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Abstract. We show for each integer a ≥ 1 that, ifM is a minor-
closed class of matroids not containing all rank-(a + 1) uniform
matroids, then there exists an integer n such that either every
rank-r matroid in M can be covered by at most rn rank-a sets,
or M contains the GF(q)-representable matroids for some prime
power q, and every rank-r matroid in M can be covered by at
most rnqr rank-a sets. This determines the maximum density of
the matroids inM up to a polynomial factor.

1. Introduction

If M is a matroid, and a ≥ 1 is an integer, then τa(M) denotes the
a-covering number of M , the minimum number of sets of rank at most
a in M required to cover E(M). We will prove the following theorem:

Theorem 1.1. Let a ≥ 1 be an integer. If M is a minor-closed class
of matroids, then either

(1) τa(M) ≤ r(M)nM for all M ∈M, or
(2) there is a prime power q so that τa(M) ≤ r(M)nMqr(M) for all

M ∈M, and M contains all GF(q)-representable matroids, or
(3) M contains all rank-(a+ 1) uniform matroids.

Here, nM denotes an integer constant depending only on M. In
[7], the second author will refine the bound r(M)nMqr(M) in (2) by
a polynomial factor to cMq

r(M) for some constant cM; it is routine to
show that this improved bound is best-possible up to a constant factor.
Both these results also appear in [8].

The above theorem and its improvement in [7] are contained in the
following larger conjecture of Geelen [1]:

Conjecture 1.2 (Growth Rate Conjecture). Let a ≥ 1 be an integer.
If M is a minor-closed class of matroids, then either

(1) τa(M) ≤ cMr(M) for all M ∈M, or
(2) τa(M) ≤ cMr(M)2 for all M ∈M, andM contains all graphic

matroids or all bicircular matroids, or
1
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(3) there is a prime power q such that τa(M) ≤ cMq
r(M) for all

M ∈M, and M contains all GF(q)-representable matroids, or
(4) M contains all rank-(a+ 1) uniform matroids.

When a = 1, the parameter τa(M) is just the number of points in
M , sometimes written as ε(M), and (4) corresponds to M containing
all simple rank-2 matroids. The conjecture in this case was proved by
work of Geelen, Kabell, Kung and Whittle [2,4,5], and stated in [4] as
the ‘Growth Rate Theorem’.

For general a, if (4) holds, then there is no bound on τa(M) as a
function of r(M) for all M ∈ M, as a rank-(a + 1) uniform matroid
can require arbitrarily many rank-a sets to cover. Thus, we derive
bounds on τa relative to some particular rank-(a+ 1) uniform matroid
that is excluded as a minor. We prove Theorem 1.1 as a consequence
of the following result:

Theorem 1.3. For all integers 1 ≤ a < b, q ≥ 1 and n ≥ 1, there
exists an integer m so that, if M is a matroid of rank at least 2 with no
Ua+1,b-minor, and τa(M) ≥ r(M)mqr(M), then M has a PG(n− 1, q′)-
minor for some prime power q′ > q.

Our proof is loosely based on ideas in [2], and uses its main results as
a base case. The next five sections are used to define the terminology
and intermediate structures we need, and the bulk of the argument
rests on the lemmas in Sections 7, 8 and 9.

2. Preliminaries

We follow the notation of Oxley [9]. Two sets X and Y are skew in
a matroid M if rM(X ∪ Y ) = rM(X) + rM(Y ), and a collection of sets
X in M is mutually skew if rM (∪X∈XX) =

∑
X∈X rM(X). Very often,

the atomic objects in our proof are sets in M rather than elements; to
this end, we also define some new notation.

A common object is a collection of sets of the same rank. If M
is a matroid, and a ≥ 1 is an integer, then Ra(M) denotes the set
{X ⊆ E(M) : rM(X) = a}.

Generalising the notion of parallel elements, if X,X ′ ⊆ E(M), then
we write X ≡M X ′ if clM(X) = clM(X ′); we say that X and X ′ are
similar in M . We write [X]M = {X ′ ⊆ E(M) : X ≡M X ′} for the
‘similarity class’ of X in M .

We also extend existing notation in straightforward ways. If X ⊆
2E(M) is a collection of sets, then we write M |X for M |(∪X∈XX),
clM(X ) for clM(∪X∈XX), and rM(X ) for rM(clM(X )). Two sets X ,X ′ ⊆
2E(M) are similar in M if clM(X ) = clM(X ′).



EXPONENTIALLY DENSE MATROIDS 3

Analogously to the notion of a simple matroid, we say that X ⊆
2E(M) is simple in M if the sets in X are pairwise dissimilar in M .
Note that any collection of flats of M is simple. We write εM(X ) for
the maximum size of a subset of X that is simple in M , or equivalently
the number of different similarity classes of 2E(M) containing a set in
X . If X just contains nonloop singletons, then εM(X ) = τ1(M |X ).

For integers a and b with 1 ≤ a < b, we write U(a, b) for the class of
matroids with no Ua+1,b-minor. The first tool in our proof is a theorem
of Geelen and Kabell [3], which shows that the parameter τa is bounded
as a function of rank across U(a, b).

Theorem 2.1. Let a and b be integers with 1 ≤ a < b. If M ∈ U(a, b)

satisfies r(M) > a, then τa(M) ≤
(

b−1
a

)r(M)−a
.

Proof. We first prove the result when r(M) = a + 1, then proceed
by induction. If r(M) = a + 1, then observe that M |B ∼= Ua+1,a+1

for any basis B of M ; let X ⊆ E(M) be maximal such that M |X ∼=
Ua+1,|X|. We may assume that |X| < b, and by maximality of X,
every e ∈ E(M) − X is spanned by a rank-a set of X. Therefore,

τa(M) ≤
(|X|

a

)
≤
(

b−1
a

)
.

Suppose that r(M) > a + 1, and inductively assume that the result
holds for matroids of smaller rank. Let e ∈ E(M). We have τa+1(M) ≤
τa(M/e) ≤

(
b−1
a

)r(M)−a−1
by induction, and by the base case, each rank-

(a+ 1) set in M admits a cover with at most
(

b−1
a

)
sets of rank at most

a. Therefore τa(M) ≤
(

b−1
a

)
τa+1(M) ≤

(
b−1
a

)r(M)−a
, as required. �

This theorem has two simple corollaries concerning the density of
matroids in U(a, b) relative to that of their minors:

Lemma 2.2. Let a and b be integers with 1 ≤ a < b. If M ∈ U(a, b)

and C ⊆ E(M), then τa(M) ≤
(

b−1
a

)rM (C)
τa(M/C).

Lemma 2.3. Let a and b be integers with 1 ≤ a < b. If M ∈ U(a, b)

and N is a minor of M , then τa(M) ≤
(

b−1
a

)r(M)−r(N)
τa(N).

The next two theorems, also due to Geelen and Kabell, were proved
in [2] to resolve the ‘polynomial-exponential’ part of the Growth Rate
Theorem, both finding a large projective geometry in a sufficiently
dense matroid without some line as a minor:

Theorem 2.4. There is an integer-valued function f2.4(`, n) so that,
for any integers ` ≥ 2 and n ≥ 2, if M ∈ U(1, `) satisfies τ1(M) ≥
r(M)f2.4(`,n), then M has a PG(n − 1, q)-minor for some prime power
q.
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Theorem 2.5. There is a real-valued function α2.5(`, n, q) so that, for
any integers q ≥ 2, ` ≥ 2 and n ≥ 1, if M ∈ U(1, `) satisfies τ1(M) ≥
α2.5(`, n, q)q

r(M), then M has a PG(n − 1, q′)-minor for some prime
power q′ > q.

3. Thickness and Firmness

Two density-related notions that will feature frequently in our proof
are those of thickness and firmness, which we define and explain in this
section.

If d ≥ 1 is an integer, and M is a matroid, then M is d-thick if
τr(M)−1(M) ≥ d. A set X ⊆ E(M) is d-thick in M if M |X is d-thick.

Note that every matroid is 2-thick, and that thickness is monotone
in the sense that if d′ ≥ d and M is d′-thick, then M is d-thick. The
following lemma is fundamental, and we use it freely and frequently in
our proof.

Lemma 3.1. Let d ≥ 1 be an integer. If M is a matroid, N is a minor
of M , and X ⊆ E(N) is d-thick in M , then X is d-thick in N .

Proof. Deleting an element of M outside X, or contracting an element
outside clM(X) does not change M |X, so it suffices to show that con-
tracting a nonloop e ∈ clM(X) does not destroy d-thickness of X. This
follows from the fact that τr(M)−2(M/e) ≥ τr(M)−1(M). �

Any rank-1 or rank-0 matroid is clearly arbitrarily thick. Convenient
examples of thick matroids are uniform matroids - no rank-a set in the
matroid Ua+1,b contains more than a elements, so Ua+1,b is d b

a
e-thick.

Indeed, sufficient thickness and rank ensure a large uniform minor:

Lemma 3.2. Let a and b be integers with 1 ≤ a < b. If M is
(

b
a

)
-thick

and r(M) > a, then M has a Ua+1,b-minor.

