-stack restriction $S^{\prime \prime}$. By Lemma 7.2 and the fact that $r\left(S^{\prime \prime}\right)<r\left(R^{\prime}\right)$, we can find a minor in which $S^{\prime \prime}$ is a restriction and R^{\prime} is spanning, and the conclusion follows from the definition of h^{\prime} and Lemma 6.3.

We now restate and prove Theorem 1.4, which follows routinely.
Theorem 8.2. There is an integer-valued function $\alpha_{8.2}(a, b, n, q)$ so that, for any integers a, b, n and q with $n \geq 1, q \geq 2$ and $1 \leq a<b$, if $M \in \mathcal{U}(a, b)$ satisfies $\tau_{a}(M) \geq \alpha_{8.2}(a, b, n, q) q^{r(M)}$, then M has a $\mathrm{PG}\left(n-1, q^{\prime}\right)$-minor for some $q^{\prime}>q$.

Proof. Let a, b, n and q be integers with $n \geq 1, q \geq 2$ and $1 \leq a<b$. Let $d=\max \left(q,\binom{b-1}{a}\right)+2$. Let q^{*} be the smallest prime power so that $q^{*} \geq q$. Let $h=\max \left(n, f_{8.1}\left(a, b, n, q^{*}, a+1\right)\right)$. Let $\lambda>0$ be an integer such that $\lambda d^{-a} q^{r} \geq r^{f_{2.3}(a, b, h, q-1)}(q-1)^{r}$ for all integers $r \geq 1$. Set $\alpha_{8.2}(a, b, n, q)=\alpha=\max \left(\lambda, f_{5.1}(a, b, h, q, \lambda)\right)$.

Let $M \in \mathcal{U}(a, b)$ satisfy $\tau_{a}(M) \geq \alpha q^{r(M)}$. By Theorem 2.3, and the fact that $\alpha>\lambda, M$ has a $\operatorname{PG}\left(h-1, q^{\prime}\right)$-minor for some $q^{\prime}>q-1$; if $q^{\prime} \neq q$ then we are done because $h \geq n$, so we can assume that $q=q^{*}=q^{\prime}$. By Lemma 7.1, M has a weakly round restriction M^{\prime} with $\tau_{a}\left(M^{\prime}\right) \geq \alpha q^{r\left(M^{\prime}\right)}$. By Lemma 5.1, M^{\prime} has a contraction-minor N with an $(h, q, a+1)$-stack restriction, satisfying $\tau^{d}(N) \geq \lambda q^{r(N)}$. We have $\tau_{a}(N) \geq d^{-a} \tau^{d}(N) \geq d^{-a} \lambda q^{r(N)}$, so by definition of λ the matroid N has a $\operatorname{PG}\left(h-1, q^{\prime}\right)$-minor for some $q^{\prime \prime}>q-1$. As before, we may
assume that $q^{\prime \prime}=q$. Since N is weakly round, the theorem now follows by applying Lemma 8.1 to N.

Theorem 1.1 is now a fairly simple consequence.
Theorem 8.3. If $a \geq 1$ is an integer, and \mathcal{M} is a minor-closed class of matroids, then there is an integer c so that either:
(1) $\tau_{a}(M) \leq r(M)^{c}$ for all $M \in \mathcal{M}$, or
(2) There is a prime power q so that $\tau_{a}(M) \leq c q^{r(M)}$ for all $M \in \mathcal{M}$ and \mathcal{M} contains all $\mathrm{GF}(q)$-representable matroids, or
(3) \mathcal{M} contains all rank- $(a+1)$ uniform matroids.

Proof. We may assume that (3) does not hold; let $b>a$ be an integer such that $\mathcal{M} \subseteq \mathcal{U}(a, b)$. As $U_{a+1, b}$ is a simple matroid that is $\operatorname{GF}(q)$ representable whenever $q \geq b$ (see [8]), we have $\operatorname{PG}\left(a, q^{\prime}\right) \notin \mathcal{M}$ for all $q^{\prime} \geq b$.

If, for some integer $n>a$, we have $\tau_{a}(M)<r(M)^{f_{1.3}(a, b, n)}$ for all $M \in \mathcal{M}$ of rank at least 2 , then (1) holds. We may therefore assume that, for all $n>a$, there exists a matroid $M_{n} \in \mathcal{M}$ such that $r\left(M_{n}\right) \geq 2$ and $\tau_{a}\left(M_{n}\right) \geq r\left(M_{n}\right)^{f_{1.3}(a, b, n)}$.

By Theorem 1.3, it follows that for all $n>a$ there exists a prime power q_{n}^{\prime} such that $\operatorname{PG}\left(n-1, q_{n}^{\prime}\right) \in \mathcal{M}$. We have $q_{n}^{\prime}<b$ for all n, so there are finitely many possible q_{n}^{\prime}, and so there is a prime power $q_{0}<b$ such that $\operatorname{PG}\left(n-1, q_{0}\right) \in \mathcal{M}$ for infinitely many n, implying that \mathcal{M} contains all $\operatorname{GF}\left(q_{0}\right)$-representable matroids.

Let q be maximal such that \mathcal{M} contains all $\operatorname{GF}(q)$-representable matroids. Since $\operatorname{PG}\left(a, q^{\prime}\right) \notin \mathcal{M}$ for all $q^{\prime} \geq b$, the value q is welldefined, and moreover there is some n such that $\operatorname{PG}\left(n-1, q^{\prime}\right) \notin \mathcal{M}$ for all $q^{\prime}>q$. Theorem 1.4 thus gives $\tau_{a}(M) \leq \alpha_{1.4}(a, b, n, q) q^{r(M)}$ for all $M \in \mathcal{M}$, giving (2).

References

[1] J. Geelen, Some open problems on excluding a uniform matroid, Adv. in Appl. Math. 41(4) (2008), 628-637.
[2] J. Geelen, K. Kabell, Projective geometries in dense matroids, J. Combin. Theory Ser. B 99 (2009), 1-8.
[3] J. Geelen, K. Kabell, The Erdős-Pósa property for matroid circuits, J. Combin. Theory Ser. B 99 (2009), 407-419.
[4] J. Geelen, J.P.S. Kung, G. Whittle, Growth rates of minor-closed classes of matroids, J. Combin. Theory. Ser. B 99 (2009), 420427.
[5] J. Geelen, P. Nelson, Projective geometries in exponentially dense matroids. I, Submitted.
[6] J. Geelen, P. Nelson, A density Hales-Jewett theorem for matroids, Submitted.
[7] J. Geelen, G. Whittle, Cliques in dense GF(q)-representable matroids, J. Combin. Theory. Ser. B 87 (2003), 264-269.
[8] J. W. P. Hirschfeld, Complete Arcs, Discrete Math. 174(1-3):177184 (1997), Combinatorics (Rome and Montesilvano, 1994).
[9] J.P.S. Kung, Numerically regular hereditary classes of combinatorial geometries, Geom. Dedicata 21 (1986), no. 1, 85-10.
[10] P. Nelson, Exponentially Dense Matroids, Ph.D thesis, University of Waterloo (2011).
[11] J. G. Oxley, Matroid Theory, Oxford University Press, New York (2011).