Proof. By Lemma 3.1, d-thickness of M is preserved by contraction, so
by contracting points if needed, we may assume that r(M) = a + 1.
Now,

(
b−1
a

)
<
(

b
a

)
≤ τa(M), so the result follows from Theorem 2.1. �

This lemma tells us that, qualitatively, searching for a Ua+1,b-minor is
equivalent to searching for an appropriately thick minor of rank greater
than a. We take this approach hereon; in fact, nearly all the uniform
minors we find will be constructed by implicit use of this lemma.

We now turn to a definition of firmness. If d ≥ 1 is an integer and
M is a matroid, then a set X ⊆ 2E(M) is d-firm in M if all X ′ ⊆ X
with |X ′| > d−1|X | satisfy rM(X ′) = rM(X ).

Firmness is a measure of how ‘evenly spread’ a collection of sets is.
The set of points in a d-point line is d-firm; more generally, the set of
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a-subsets of E(Ua+1,b) is
(

b
a

)
-firm. Firmness is clearly monotone in the

sense that d-firmness implies (d− 1)-firmness.
Our first lemma relates firmness to thickness in an exact way:

Lemma 3.3. Let a ≥ 1 and d ≥ 1 be integers, and M be a matroid.
If X ⊆ Ra(M) is d-firm in M , and each X ∈ X is d-thick in M , then
clM(X ) is d-thick in M .

Proof. Let F be a cover of M | clM(X ) with flats of smaller rank; we
wish to show that |F| ≥ d. If a set X ∈ X is not contained in any flats
in F , then {X ∩ F : F ∈ F} is a cover of M |X with sets of smaller
rank, of size at most |F|, so |F| ≥ d by d-thickness of X. We may
therefore assume every X ∈ X is contained in some F ∈ F . Now,
since X is d-firm in M and no flat in F is spanning in M | clM(X ), each
flat in F contains at most d−1|X | different sets in X . We thus have

|F| ≥ |X |
d−1|X | = d, as required. �

We will use this lemma to construct the thick sets of rank greater
than a that we are frequently seeking. Thus, we often consider a set
X ⊆ Ra(M) that has no firm subset of rank > a in a minor of M ; we
are ‘excluding’ a minor with this structure from X and M in lieu of
excluding Ua+1,b.

This exclusion allows us to control the number of sets in X in useful
ways; the first of the next two lemmas tells us about the ‘absolute’
density of X in M , and the second about the ‘relative’ density of X in
M as compared to in a minor of M .

Lemma 3.4. Let a ≥ 1 and d ≥ 2 be integers, M be a matroid with
r(M) > a, and X ⊆ Ra(M). If εM(X ) ≥ dr(M)−a, then there is a set
Y ⊆ X such that rM(Y) > a, and Y is d-firm in M .

Proof. We may assume that X is simple. If r(M) = a + 1, then the
union of any two sets in X is spanning inM , and |X | ≥ d, so X is d-firm;
we assume that r(M) > a + 1, and proceed by induction on r(M). If
X is not d-firm, then there is some X ′ ⊆ X with rM(X ′) < rM(X ), and
|X ′| ≥ d−1|X | ≥ dr(M)−1−a ≥ drM (X ′)−a. Moreover, |X ′| ≥ dr(M)−1−a ≥
d ≥ 2, so rM(X ′) > a. The result follows by applying the inductive
hypothesis to X ′ in M | clM(X ′). �

Lemma 3.5. Let a ≥ 1 and d ≥ 2 be integers, M be a matroid, N be a
minor of M , and X ⊆ Ra(M)∩Ra(N). If εM(X ) > dr(M)−r(N)εN(X ),
then there is a set Y ⊆ X such that rM(Y) > a, and Y is d-firm in M .

Proof. Let N = M/C \ D, where rM(C) = r(M) − r(N). Suppose
that εM(X ) > drM (C)εN(X ). By a majority argument applied to the
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similarity classes of X in N , there is some X ∈ X such that εM([X]N ∩
X ) ≥ drM (C) = drM (X∪C)−a. Now, every set in [X]N ∩ X is contained
in clM(X ∪ C), so applying Lemma 3.4 to M |(clM(X ∪ C)) gives the
result. �

4. Arrangements

We prove two lemmas related to how collections of sets in a matroid
‘fit together’. This first lemma shows that, given X ⊆ Ra(M), we can
contract a point of M so that the rank of most sets in X is unchanged:

Lemma 4.1. Let M be a matroid of rank at least 1, a ≥ 1 be an
integer, and X ⊆ Ra(M). There exists a nonloop e ∈ E(M) so that

εM(X ∩Ra(M/e)) ≥
(

1− a
r(M)

)
εM(X ).

Proof. Let X ′ be a maximal simple subset of X , and B be a basis
of M . Each set in X ′ has at most a elements of B in its closure, so∑

f∈B |{X ∈ X ′ : f ∈ clM(X)}| ≤ a|X ′|. There is therefore some e ∈ B
such that |{X ∈ X ′ : e ∈ clM(X)}| ≤ a

|B| |X
′|. Every set in X ′ that

does not span e is in Ra(M/e), so

εM(X ∩Ra(M/e)) ≥ |X ′ ∩Ra(M/e)|
≥ |X ′| − a

|B| |X
′|

= εM(X )− a
r(M)

εM(X ),

and the result follows. �

This second lemma relates to the fact that a graph with many edges
contains either a vertex of large degree or a large matching. Recall that
W ⊆ 2E(M) is mutually skew in M if rM(

⋃
W∈WW ) =

∑
W∈W rM(W ).

Lemma 4.2. Let M be a matroid, a ≥ 1 and t ≥ 1 be integers, and let
X ⊆ Ra(M). Either

(i) there exists W ⊆ X so that |W| = t, and W is mutually skew in
M , or

(ii) there is a minor N of M , a set Y ⊆ X ∩ Ra(N), and a nonloop
e of N such that r(N) ≥ r(M) − at, and |Y| ≥ (at)−1|X |, and
e ∈ clN(Y ) for all Y ∈ Y.

Proof. LetW be a maximal mutually skew subset of X ; we may assume
that k < t. Let e1, . . . , ea|W| be a basis for

⋃
W∈WW . For each 1 ≤ i ≤

a|W|, let Mi = M/{e1, . . . , ei}. By maximality ofW , each X ∈ X −W
satisfies rMa|W|(X) < rM(X) = a, and this inequality clearly also holds

for all X ∈ W , so for each X ∈ X there is some iX such that M |X =



EXPONENTIALLY DENSE MATROIDS 7

MiX−1|X, and X spans eiX in MiX−1. By a majority argument, there
is some 1 ≤ i0 ≤ a|W| and Y ⊆ X such that |Y| ≥ (a|W|)−1|X |, and
iY = i0 for all Y ∈ Y . Since |W| < t, the minor N = M/{e1, . . . , ei0−1},
along with Y and ei0 , will satisfy the second outcome. �

5. Weighted Covers and Scatteredness

Our main theorem concerns upper bounds on the parameter τa. It is
therefore natural to consider minimum-sized covers of a matroid with
sets of rank at most a. However, such a cover has few useful properties,
and it seems difficult to make use of one in a proof. We will therefore
change the parameter we are considering to one that considers minimal
‘weighted’ covers. This tweak will force a minimal cover to have many
properties that we exploit at length.

If M is a matroid, and X ,F ⊆ 2E(M), then F is a cover of X in M
if every set in X is contained in a set in F . A cover of M is a cover of
{{e} : e ∈ E(M)}.

If d ≥ 1 is an integer, and F ⊆ 2E(M), then we write wtd
M(F) for the

sum
∑

F∈F d
rM (F ), which we call the weight of F . Thus, the ‘weight’

of a point in F is d, the ‘weight’ of a line is d2, etc. F is a d-minimal
cover of X if F minimizes wtd

M(F) subject to being a cover of X . We
write τ d(M) for the weight of a d-minimal cover of M . The parameter
τ d will not change too dramatically in a minor:

Lemma 5.1. Let d ≥ 1 be an integer. If N is a minor of a matroid
M , then τ d(N) ≥ dr(N)−r(M)τ d(M).

Proof. It suffices to show that, for a nonloop e ∈ E(M), we have
τ d(M/e) ≥ d−1τ d(M). If F is a d-minimal cover of M/e, then F ′ =
{clM(F ∪ {e}) : F ∈ F} is a cover of M , so τ d(M) ≤ wtd

M(F ′) =∑
F∈F d

rM (F∪{e}) =
∑

F∈F d
rM/e(F )+1 = dwtd

M/e(F) = dτ d(M/e), giv-
ing the result. �

A concept that we will soon use to build highly structured minors is
that of scatteredness, another measure of how ‘spread out’ a collection
of sets is. A set X ⊆ 2E(M) is d-scattered in a matroid M if all sets in
X are d-thick in M , and {clM(X) : X ∈ X} is a d-minimal cover of X
in M .

A scattered set cannot be efficiently covered with sets of larger rank.
Again, we use the symbol d; this same parameter will be passed around
our proofs in measures of thickness, firmness and scatteredness.

Our first lemma establishes some nice properties in the case where a
minimal cover of a set X ⊆ Ra(M) is just the ground set of M :
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Lemma 5.2. Let a ≥ 1 and d ≥ 1 be integers, M be a matroid with
r(M) > a, and X ⊆ Ra(M). If all sets in X are d-thick in M , and
{E(M)} is a d-minimal cover of X in M , then εM(X ) ≥ dr(M)−a, and
M is d-thick.

Proof. {clM(X) : X ∈ X} is a cover of X in M ; since {E(M)}
is a d-minimal cover of X , we have wtd

M({clM(X) : X ∈ X}) ≥
wtd

M({E(M)}), so daεM(X ) ≥ dr(M), giving the first part of the lemma.
We will now show that M is d-thick. Let F be a cover of M with

flats of smaller rank. If some X ∈ X is not contained in F for any
set F in F , then {X ∩ F : F ∈ F} is a cover of M |X of size at most
|F| with sets of smaller rank than X, so |F| ≥ d by d-thickness of X.
Otherwise, F is a X -cover, so wtd

M(F) ≥ wtd
M({E(M)}). Therefore

|F|dr(M)−1 ≥ dr(M), so |F| ≥ d. �

Our means of constructing scattered sets is the following lemma:.

Lemma 5.3. Let d ≥ 1 be an integer, M be a matroid, and X ⊆ 2E(M).
If all sets in X are d-thick in M , and F is a d-minimal cover of X in
M , then every subset of F is d-scattered in M .

Proof. Let F ′ ⊆ F . It is clear from d-minimality of F that F ′ is simple,
and that F ′ is a d-minimal cover of F ′. For each F ∈ F ′, the set {F}
is a d-minimal cover of {X ∈ X : X ⊆ F} by d-minimality of F , so by
applying Lemma 5.2 to M |F , we see that F is d-thick in M . Therefore
F ′ is d-scattered in M . �

In particular, if F is a d-minimal cover of M itself, then every subset
of F is d-scattered in M , as the singleton {e} is d-thick in M for any
e ∈ E(M).

Lemma 5.4. Let a ≥ 1 and d ≥ 1 be integers. If M is a matroid, and
X ⊆ Ra(M) is d-scattered in M , then εM(X ) ≤ dr(M)−a.

Proof. {E(M)} is a cover of X in M , so d-scatteredness of X gives
daεM(X ) = wtd

M({clM(X) : X ∈ X}) ≤ wtd
M({E(M)}) = dr(M), giving

the result. �

The parameter τ d, for an appropriate d, is what we use to gain
traction towards Theorem 1.3. Considering this parameter instead of
τa is not a major change in the setting of excluding Ua+1,b; indeed, these
two parameters differ by at most a constant factor.

Lemma 5.5. If a, b, d are integers with 1 ≤ a < b and d ≥
(

b
a

)
, and

M ∈ U(a, b), then no d-minimal cover of M contains a set of rank
greater than a, and τa(M) ≤ τ d(M) ≤ daτa(M).
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Proof. Let F be a d-minimal cover of M . By Lemma 5.3, every set in
F is d-thick, so by Lemma 3.2 and definition of d, there is no set of
rank greater than a in F . Therefore τa(M) ≤ |F| ≤ wtd

M(F) = τ d(M).
Moreover, if H is a minimum-sized cover of M with sets of rank at
most a, then τ d(M) ≤ da|H| = daτa(M). �

6. Pyramids

We now define the intermediate structure that is vital to our proof.
Let a ≥ 1, d ≥ 1, q ≥ 1 and h ≥ 0 be integers, M be a matroid,
S ⊆ Ra(M), and {e1, . . . , eh} be an independent set of size h in M .
For each i ∈ {0, 1, . . . , h}, let Mi = M/{e1, . . . , ei}.

We say (M,S; e1, . . . , eh) is an (a, q, h, d)-pyramid if

• S 6= ∅, and S is skew to {e1, . . . , eh} for all S ∈ S,
• for each i ∈ {0, 1, . . . , h} and S ∈ S, there are sets S1, . . . , Sq ∈
S, pairwise dissimilar in Mi, and each similar to S in Mi+1, and
• S is d-thick in M for all S ∈ S.

A pyramid is a structured, exponential-sized collection of thick rank-
a sets. For each 0 ≤ i < h, and each S ∈ S, contracting ei+1 in Mi

‘collapses’ the dissimilar d-thick sets S1, . . . , Sq onto the single d-thick
set S in Mi+1, without changing their rank.

When a = 1, the set S simply contains points; in this case, the value
of d is irrelevant, and the structure described in the second condition
is a set of q other points on a line through ei+1. Pyramids are based on
objects of the same name used by Geelen and Kabell in [2]; a pyramid
in their sense is a special sort of pyramid in our sense, with a = 1.

The structure of a pyramid is self-similar, and the next two easily
proved lemmas concern smaller pyramids inside a pyramid:

Lemma 6.1. If (M,S; e1, . . . , eh) is an (a, q, h, d)-pyramid, and i and
j are integers with 0 ≤ i ≤ j ≤ h, then

(M/{ei+1, . . . , ej},S; e1, . . . , ei, ej+1, . . . , eh)

is an (a, q, h− (j − i), d)-pyramid.

Lemma 6.2. Let (M,S; e1, . . . , eh) be an (a, q, h, d)-pyramid, and let
N be a minor of M/{e1, . . . , eh}. If Y ⊆ S ∩ Ra(N), then there is a
minor M ′ of M , and an (a, q, h, d)-pyramid (M ′,S ′; e1, . . . , eh) so that
Y ⊆ S ′ ⊆ S, and N |Y = (M ′/{e1, . . . , eh})|Y.

The next lemma is our means of adding a ‘level’ to a pyramid. In
accordance with the definition, it requires a point e and a smaller pyra-
mid on M/e such that e ‘lifts’ each set in the pyramid into q+1 distinct
sets. The proof, which we omit, is cumbersome but routine.
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Lemma 6.3. Let M be a matroid, e ∈ E(M) be a nonloop, a, d, q, h
be integers with q, a, d ≥ 1 and h ≥ 0, and X ⊆ Ra(M) be simple
in M . Let X>q = {X ∈ X : |[X]M/e ∩ X | > q}. If M/e has an
(a, q + 1, h, d)-pyramid minor P such that SP ⊆ X>q, then M has an
(a, q + 1, h+ 1, d)-pyramid minor P ′ such that SP ′ ⊆ X .

The following lemma shows that a pyramid can be restricted to have
bounded rank:

Lemma 6.4. Let (M,S; e1, . . . , eh) be an (a, q, h, d)-pyramid, and Mh =
M/{e1, . . . , eh}, and S ∈ S. There is a restriction M ′ of M such that

(M ′, {S ′ ∈ S : S ′ ≡Mh
S}; e1, . . . , eh)

is an (a, q, h, d)-pyramid, and r(M ′) = a+ h.

Proof. Let M ′ = M | clM(S ∪ {e1, . . . , eh}), and S ′ = {S ′ ∈ S : S ′ ≡Mh

S}. Since rMh
(S) = a, we have r(M ′) = a + h. Let 0 ≤ i < h. Let

S ′ ∈ S ′, and S ′1, . . . , S
′
q be the sets for i and S ′ as given by the definition

of a pyramid. Each S ′j is similar to S ′ in Mi, and therefore also in
Mh, so {S ′1, . . . , S ′q} ⊆ S ′, and (S ′1 ∪ . . . ∪ S ′q) ⊆ E(M ′). Therefore,
(M ′,S ′; e1, . . . , eh) is an (a, q, h, d)-pyramid. �

Our penultimate lemma verifies the set S in a pyramid has exponen-
tially many elements:

Lemma 6.5. If (M,S; e1, . . . , eh) is an (a, q, h, d)-pyramid, and Mh =
M/{e1, . . . , eh}, then εM(S) ≥ qhεMh

(S).

Proof. When h = 0, there is nothing to show. Otherwise, suppose
that the result holds for a fixed h, and let (M,S; e1, . . . , eh+1) be an
(a, q, h + 1, d)-pyramid. We know that (M/e1,S; e2, . . . , eh+1) is an
(a, q, h, d)-pyramid; so εM/e1(S) ≥ qhεMh+1

(S) by the inductive hy-
pothesis. Moreover, for each S ∈ S, there are pairwise dissimilar
sets S1, . . . , Sq ∈ S, each similar to S in M/e1. Therefore εM(S) ≥
qεM/e1(S) ≥ qh+1εMh+1

(S), so the lemma holds. �

Finally, we observe that a pyramid has a restriction with bounded
rank, containing an exponential-size subset of S. This lemma follows
routinely from Lemmas 6.1, 6.4 and 6.5.

Lemma 6.6. If (M,S; e1, . . . , eh) is an (a, q, h, d)-pyramid, and h′ ∈
{0, 1, . . . , h} is an integer, then there is a rank-(a + h′) restriction M ′

of M and a set S ′ ⊆ S, so that (M ′,S ′; e1, . . . , eh′) is an (a, q, h′, d)-
pyramid, and εM ′(S ′) ≥ qh′.
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7. Building a Pyramid

In this section, we show that a large d-scattered set allows us to either
find a d-firm subset of large rank in a minor, or a large pyramid. The
majority of this argument lies in an ugly technical lemma, which we will
adapt into two useful corollaries. To understand this lemma, it may be
helpful to read it where a0 = 1 and a = 2; in this case, X is a dense
d-scattered set of points; the first outcome corresponds to a d-point line
minor whose points are in X , the second to a (1, q + 1, h, d)-pyramid
minor, and the third to a minor containing a d-scattered collection of
lines built from X .

Lemma 7.1. There is an integer-valued function f7.1(a, d, h,m) so
that, for all integers a0, a, d, h, q with a ≥ a0 ≥ 1, d ≥ 1, q ≥ 1,
h ≥ 0, and m ≥ 0, if M is a matroid with r(M) ≥ f7.1(a, d, h,m),
and a set X ⊆ Ra0(M) is d-scattered in M and satisfies εM(X ) ≥
r(M)f7.1(a,d,h,m)qr(M), then either:

(i) there is a minor N of M and a set Y ⊆ X ∩ Ra(N) so that
rN(Y) > a, and εN(Y) ≥ dr(N)−a, and clN(Y) is d-thick in N , or

(ii) M has an (a0, q + 1, h, d)-pyramid minor P with SP ⊆ X , or
(iii) there exists an integer a1 with a0 < a1 ≤ a, a minor M ′ of M with

r(M ′) ≥ m, and a set X ′ ⊆ Ra1(M
′) so that X ′ is d-scattered in

M ′, and εM ′(X ′) ≥ r(M ′)mqr(M ′).

Proof. Let a0, a, d, h and q be positive integers such that a ≥ a0, and
let m ≥ 0 be an integer. Let p0 = 0, and for each h > 0, recursively
define ph to be an integer so that

d−1qr(r − 1)ph−1 (ph − 3a(1 + da)) ≥ (r − 1)ph−1qr−1,

for all integers r ≥ 2, and so that ph ≥ max(2, d,m+ 1).
We will show for all h that if M is a matroid with r(M) ≥ ph,

and a set X ⊆ Ra0(M) is d-scattered in M and satisfies εM(X ) ≥
r(M)phqr(M), then one of the three outcomes holds for M ; thus, setting
f7.1(a, d, h,m) = ph will satisfy the lemma. Our proof is by induction
on h. If h = 0, then, since (M, {X}; ) is an (a0, q + 1, 0, d)-pyramid for
any X ∈ X , the outcome (ii) holds. Now, fix h > 0, and suppose that
the result holds for smaller h. Let p = ph, and M be minor-minimal so
that r(M) ≥ p, and there exists a d-scattered X ⊆ Ra0(M) such that
εM ′(X ) ≥ r(M)pqr(M). Let r = r(M). If r = p, then εM(X ) ≥ ppqp >
dp−a0 ; this contradicts d-scatteredness of X by Lemma 5.4, so we may
assume that r > p.

By Lemma 4.1, there is some e ∈ E(M) so that εM(X∩Ra0(M/e)) ≥(
1− a0

r

)
εM(X ). Let X ′ = X ∩Ra0(M/e), and F be a d-minimal cover
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of X ′ in M/e such that |F| is maximized. We may assume that all sets
in F are flats of M/e. The set F is simple in M/e; for each i ≥ 1,
let Fi = F ∩ Ri(M/e), noting that each Fi is d-scattered in M/e by
Lemma 5.3. We will henceforth assume that (i) and (iii) do not hold.

7.1.1. F =
⋃

a0≤i≤aFi.

Proof of claim: Every F ∈ F must contain a set in X ′, so F contains
no set of rank less than a0. If F contains a set F of rank greater than
a, then {F} is a d-minimal cover of {X ∈ X ′ : X ⊆ F} in M/e, so
by Lemma 5.2, the matroid (M/e)|F and the set {X ∈ X ′ : X ⊆ F}
satisfy (i), a contradiction. �

7.1.2. There is a set X ′′ ⊆ X ′ that is d-scattered in M/e and satisfies
εM(X ′′) ≥ qr (rp − a(1 + da)rp−1)

Proof of claim: Each X ∈ X ′ is contained in some set in F ; for each
F ∈ F , let XF = {X ∈ X ′ : X ⊆ F}. By Lemma 5.4, each F ∈ F
satisfies εM(XF ) = εM |F (XF ) ≤ dr(M |F )−a0 ≤ da+1−a0 ≤ da. Moreover,
each Fi is simple and d-scattered in M/e, so we may assume that
|Fi| ≤ rmqr for all i > a0, as (iii) does not hold. Since X ′ is the union
of the XF , we have∑

F∈Fa0

(εM(XF )) ≥ εM(X ′)−
∑

a0<i≤a
F∈Fi

εM(XF )

≥ (1− a0

r
)rpqr − da

∑
a0<i≤a

|Fi|

≥ (1− a
r
)rpqr − adarmqr

≥ qr(rp − a(1 + da)rp−1),

as p− 1 ≥ m. Let X ′′ =
⋃

F∈Fa0
XF . Now, since Fa0 is simple in M/e,

and every set in Fa0 and every set in X ′ has rank a0 in M/e, no set
in X ′′ is contained in two different sets in Fa0 . Therefore εM(X ′′) =∑

F∈Fa0
(εM(XF )). Moreover, d-minimality of F implies that Fa0 =

{clM/e(X) : X ∈ X ′′} is a d-minimal cover of X ′′ in M/e. Therefore,
X ′′ is d-scattered in M/e, giving the claim. �

Let Y be a maximal subset of X ′′ that is simple in M . Since X ′′ is
d-scattered in both M and M/e, so is Y . We have r(M/e) = r−1 ≥ p,
so minor-minimality of M gives |Y| = εM/e(Y) < (r(M/e))pqr(M/e) =
(r − 1)pqr−1. Let Y>q = {Y ∈ Y : |[Y ]M/e ∩ Y| > q}, and Y≤q =
Y − Y>q. Since Y is d-scattered and simple in M , Lemma 5.4 gives
|[Y ]M/e ∩ Y| = |{Y ′ ∈ Y : Y ′ ⊆ clM(Y ∪ {e})}| ≤ d(a0+1)−a0 = d for all
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Y ∈ Y . Now,

qr(rp − a(1 + da)rp−1) ≤ |Y|
= |Y>q|+ |Y≤q|
≤ dεM/e(Y>q) + qεM/e(Y≤q)

≤ dεM/e(Y>q) + qεM/e(Y)

< dεM/e(Y>q) + q(r − 1)pqr−1.

Rearranging this inequality yields

εM/e(Y>q) ≥ d−1qr(rp − (r − 1)p − a(1 + da)rp−1)

≥ d−1qr(p(r − 1)p−1 − a(1 + da)rp−1)

= d−1qr(r − 1)p−1
(
p− a(1 + da)

(
r

r−1

)p−1
)
.

By hypothesis, r ≥ p, so
(

r
r−1

)p−1 ≤
(

p
p−1

)p−1

≤ 2.718 . . . < 3. This

gives

εM/e(Y>q) > d−1qr(r − 1)p−1 (p− 3a(1 + da))

≥ r(M/e)ph−1qr(M/e)

by definition of p = ph. We may assume that (i) and (iii) both fail
for M/e and Y>q; thus, by induction on h, the matroid M/e has an
(a0, q + 1, h− 1, d)-pyramid minor P ′ with SP ′ ⊆ Y>q. By Lemma 6.3,
M has an (a0, q+ 1, h, d)-pyramid minor P with SP ⊆ Y>q ⊆ X , which
gives (ii). �

Our first corollary, which will be used in the next section, finds a
pyramid or a firm set of rank greater than a, starting with a collection
of thick rank-a sets. The corollary is obtained by specialising to the
case where a = a0, thus rendering the third outcome impossible.

Corollary 7.2. There is an integer-valued function f7.2(a, d, h) so that,
for any integers a, d, h, q with h ≥ 0, a ≥ 1, d ≥ 2 and q ≥ 1, if M is a
matroid such that r(M) ≥ f7.2(a, d, h), and X ⊆ Ra(M) is a set such
that every X ∈ X is d-thick in M , and εM(X ) ≥ r(M)f7.2(a,d,h)qr(M),
then either

(i) there is a minor N of M , and a set Y ⊆ X ∩ Ra(N) so that
rN(Y) > a, and Y is d-firm in N , or

(ii) M has an (a, q + 1, h, d)-pyramid minor P , with SP ⊆ X .

Proof. Let a, d, h, q be integers with h ≥ 0, a ≥ 1, d ≥ 2 and q ≥ 1. Set
f7.2(a, d, h) = f7.1(a, d, h, 0). Let M be a matroid such that r(M) ≥
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f7.2(a, d, h), and X ⊆ Ra(M) be a set such that every x ∈ X is d-thick
in M , and εM(X ) ≥ r(M)f7.2(a,d,h)qr(M). We consider two cases:

Case 1: X is d-scattered in M .
By definition of f7.2, we can apply Lemma 7.1 to X . Since there is

no integer a1 with a < a1 ≤ a, we know that 7.1(iii) cannot hold. If
7.1(ii) holds, then we have our result. We may thus assume that 7.1(i)
holds; now, outcome (i) follows from Lemma 3.4.

Case 2: X is not d-scattered in M .
By definition, {clM(X) : X ∈ X} is not a d-minimal cover of X

in M , so any d-minimal cover of X contains a set F of rank greater
than a. Let XF = {X ∈ X : X ⊆ F}. The cover {F} must be a d-
minimal cover of XF , so by Lemma 5.2 applied to M |F and XF , we have
εM(XF ) ≥ dr(M |F )−a. Again, outcome (i) follows from Lemma 3.4. �

The second corollary essentially reduces Theorem 1.3 to the case
where M is a pyramid:

Corollary 7.3. There is an integer-valued function f7.3(a, b, d, h) so
that, for any integers a, b, d, h, q with q ≥ 1, d ≥ 2, h ≥ 0, and 1 ≤ a <
b, if M ∈ U(a, b) satisfies r(M) > 1 and τa(M) ≥ r(M)f7.3(a,b,d,h)qr(M),
then there is some a0 ∈ {1, . . . , a} such that M has an (a0, q + 1, h, d)-
pyramid minor.

Proof. Let a, b, d, h, q be integers with q ≥ 1, d ≥ 2, h ≥ 0 and
1 ≤ a < b. Let d′ = max(d,

(
b
a

)
). We define a sequence of integers

pa+1, . . . , p1; let pa+1 = 0, and for each 1 ≤ i ≤ a, recursively set
pi = max(pi+1, f7.1(a, d

′, h, pi+1)). Note that p1 ≥ p2 ≥ . . . ≥ pa+1.
Set f7.3(a, b, h, d) to be an integer p ≥ p1 so that a−1(d′)−arp ≥ rp1

for all integers r ≥ p1. Let M be a matroid with r(M) ≥ p, and
τa(M) ≥ r(M)pqr(M).

7.3.1. Let 1 ≤ i ≤ a. If r(M) ≥ pi, and X ⊆ Ri(M) is d′-scattered in
M and satisfies εM(X ) ≥ r(M)piqr(M), then M has an (a0, q+ 1, h, d)-
pyramid minor for some i ≤ a0 ≤ a.

Proof of claim: By definition of pi, we can apply Lemma 7.1 to X in
M . If 7.1(i) holds, then M has a d′-thick minor of rank greater than
a. Since d′ ≥

(
b
a

)
, this contradicts M ∈ U(a, b) by Lemma 3.2. Since

d′ ≥ d, 7.1(ii) gives the claim, so we may assume that 7.1(iii) holds. If
i = a, this is impossible, so the claim is proven. Otherwise, we have
the hypotheses for a minor of M and some larger i ≤ a, so the claim
holds by induction. �

Let F be a d′-minimal cover ofM . Clearly F is simple. By Lemma 5.5,
we have wtd′

M(F) ≥ τa(M), and every set in F has rank at most a, so
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εM(F) = |F| ≥ (d′)−a wtd′
M(F) ≥ (d′)−ar(M)pqr(M). For each 1 ≤ i ≤

a, let Fi = F ∩Ri(M). By a majority argument, some 1 ≤ i ≤ a sat-
isfies εM(Fi) = |Fi| ≥ a−1|F| ≥ a−1(d′)−ar(M)pqr(M) ≥ r(M)p1qr(M) ≥
r(M)piqr(M). The set Fi is d′-scattered in M by Lemma 5.3, and
r(M) ≥ p ≥ pi, so the result follows from the claim. �

8. Finding Firmness

This section explores what can be done with a large collection X of
thick rank-a sets in a matroid M with no large projective geometry as
a minor. We prove a single lemma, which finds a large subcollection
of X that is firm in a minor of M . When a = 1, this is equivalent to
finding a large rank-2 uniform minor, and thus Theorems 2.4 and 2.5
appear in the base case of this lemma.

Lemma 8.1. There is an integer-valued function f8.1(a, d, n, q) so that,
for any positive integers a, d, n, q, if M is a matroid with r(M) ≥
f8.1(a, d, n, q), and X ⊆ Ra(M) is a set so that every X ∈ X is
f8.1(n, q, a, d)-thick in M and εM(X ) ≥ r(M)f8.1(a,d,n,q)qr(M), then ei-
ther

(i) M has a PG(n− 1, q′)-minor for some q′ > q, or
(ii) there is a minor N of M , and a set Y ⊆ X ∩ Ra(N) so that

rN(Y) > a, and Y is d-firm in N .

Proof. Let n, q, d be positive integers. Set

f8.1(1, d, n, q) = max(2, f2.4(d, n), dα2.5(d, n, q)e).

We now define f8.1(a, d, n, q) for general a recursively; for each a > 1,
suppose that f8.1(a − 1, d, n, q) has been defined. Let h be an integer
so that

(3a)−1d−3a(q + 1)h ≥ (h+ a)f8.1(a−1,d,n,q)qh+a.

Let s = dh−a, and let h′ be an integer so that

(as)−1d−as(q + 1)h′ ≥ (h′ + a)f8.1(a−1,d,n,q)qh′+a;

Set f8.1(a, d, n, q) = max(s+ 1, f7.2(a, d
′, h+ h′)).

Let a ≥ 1 be an integer, M be a matroid with r(M) ≥ f8.1(a, d, n, q),
and let X ⊆ Ra(M) be a set whose elements are all f8.1(a, d, n, q)-
thick in M , satisfying εM(X ) ≥ r(M)f8.1(a,d,n,q). We may assume that
M = M |X ; we show that M satisfies (i) or (ii), first resolving the case
where a = 1, and proceeding by induction on a.

8.1.1. If a = 1, then M satisfies (i) or (ii).
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Proof of claim: Every X ∈ X is a rank-1 set, and therefore τ1(M) ≥
r(M)f8.1(1,d,n,q)qr(M).

If q = 1, then r(M)f8.1(1,d,n,q) ≥ r(M)f2.4(d,n), so if (i) does not hold,
then M has a U2,d-minor by Theorem 2.4. This minor corresponds to
a simple subset of X in a rank-2 minor of M , containing d pairwise
dissimilar rank-1 sets. This is a rank-2, d-firm subset of X in a minor
of M , giving (ii).

If q > 1, then τ1(M) ≥ f8.1(1, d, n, q)q
r(M) ≥ α2.5(d, n, q)q

r(M), so the
result follows from Theorem 2.5 in a similar way to the q = 1 case. �

Now, assume inductively that a > 1, and that f8.1(a
′, d′, n′, q′) as

defined satisfies the lemma for all a′ < a, and all integers d′, q′, n′ ≥ 1.
Suppose further that (i) does not hold for M .

8.1.2. M has an (a, q+1, h+h′, d′)-pyramid minor P so that SP ⊆ X .

Proof of claim: By definition of f8.1(a, d, n, q), we know that r(M ′) ≥
f7.2(a, d, h+ h′), εM ′(X ) ≥ r(M)f7.2(a,d,h+h′)qr(M), and all sets in X are
d′-thick in M ; we can therefore apply Corollary 7.2 to M . Since d′ ≥ d,
outcome 7.2(i) does not hold, giving 7.2(ii) and hence the claim. �

Let P = (M ′,S; e1, . . . , eh+h′). By Lemma 6.6, we may assume
that r(M ′) = h′ + h + a. Let J = {e1, . . . , eh}. By Lemma 6.1,
(M ′/J,S; eh+1, . . . , eh+h′) is an (a, q+1, h′, d)-pyramid, so by Lemma 6.5,
there is a set S ′ ⊆ S such that |S ′| ≥ (q + 1)h′ , and S ′ is simple in
M ′/J .

8.1.3. There is a set W ⊆ S ′ so that |W| = s, and W is mutually skew
in M ′/J .

Proof of claim: Suppose there is no such W . By Lemma 4.2, there a
minor N of M ′/J such that r(N) ≥ r(M ′/J)−as, a set Y ⊆ S ′∩Ra(N)
such that |Y| ≥ (as)−1|S ′|, and some nonloop e of N so that e ∈ clN(Y )
for all Y ∈ Y . We will apply the inductive hypothesis on a to N/e.

The set Y ⊆ S ′ is simple in M/J , so by Lemma 3.5, we have

εN(Y ) ≥ dr(N)−r(M ′/J)εM ′/J(Y) ≥ d−as|Y| ≥ (as)−1d−as|S ′|
≥ (as)−1d−as(q + 1)h′ ≥ (h′ + a)f8.1(n,q,a−1,d)qh′+a.

Since r(N/e) < r(N) ≤ r(M ′/J) = a+ h′, this gives

εN(Y) ≥ r(N/e)f8.1(n,q,a−1,d)qr(N/e).

Because e ∈ clN(Y ) for all Y ∈ Y , we also have Y ⊆ Ra−1(N/e), and
εN/e(Y) = εN(Y). Moreover, r(N/e) ≥ r(M ′/J)−as−1 ≥ a+h′−as−
1 ≥ f8.1(n, q, a− 1, d), so by the inductive hypothesis, there is a minor
N ′ of N/e, and a set Y ′ ⊆ Y ∩Ra−1(N

′) such that rN ′(Y ′) ≥ a, and Y ′
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is d-firm in N ′. If N ′ = N/(C ∪{e})\D, where C ∪{e} is independent
in N , then it is straightforward to check that Y ′ ⊆ Ra(N/C), and
rN/C(Y ′) > a, and Y ′ is d-firm in N/C. This gives (ii).

�

Let W = {W1, . . . ,Ws}, and for each i ∈ {1, . . . , s}, let Si = {S ∈
S : S ≡M ′/J Wi}. By Lemma 6.4, there is, for each i ∈ {1, . . . , s},
a rank-(a + h) restriction Mi of M ′ such that (Mi,Si; e1, . . . , eh) is an
(a, q + 1, h, d′)-pyramid.

8.1.4. For each i ∈ {1, . . . , s}, there are distinct sets Vi, Zi, Z
′
i ∈ Si

such that {Vi, Zi, Z
′
i} is mutually skew in Mi.

Proof of claim: By Lemma 6.5, Si has a subset S ′ of size (q + 1)h that
is simple in Mi. If there is a subset of S ′i of size 3 that is skew in Mi,
then the claim follows. Otherwise, by Lemma 4.2, there is a minor
Ni of Mi, with r(Ni) ≥ r(Mi) − 3a, a set Y ⊆ S ′i ∩ Ra(Ni) such that
|Y| ≥ (3a)−1d−3a|S ′i|, and a nonloop e of Ni so that e ∈ clNi

(Y ) for all
Y ∈ Y . The proof is now very similar to that of the previous claim,
following from the definition of h. �

Let V = {V1, . . . , Vs}. Since Vi ≡M/J Wi for each i, the set V is
mutually skew in M ′/J . This last claim uses Zi and Z ′i to contract the
elements of V , one by one, into the span of J without reducing their
rank, while maintaining the ‘skewness’ and structure of the elements
of V not yet contracted:

8.1.5. For each i ∈ {0, . . . , s}, there is a minor Ni of M such that

(a) {Vi+1, . . . , Vs} is mutually skew in Ni/J ,
(b) Ni|E(Mj) = Mj for each j ∈ {i+ 1, . . . , s}, and
(c) {V1, . . . , Vi} ⊆ Ra(Ni| clNi

(J)), and {V1, . . . , Vi} is simple in Ni.

Proof of claim: When i = 0, the claim is clear, with N0 = M ′. Suppose
inductively that 1 ≤ i ≤ s, and that the claim holds for smaller i. We
will construct Ni by contracting a rank-a set of Ni−1|E(Mi). By defini-
tion, Z ′i and Vi are similar to Wi in Mi/J , so rMi/J(Z ′i) = rMi/J(Vi) = a;
Let I ⊆ Z ′i be an independent set of size (a−1) in Mi/J . So {Vi, Zi} is a
skew pair of rank-a sets in Mi/I, and r(Mi/I) = h+a−(a−1) = h+1.
Since I is independent in Mi/J , it is skew to J in Mi, so rMi/I(J) = h.
Moreover, rMi/(J∪I)(Vi) = rMi/(J∪I)(Zi) = rMi/(J∪I)(Z

′
i) = 1, so neither

Zi nor Vi is contained in clMi/I(J).
By the inductive hypothesis, (Ni−1/I)|E(Mi) = Mi/I, so we can

extend the observations just made about Mi/I to apply in Ni−1/I.
Therefore, in the matroid Ni−1/I, {Vi, Zi} is a skew pair of rank-a sets,
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each contained in the rank-(h+ 1) set E(Mi), which itself contains the
rank-h set J , and clNi−1/I(J) does not contain Zi or Vi.

For each 1 ≤ k < i, let Fk = ∅ if rNi−1/I(Vk ∪ Vi) > a + 1, and
Fk = clNi−1/I(Vk ∪ Vi) otherwise. Since Vi and Zi are skew sets of rank
a > 1 in Ni−1/I, and Fk is a flat of rank at most a+ 1 containing Vi, it
follows that Zi 6⊆ Fk, so rNi−1/I(Fk ∩ Zi) < a. Also, the set clNi−1/I(J)
does not contain Zi. The set Zi is (d′ ≥ s + 1)-thick in Ni−1/I, and
there are at most s− 1 possible k, so there is some f ∈ Zi that is not
in any of the sets Fk, and not in clNi−1/I(J). Set Ni = Ni−1/(I ∪ {f}).
By choice of f , we have rNi

(J) = h = rNi−1
(J), so I ∪ {f} is skew to J

in Ni−1; we now show that Ni satisfies (a), (b) and (c).

(a) We have I∪{f} ⊆ Zi∪Z ′i. The sets Zi and Z ′i are both similar to Vi

in Mi/J = (Ni−1/J)|E(Mi), so I ∪{f} ⊆ clNi−1/J(Vi). {Vi, . . . , Vs}
is skew in Ni−1/J by the inductive hypothesis, so {Vi+1, . . . , Vs} is
skew in Ni−1/(J ∪ I ∪ {f}) = Ni/J .

(b) Let i < j ≤ s. Since (Mj,Sj; e1, . . . , eh) is an (a, q+1, h, d)-pyramid
and Vj ∈ Sj, the set J ∪ Vj is spanning in Mj, and J is skew
to Vj in Mj. As we saw in (a), the set I ∪ {f} is skew to J in
Ni−1, and is skew to Vj in Ni−1/J . Now, Mj = Ni−1|E(Mj) and
Mi = Ni−1|E(Mi), so

Ni−1((I ∪ {f}) ∪ (J ∪ Vj)) = rNi−1/J(I ∪ {f} ∪ Vj) + rNi−1
(J)

= rNi−1/J(I ∪ {f}) + rNi−1/J(Vj) + rNi−1
(J)

= rNi−1
(I ∪ {f}) + rNi−1

(Vj) + rNi−1
(J)

= rNi−1
(I ∪ {f}) + rNi−1

(Vj ∪ J).

Therefore, I ∪ {f} and Vj ∪ J are skew in Ni−1. Since Vj ∪ J is
spanning in Mj, this gives Ni|E(Mj) = Ni−1|E(Mj) = Mj.

(c) Since I ∪ {f} is skew to J in Ni−1, it is clear that {V1, . . . , Vi−1} ⊆
Ra(Ni| clNi

(J)) and that {V1, . . . , Vi−1} is simple in Ni. Moreover,
Vi is a rank-a set that is skew to Zi ∪ Z ′i in Ni−1, and therefore is
skew to I ∪ {f}, so rNi

(Vi) = a. It therefore remains to show that
Vi is not similar in Ni to any of V1, . . . , Vi−1.

Suppose for a contradiction that Vi ≡Ni
Vk for some 1 ≤ k <

i. Either Vi and Vk are similar in Ni−1/I, or Vi and Vk lie in
a common rank-(a + 1) flat F of Ni−1/I, and contracting f ∈
F makes the two sets similar in Ni. In the first case, this gives
0 = rNi−1/(I∪Vk)(Vi) ≥ rNi−1/(I∪J)(Vi) = rNi−1/J(Vi) − rNi−1

(I) =
a − (a − 1) = 1, a contradiction. In the second case, we have
f ∈ clNi−1/I(Vi ∪ Vk), which does not occur by choice of f .

�
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Now, let N = Ns| clNs(J). We have r(N) ≤ h, and V is a simple
subset of Ra(N) by construction, so εN(V) = |V| = s = dh−a. Also,
V ⊆ X and d′ ≥ d, so every V ∈ V is d-thick in N . (ii) now follows by
applying Lemma 3.4 to V in N . �

9. Upgrading a Pyramid

The goal of this section is to prove that a sufficiently large pyramid
minor will be enough to prove Theorem 1.3. We show that for very
large h and d, an (a0, q + 1, h, d)-pyramid will either contain a thick
set of rank greater than a, or a large projective geometry over GF(q′)
for some q′ > q. We first prove this when a0 = a, and then show that,
for a0 < a, we can find a large pyramid as a minor with a larger a0,
thereby ‘upgrading’ our pyramid.

An important intermediate object is an (a0, q+1, ·, ·)-pyramid P ‘on
top of’ a very firm set X ⊆ SP with rank greater than a0. We construct
such objects using the results in the previous section; this is the reason
that we need to exclude a projective geometry.

We upgrade a pyramid of height h on top of a firm set by ‘lifting’ the
firm set one level up the pyramid h times, sacrificing a large amount of
firmness at each step. Our next two lemmas give the machinery needed
for this; the first simply lifts a firm set up a pyramid of height 1:

Lemma 9.1. Let a0, a, q, d, d
′ be integers with 1 ≤ a0 ≤ a, d, d′ ≥ 2,

and q ≥ 2. If (M,S; e) is an (a0, q, 1, d
′)-pyramid, and X ⊆ S is

dq+2-firm in M/e and satisfies rM/e(X ) = a, then either

(i) there exists Y ⊆ S so that rM(Y) = a+ 1 and Y is d-firm in M ,
or

(ii) there exist sets X1, . . . ,Xq ⊆ S such that
• each Xi is d-firm in M , and rM(Xi) = a, and
• the Xi are pairwise dissimilar in M , and each is skew to {e}

in M , and similar to X in M/e.

Proof. We may assume that X is spanning in M/e, so r(M) = a + 1.
Suppose that the first outcome does not hold. Let I be an indexing set
for X (i.e. let X = {X i : i ∈ I}, with |I| = |X |). For each i ∈ I, let
X i

1, . . . , X
i
q be pairwise dissimilar sets in S, each similar to X i in M ,

as given by the definition of a pyramid.

9.1.1. There are sets X1, . . . ,Xq ⊆ S and I1, . . . , Iq ⊆ I such that the
following conditions hold:

• for each j ∈ {1, . . . , q}, the set Ij is the indexing set for Xj in
I (i.e. Xj = {X i

j : i ∈ Ij}),
• I ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Iq, and
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• each j ∈ {1, . . . , q} satisfies |Xj| ≥ d−j|X | and rM(Xj) ≤ a.

Proof of claim: We construct the sets in question by induction on j.
Suppose that 1 ≤ j < q, and that the sets X1, . . . ,Xj−1 and I1, . . . , Ij−1

have been defined to satisfy the conditions. Let I0 = I, and X0 = X ;
note that |X0| ≥ d0|X |. As (i) does not hold, the set {X i

j : i ∈ Ij−1}
is not a rank-(a + 1), d-firm set in M , so we may assume that there
is some Xj ⊆ {Xj

i : I ∈ Ij−1} such that |Xj| ≥ d−1|{X i
j : i ∈ Ij−1}|

and rM(Xj) ≤ a. Now, |Xj| ≥ d−1|{X i
j : i ∈ Ij−1}| = d−1|Ij−1| =

d−1|Xj−1| ≥ d−j|X |. The set Xj, along with Ij = {i ∈ Ij−1 : X i
j ∈ Xj},

satisfies the required conditions. �

9.1.2. For each j ∈ {1, . . . , q}, the set Xj is d-firm in M , and rM(Xj) =
rM/e(Xj) = a.

Proof of claim. We know that rM(Xj) ≤ a; let X ′j ⊆ Xj satisfy |X ′j | ≥
d−1|Xj|, and let I ′j = {i ∈ Ij : X i

j ∈ X ′j}. Let X ′ = {X i : i ∈ I ′j}. By
definition of X and Xi, each set in X ′ is similar in M/e to a set in X ′j ,
and vice versa. We therefore have |X ′| = |X ′j | and rM/e(X ′) = rM/e(X ′j).
Now, |X ′| = |X ′j | ≥ d−1|Xj| > d−(q+2)|X |, and X ′ ⊆ X , so dq+2-firmness
of X gives rM/e(X ′) = rM/e(X ) = a. Therefore,

a ≥ rM(Xj) ≥ rM(X ′j) ≥ rM/e(X ′j) = rM/e(X ′) = rM/e(X ) = a,

and the lemma follows from definition of firmness, and the fact that
rM/e(Xj) ≥ rM/e(X ′j). �

9.1.3. The sets Xj : j ∈ {1, . . . , q} are pairwise dissimilar in M .

Proof of claim: Suppose not; let Xj and Xj′ be similar in M , where
1 ≤ j < j′ ≤ q. By 9.1.2, rM(Xj ∪ Xj′) = rM(Xj) = a. Let i ∈ Ij′ . We
have X i

j′ ∈ Xj′ by definition, and Ij′ ⊆ Ij, so i ∈ Ij and X i
j ∈ Xj. But

X i
j and X i

j′ are dissimilar rank-a0 sets in M , each similar to the rank-a0

set X i in M/e. Therefore, e ∈ clM(X i
j∪X i

j′), and so e ∈ clM(Xj∪X ′j) =
clM(Xj). This contradicts the previous claim. �

By assumption, the set X is spanning in the rank-a matroid M/e,
and by the second part of 9.1.2, the set Xj is also spanning in M/e, so
Xj ≡M/e X . By the claims above, (ii) follows. �

The next lemma iterates the previous one h times to upgrade a pyra-
mid completely - here, a0 is upgraded to a1 in the second outcome:

Lemma 9.2. Let a0, a1, q and d be integers with 1 ≤ a0 ≤ a1 and
d, q ≥ 2, and let (M,S; e1, . . . , eh) be an (a0, q, h, d)-pyramid. For each
0 ≤ i ≤ h, let Mi = M/{e1, . . . , ei}. If X ⊆ S is a set so that

rMh
(X ) = a1 and X is d(q+2)h

-firm in Mh, then either
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(i) there is an integer 1 ≤ i ≤ h, and a set Y ⊆ S so that Y is d-firm
in Mi, and rMi

(Y) > a1, or
(ii) there is a set T so that (M, T ; e1, . . . , eh) is an (a1, q, h, d)-pyramid.

Proof. Assume that (i) does not hold; we will build a pyramid-like
structure inductively.

9.2.1. For each 0 ≤ i ≤ h, there exists a nonempty set Xi of subsets
of S satisfying the following:

• clM(X ) is skew to {ei+1, . . . , eh} in Mi for all X ∈ Xi,
• For all X ∈ Xi and i′ such that i ≤ i′ < h, there exist sets
X1, . . . ,Xq ∈ Xi, pairwise dissimilar in Mi′, and each similar to
X in Mi′+1, and
• For all X ∈ Xi, we have rMi

(X ) = a, and X is d(q+1)i
-firm in

Mi.

Proof of claim: Let Xh = {X}. It is clear that Xh satisfies all three
conditions. Fix 0 ≤ i < h, and suppose that Xi+1 has been defined to
satisfy the conditions. Let X ∈ Xi+1. We know that (Mi,S; ei+1) is
an (a0, q, 1, d)-pyramid; by the inductive hypothesis, the set X satisfies

the hypotheses of Lemma 9.1 for this pyramid, and d(q+2)i
. If 9.1(i)

holds, then so does outcome (i) of the current lemma, as d(q+2)i ≥ d.
Otherwise, let P (X ) = {X1, . . . ,Xq}, where X1, . . . ,Xq are the sets
given by 9.1(ii). Now, Xi =

⋃
X∈Xi+1 P (X ) will satisfy the claim, which

now follows inductively. �

Let T = {clM(X ) : X ∈ X0}. Each set in X0 is d-firm in M , so all
sets in T are d-thick by Lemma 3.3. It is now clear from the claim that
(M, T ; e1, . . . , eh) is an (a, q, h, d)-pyramid. �

Having seen that a pyramid on top of a firm set is a useful object,
we now show that such an object can be constructed by Lemma 8.1 by
excluding a projective geometry.

Lemma 9.3. There is an integer-valued function f9.3(a0, d, n, q, h) so
that, for any integers a0, d, n, q, d

′, h′ with a0, d, n, q ≥ 1 and min(d′, h′) ≥
f9.3(a0, d, n, q, h), if P is an (a0, q+ 1, h′, d′)-pyramid on a matroid M ,
then either

(i) M has a PG(n− 1, q′)-minor for some q′ > q, or
(ii) there is a minor M ′ of M , an (a0, q + 1, h, d)-pyramid

(M ′,S ′; e1, . . . , eh)

such that S ′ ⊆ SP , and a set Y ⊆ S ′ such that Y is d-firm in
M ′/{e1, . . . , eh} and rM ′/{e1,...,eh}(Y) > a0.



22 GEELEN AND NELSON

Proof. Let a0, d, n, q be integers at least 1. Let h∗ be an integer so
that (q + 1)h∗ ≥ (a0 + h∗)f8.1(a0,d,n,q)qa0+h∗ , and h∗ ≥ f8.1(a0, d, n, q).
Set f9.3(a0, d, n, q, h) = h + h∗. Now, let h′ be d′ are integers with
min(h′, d′) ≥ h+h∗, and P = (M,S; e1, . . . , eh′) be an (a0, q+1, h′, d′)-
pyramid on a matroid M . We show that M satisfies one of the two
outcomes; by Lemma 6.6, we may assume that h′ = h + h∗, and that
r(M) = h+ h∗ + a0. Let Mh = M/{e1, . . . , eh}.

Now, r(Mh) = h∗ + a0, and Q = (Mh,S; eh+1, . . . , eh+h∗) is an
(a0, q + 1, h∗, d′)-pyramid, and by Lemma 6.5, εMh

(S) = (q + 1)h∗ ≥
(h∗ + a0)

f8.1(a0,d,n,q)qh∗+a0 = r(Mh)f8.1(a0,d,n,q)qr(Mh). Since d′ ≥ h ≥
f8.1(a0, d, n, q), we can apply Lemma 8.1 to S in Mh. We may assume
that 8.1(i) does not hold, so 8.1(ii) does; therefore, there is a minor
N of Mh and a set Y ⊆ S ∩ Ra(N) such that rN(Y) > a0, and Y
is d-firm in N . By Lemma 6.2, there is an (a0, q + 1, h, d′)-pyramid
(M ′,S ′; e1, . . . , eh) so that Y ⊆ S ′, and N |Y = (M ′/{e1, . . . , eh})|Y .
Since d′ ≥ d, this gives (ii). �

Finally, we combine the lemmas in this section to prove what we
want: any (a, q+1, h, d)-pyramid for very large h and d contains either
a thick minor of rank greater than a, or a large projective geometry
over a field larger than GF(q). This tells us that finding such a pyramid
is enough to prove Theorem 1.3.

Lemma 9.4. There is an integer-valued function f9.4(a, d, n, q) so that,
for any integers n, q, a0, a, d, d

∗, h∗ with n, q ≥ 1, d ≥ 2, 1 ≤ a0 ≤ a,
and min(h∗, d∗) ≥ f9.4(a, d, n, q), if P is an (a0, q + 1, h∗, d∗)-pyramid
on a matroid M , then either

(i) M has a PG(n− 1, q′)-minor for some q′ > q, or
(ii) M has a d-thick minor N , with r(N) > a.

Proof. Let n, q, a0, a, d be integers with n, q ≥ 1, d ≥ 2, and 1 ≤ a0 ≤ a.
For each pair of integers i, j with 1 ≤ i ≤ j ≤ a, recursively define
integers hi

j and di
j as follows: (hi

j and di
j are well-defined for all i, j in

the range, as ha
a and da

a are defined, and the definitions of hi
j and di

j

depend only on pairs (i′, j′) exceeding (i, j) lexicographically)

hi
j =


f9.3(a, d, n, q, 0) if j = a

f9.3(a, d
i
i+1, n, q, h

i
i+1) if j < a and i = j

hi+1
i+1 + hi

j+1 if 1 ≤ i < j < a

di
j =


f9.3(a, d, n, q, 0) if j = a

f9.3(a, d
i
i+1, n, q, h

i
i+1) if j < a and i = j

(max(di+1
i+1, d

i
j+1))

hi+1
i+1 if 1 ≤ i < j < a
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Note that if (i, j) exceeds (i′, j′) lexicographically, then hi
j ≤ hi′

j′ and

di
j ≤ di′

j′ . We set f9.4(a, d, n, q) = max(h1
1, d

1
1). The lemma will follow

from a technical claim:

9.4.1. Let 1 ≤ i ≤ j ≤ a, and d and h be integers so that d ≥ di
j and

h ≥ hi
j. If P = (M,S; e1, . . . , eh) is an (i, q + 1, h, d)-pyramid, and

X ⊆ S is d-firm in M/{e1, . . . , eh} and satisfies rM/{e1,...,eh}(X ) = j,
then (i) or (ii) holds for M .

Proof of claim: By Lemma 6.6, we may assume that h = hi
j. If j = a,

then hi
j = di

j = f9.3(a, d, n, q, 0); we can therefore apply Lemma 9.3 to
P . Outcome 9.3(i) gives (i), and applying Lemma 3.3 to the X and M ′

given by 9.3(ii) gives (ii). Suppose inductively that 1 ≤ i ≤ j < a, and
that the claim holds for all (i′, j′) lexicographically greater than (i, j).

If j = i, then by Lemma 9.3, there is a minor M ′ of M , an (i, q +
1, hi

i+1, d
i
i+1)-pyramid (M ′,S ′; e1, . . . , hi

i+1) on M ′, and a set X ′ ⊆ S ′
so that X ′ is di

i+1-firm in M ′/{e1, . . . , ei
i+1}, and rM ′(X ′) ≥ i + 1.

Let i′ = rM ′(X ). If i′ > a, then by Lemma 3.3, outcome (ii) holds.
Otherwise, since hi

i+1 ≥ hi
i′ and di

i+1 ≥ di
i′ , the lemma follows from the

inductive hypothesis.
We may now assume that 1 ≤ i < j < a. For each 0 ≤ k ≤ h, write

Mk for M/{e1, . . . , ek}. We have h = hi
j = hi

j+1 + hi+1
i+1. Let h′ = hi

j+1,

and h′′ = hi+1
i+1. By Lemma 6.1, P ′ = (Mh′ ,S; eh′+1, . . . , eh′+h′′) is an

(i, q+1, h′′, di
j)-pyramid, and X is di

j-firm in Mh = Mh′/{eh′+1, . . . , eh}.
By definition, d ≥ (max(di+1

i+1, d
i
j+1))

h′′ , so we can apply Lemma 9.2 to
P ′.

If 9.2(i) holds for P ′, then there is some 1 ≤ ` ≤ h′′, a set Y ⊆ S that
is di

j+1-firm in Mh′/{eh′+1, . . . , eh′+`} = Mh′+`, and satisfies rMh′+`
(Y) >

j; let j′ = rMh′+`
(Y). If j′ > a, then (ii) follows from Lemma 3.3.

Otherwise, by Lemma 6.1, P ′′ = (M/{eh′+1, . . . , eh′+`},S; e1, . . . , eh′) is
an (i, q+1, h′, d)-pyramid, and since d ≥ di

j+1 ≥ di
j′ and h′ = hi

j+1 ≥ hi
j′ ,

the pyramid P ′′ and the set Y satisfy the hypotheses of the claim for
(i, j′). The claim follows by induction.

If 9.2(ii) holds for P , then there is a (j, q + 1, h′′, di+1
i+1)-pyramid Q

on Mh′ . We have h′′ = hi+1
i+1 ≥ hj

j, and for any X ∈ SQ, the set {X}
is trivially dj

j-firm in Mh, so Q and {X} satisfy the hypotheses of the
claim for (j + 1, j + 1). Again, the claim follows inductively.

�

Let h∗ and d∗ be integers with min(h∗, d∗) ≥ f9.4(a, d, n, q), and P =
(M,S; e1, . . . , eh∗) be an (a0, q + 1, h∗, d∗)-pyramid. For any X ∈ SP ,
the set {X} is d∗-firm in M/{e1, . . . , eh∗}, and d∗ ≥ f9.4(a, d, n, q) ≥
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d1
1 ≥ da0

a0
. Moreover, h∗ ≥ f9.4(a, d, n, q) ≥ h1

1 ≥ ha0
a0

, so the lemma
follows by applying the claim to P and {X}. �

10. The Main Theorems

We are now able to prove Theorem 1.3, which we restate here for
convenience:

Theorem 10.1. There is an integer-valued function f10.1(a, b, n, q) so
that, for any integers 1 ≤ a < b, q ≥ 1 and n ≥ 1, if M ∈ U(a, b) is
a matroid such that r(M) > 1 and τa(M) ≥ r(M)f10.1(a,b,n,q)qr(M), then
M has a PG(n− 1, q′)-minor for some prime power q′ > q.

Proof. Let a, b, n, q be integers with n, q ≥ 1 and 1 ≤ a < b. Let
d =

(
b
a

)
, and h = f9.4(a, d, n, q). Set f10.1(a, b, n, q) to be an integer p

such that p ≥ f7.3(a, b, h, h), and so that rp ≥ dr for all r such that
2 ≤ r < p.

Let M ∈ U(a, b) be a matroid with r(M) > 1, and τa(M) ≥
r(M)pqr(M); we show that M has a PG(n − 1, q′)-minor for some

q′ > q. If r(M) < p, then by Theorem 2.1, τa(M) ≤
(

b−1
a

)r(M)
<

dr(M) ≤ r(M)p, a contradiction. So we may assume that r(M) ≥ p.
By Lemma 7.3, M has an (a0, q + 1, h, h)-pyramid minor for some
1 ≤ a0 ≤ a. By Lemma 9.4, M either has a PG(n − 1, q′)-minor for
some q′ > q, giving the theorem, or a d-thick minor of rank greater
than a, in which case a contradiction follows from Lemma 3.2. �

We now derive Theorem 1.1, which we also restate, as a consequence:

Theorem 10.2. Let a ≥ 1 be an integer. If M is a minor-closed class
of matroids, then either

(1) τa(M) ≤ r(M)nM for all M ∈M, or
(2) there is a prime power q so that τa(M) ≤ r(M)nMqr(M) for all

M ∈M, and M contains all GF(q)-representable matroids, or
(3) M contains all rank-(a+ 1) uniform matroids.

Proof. We may assume that (3) does not hold, so there is some b such
thatM⊆ U(a, b). Moreover, the uniform matroid Ua+1,b is simple and
GF(q)-representable for all q ≥ b (see [6]), so PG(a, q) /∈ M for all
q ≥ b. Therefore, there is some q0 < b, and some n0 > a such that
PG(n0− 1, q) /∈M for all q > q0; choose q0 to be minimal such that q0
is either 1 or a prime power, and this n0 exists.

By choice of q0, we have τa(M) ≤ r(M)f10.1(a,b,n0,q0)q
r(M)
0 for all M ∈

M by Theorem 10.1. If q0 = 1, then this gives (1), and if q0 is a prime
power greater than 1, then minimality of q0 implies that PG(n−1, q0) ∈
M for all n ≥ 1, giving (2). �
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